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Abstract: A theoretical model is presented for the analysis of the electric field and electrostatic adhesion force produced 
by interdigital electrode arrays. The electric field is derived by solving the Laplace equation for the electrical potential in 
each subregion. The electrostatic adhesion force is calculated using the Maxwell stress tensor formulation. The dynamic 
properties of the electric field and electrostatic adhesion force are assessed by evaluating the transient response of the 
field and force under a step in applied voltages. Experimental studies are carried out to evaluate the adhesion 
performance of an electrode panel on a glass pane, and the experimental results verify the correctness of the theoretical 
model. 
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1. INTRODUCTION 

Electrostatic force has found widespread uses in 
many application areas [1], the most well-known being 
laser printing, dust cleaning and cathode ray tube 
technology used for televisions and computer screens. 
In recent years, considerable interest has been placed 
on the development of various electrostatic devices 
applied in industrial areas. The electrostatic chuck used 
for wafer handling or workpiece fixing in semiconductor 
manufacture is one of the most important applications 
[2, 3]. Such electrostatic chuck possesses several 
advantages compared with a mechanical holding 
system. Since the electrostatic force is uniformly 
distributed over the object’s surface, an electrostatic 
chuck can hold the object flat, avoiding the common 
problem of structure deformation in the process of 
mechanical manipulation. Furthermore, an electrostatic 
chuck can transport a wafer faster, and thus improve 
the production yield, while a mechanical gripper 
requires low speed movement to avoid particle 
generation. Electrostatic suspension is another 
effective application similar to the electrostatic chuck 
[4-6]. This noncontact holding system can not only 
avoid structure deformation of the material, but also 
circumvent surface contamination and particle 
generation. Dielectrophoresis is one of the AC 
electrokinetic techniques, which is now used for 
analysis and separation of biological particles, such as 
cells, bacteria and viruses [7-10]. Polarizable particles 
move towards or away from regions of strong field by 
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dielectrophoresis force. The force levitates different 
particles to different heights producing a vertical 
separation. Electrostatic adhesion, as an electrically 
controllable adhesion technology, is applied to wall-
climbing robots for the first time [11-13]. It involves 
inducing electrostatic charges on a wall surface by 
using a power supply connected to compliant pads 
placed on the moving robot. Using this technology, 
various wall-climbing robots have been demonstrated, 
including robots with feet and tracks. 

In all the applications above, electrostatic force 
generated on the object is obtained by exerting the 
voltages to the shaped electrodes. Among many 
different types of electrodes examined, interdigital 
electrodes show the best features [2]. The interdigital 
electrode arrays are similar, consisting of a large 
number of thin parallel bar electrodes fabricated on a 
flat substrate. As we know, the electrostatic force is 
directly dependent on the electric field. Thus 
knowledge of the electric field and the electrostatic 
force generated by the interdigital electrodes is 
essential for improving the work performance of these 
applications. 

However, due to the nonuniformity of the electric 
field generated by the interdigital electrode arrays, 
modelling and analysis of the electric field (and as a 
result the electrostatic adhesion force) is not an easy 
work. So far, the electric field for an interdigital 
electrode array has been solved mainly by numerical 
methods, such as point charge [14], charge density 
[15], finite element [7], finite difference and integral 
equation methods [16], as well as analytical 
approximation based on Green’s functions [8], point 
matching [17], conformal mapping [9] and Fourier 
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series [10]. All of the numerical methods suffer from the 
problem of intensive computation and low accuracy, 
and can-not provide enough theoretical guidance for 
the actual application, such as the optimization of the 
proposed electrode configurations. An analytical 
approach to field determinations is desirable to provide 
more rapid and accurate solutions. However, some of 
the existing methods mainly aim at some specific 
application areas, such as dielectrophoresis and 
electrostatic suspension [18], where the electrode 
arrays are usually placed in a single homogeneous 
medium. In addition, there are few literatures 
concerning the dynamic properties of the electric field 
and the electrostatic adhesion force. 

The aim of this paper is to develop an analytical 
model for the electric field and electrostatic adhesion 
force generated by the interdigital electrode arrays. A 
typical adhesion system consisting of an electrode 
panel and a dielectric plate positioned below the 
electrode panel is considered. The electric field 
problem involves solving the Laplace equations with 
the boundary conditions taken into account. Based on 
this model, field and force dynamics are investigated as 
a function of structure parameters of the electrode 
panel and electrical parameters of the system. 
Experiments are carried out to evaluate the adhesion 
performance of the electrode panel on the glass pane, 
and the experimental results verify the correctness of 
the theoretical model. Finally, we discuss an 
approximation of the inter-electrode potential and 
truncation of series expansion of the field components. 
The influence of vacuum suction force on the adhesion 
system is also discussed. 

2. THEORETICAL DERIVATION 

2.1. Physical Model 

A basic model that can adequately describe the 
performance of the interdigital electrode arrays is 
depicted in Figure 1. In this model, the electrode 

structure consists of two interpenetrating comb 
electrodes, each having a number of fingers of length 
L. Time-varying electric potentials Vp (t)  and Vn (t)  are 
exerted on the electrodes. The electrodes are of width 
2w and are spaced equidistantly with pitch p. The 
electrodes, made of copper in general, are deposited 
on a polyimide film with a thickness of d

2
. Another 

polyimide film of thickness d
1

 is covered on the 
electrodes for electric insulation. Both of the two 
polyimide films have uniform permittivity !p  and 
volume conductivity !p . The polyimide films and the 
copper electrodes sandwiched between the two films 
constitute an electrode panel, which is used to 
generate electric field and force under a voltage 
excitation. Positioned below the electrode panel is a 
dielectric plate with the thickness being d

4
, uniform 

permittivity being !
d
 and volume conductivity being 

!
d

. Given the roughness of the dielectric surface, a 
simplified thin air layer with a thickness of d

3
 is taken 

into account between the electrode panel and the 
dielectric plate. 

2.2 Basic equations and assumptions 

Since currents are varying at a sufficiently small 
rate, Maxwell’s equations can be reduced to the quasi-
electrostatic form [19]: 

E = !"#            (1) 

! "D = #            (2) 

! " J +
#$

#t
= 0            (3) 

where E  is the electric field, D  is the electric flux 
density or the displacement vector, !  is the free 
charge density, and J  is the conduction current. For a 
homogeneous linear dielectric with permittivity !  and 
conductivity ! , D = !E  and J = !E . 

    
     (a)      (b) 
Figure 1: (a) Layout of interdigital electrode arrays. (b) Cross-section of the adhesion model. 
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Given the particular interdigital electrodes, some 
simplifications and assumptions can be made. Since 
electric field is generated mainly between neighbouring 
comb fingers, we simplify the comb electrodes into a 
planar array of parallel strip electrodes without 
consideration of the effect of the root segments of the 
electrodes. As the length of electrodes (L) is much 
larger than the width of them (2w) and the thickness of 
air layer ( d

3
), the edge effect along the length direction 

can be ignored. In addition, the electric field along the 
length direction is uniform, so we can transform this 3D 
problem into a 2D one by taking the cross-section of 
the electrode panel into consideration. Due to the 
periodicity of the electrode structure, we can choose 
one period as the research object, which is the region 
of 0 ! x ! p . From Figure 1, it is evident that the 
electrode structure is even symmetry along the 
centerlines, so the problem space required for the 
correct solution to the electric field problem can be 
reduced to the region bounded by OADE. 

Due to the presence of the stratified dielectric 
mediums, the electric field exhibits discontinuities on 
boundaries GB and FC. For this reason, the problem 
space is divided into three rectangular piece-wise 
uniform subregions: OABG, GBCF and FCDE. In the 
following, we shall denote these regions as subregions 
1, 2, and 3. In each subregion, the potential is a 
solution of Laplace equation, which in an isotropic 
medium, assumes the form: 

!2"(x, y, t)

!x2
+
!2"(x, y, t)

!y2
= 0          (4) 

where !(x, y, t)  is the spatial time-varying potential 
distribution. By using the method of separation of 
variables [19], i.e., assuming !(x, y, t) = X(x, t)Y (y, t) , 
the partial differential equation (4) can be transformed 
into two ordinary differential equations: 

d
2
X(x, t)

dx
2

+ !
2
X(x, t) = 0,  

d
2
Y (y, t)

dy
2

! "
2
Y (y, t) = 0,           (5) 

where !  is the separation constant. Independent 
particular solutions !"=0 (x, y, t)  and !"#0 (x, y, t)  can be 
obtained by solving equation (5) for the two separate 
cases ! = 0  and ! " 0 , respectively. A general 
solution to equation (4) can be derived as a 
combination of !"=0 (x, y, t)  and !"#0 (x, y, t) : 

!(x, y, t) = !"=0 (x, y, t) + !"#0 (x, y, t) = [A(t)x + B(t)]

[C(t)y + D(t)]+ [E(t) sin("x) + F(t) cos("x)] $

[G(t) sinh("y) + H (t) cosh("y)].

       (6) 

The arbitrary time-varying coefficients A(t) , B(t) , 
C(t) , D(t) , E(t) , F(t) , G(t) , H (t) , and the separation 
constant !  are determined such that !(x, y, t)  satisfies 
the boundary conditions. 

2.3. Boundary Conditions 

The three subregions which make up the problem 
space have in common that the potential in each 
subregion is finite and symmetry on the planes x = 0  
and x = p , therefore, the Neumann-type boundary 
conditions should be followed: 

!"(0, y, t)

!x
= 0,

!"(p, y, t)

!x
= 0,#(d2 + d3 + d4 ) $ y $ 0.    (7) 

Since the electrodes are much thinner than their width, 
we ignore the thickness so that the potential on the 
electrodes is specified at y = 0 . The potential 
distribution on the positive and negative electrodes is 
specifically described by the applied voltages Vp (t)  and 
Vn (t) . However, this is not a complete boundary 
condition of the potential distribution on the entire 
electrode plane because the electrodes do not form a 
closed surface and the potentials in the inter-electrode 
gap are unknown. Here for clarity and convenience, we 
will take the first-order Taylor series approximation by 
assuming that the potential varies linearly with distance 
in the electrode gaps (an approach for determining the 
complete boundary potential conditions will be 
described later). Thus the boundary conditions for our 
model are given by 

!(x, 0, t) =

Vp (t) 0 " x " w

Vp (t) +Vn (t)

2
+ [Vn (t) #Vp (t)]

x # p 2
p # 2w

w < x < p # w

Vn (t) p # w " x " p

$

%

&
&&

'

&
&
&

.        (8) 

The analytical expression for the potential on the 
boundary plane y = 0  is piecewise smooth in the 
interval 0 ! x ! p . By using Fourier series expansion, we 
can obtain an expression that is continuously smooth in 
the interval 0 ! x ! p , which is convenient for 
subsequent discussions. As this potential is an even 
function with respect to the y-axis, only the cosine 
terms are retained in its Fourier series representation: 

!(x, 0, t) =
a0 (t)

2
+ an (t)

n=1

"

# cos(
n$ x

p
) 0 % x % p        (9) 

where 

an (t) =
2

p
!(x, 0, t)

0

p

" cos(
n# x
p
)dx (n = 0, 1, 2, ...).      (10) 
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Substitution of equation (8) and equation (10) into 
equation (9) yields the following Fourier series 
representation of the electric potential on the boundary 

0=y : 

!(x, 0, t) =
Vp (t) +Vn (t)

2
+
2[Vn (t) "Vp (t)]

# 2 (1" 2w p)
$

1

n
2
[

n=1

%

& cos(n# "
n#w

p
) " cos(

n#w

p
)]cos(

n# x

p
) 0 ' x ' p

(11) 

Boundary conditions related to the three rectangular 
piece-wise uniform subregions can be divided into two 
parts, which are with respect to the two dielectric 
interfaces. The boundary conditions representing the 
irrotational condition of the electric field can be given by 

n ! (E1 " E2 ) = 0, y = "d2

n ! (E2 " E3) = 0, y = "(d2 + d3).
      (12) 

The boundary conditions associated with the charge 
conservation law (or the continuity of current) at the two 
dielectric interfaces can be written as [20] 

!

!t
n " (#pE1 $ #0E2 ) + n " (%pE1) = 0, y = $d2

!

!t
n " (#0E2 $ #dE3) $ n " (%dE3) = 0, y = $(d2 + d3)

     (13) 

where n is the unit vector of the y axis , E
1
, E

2
 and 

E
3
are the electric field in subregions 1, 2 and 3, 

respectively. 

In general, since the thickness of the dielectric plate 
is much larger than that of the polyimide film and the air 
layer ( d4 >> d2 ,d4 >> d3 ), d

4
 is usually treated as 

infinity for reasonable simplification. The last boundary 
condition expresses that the potential decays to zero 
when y approaches infinity, that is: 

y!"#
lim $(x, y, t) = 0.         (14) 

Equations (7), (11), (12), (13) and (14) constitute the 
complete set of boundary conditions necessary to solve 
the posed boundary problem. 

2.4. Solution to the Laplace Equation 

In order to get the potential distributions in the three 
subregions, we need to solve the Laplace equation for 
each region by considering the general solution and 
boundary conditions. Solution to Laplace equation for 
subregion 1 is discussed first. Substitution of the first 
Neumann-type boundary condition in equation (7) into 
the partial derivative of equation (6) with respect to x 
yields 

!"1(0, y, t)

!x
= A

1
(t)[C

1
(t)y + D

1
(t)]+ #E1(t) $

[G
1
(t)sinh(#y) + H1

(t) cosh(#y)] = 0,%y, t and # & 0

     (15) 

where subscript 1 and superscript 1 both denote the 
subregion 1. This boundary condition can be satisfied 
by letting C

1
(t) = 0 , A

1
(t)D

1
(t) = 0  and E

1
(t) = 0 . 

Substitution of the second Neumann-type boundary 
condition in equation (7) into the partial derivative of 
equation (6) with respect to x leads to 

!"1(p, y, t)

!x
= #$F1(t)sin($p)[G1(t)sinh($y)

+H
1
(t) cosh($y)] = 0. %y, t and $ & 0

 (16) 

This boundary condition can be only met when 
sin(!p) = 0  for ! " 0  and F1(t) ! 0  are necessary in 
this situation, which means that the separation constant 

! =
n"

p
, n = 1, 2, ... , #.        (17) 

By introducing the notations K
1
(t) = B

1
(t)D

1
(t) , 

L
1
(t) = F

1
(t)G

1
(t)  and M 1

(t) = F
1
(t)H

1
(t) , the solution 

to Laplace equation for subregion 1 can be expressed 
as 

!1(x, y, t) = K
1
(t) + [Ln

1
(t)sinh(

n" y

p
)

n=1

#

$

+Mn
1
(t) cosh(

n" y

p
)]cos(

n" x

p
).

      (18) 

Another boundary condition associated with subregion 
1 is the potential distribution on the plane y = 0 , which 
has been given by equation (11). Matching the terms in 
equation (11) with equation (18) at y = 0  yields the 
following two relationships: 

K
1
(t) =

Vp (t) +Vn (t)

2
,         (19) 

and 

Mn
1
(t) =

2[Vn (t) !Vp (t)]

n
2
"
2
(1! 2w p)

[cos(n" !
n"w

p
) ! cos(

n"w

p
)].      (20) 

With respect to the solution to Laplace equation for 
subregion 2, we assume it has a form similar to that of 
!1(x, y, t) , that is, 

!2 (x, y, t) = K
2
(t) + [Ln

2
(t)sinh(

n" y

p
)

n=1

#

$

+ Mn
2
(t) cosh(

n" y

p
)]cos(

n" x

p
).

      (21) 
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In subregion 3, a particular boundary condition 
expressed by equation (14) results in a different form of 
potential expression as the form in subregion 1, and it 
can be written as 

!3(x, y, t) = K
3
(t) + Ln

3
(t) exp(

n" y

p
)

n=1

#

$ cos(
n" x

p
).      (22) 

The eight unknown time-varying coefficients in the 
potential expressions of the three subregions can be 
obtained by substituting the solutions to Laplace 
equation for the three subregions into the boundary 
conditions at the two dielectric interfaces [equations 
(12) and (13)] and considering the two relationships 
shown in equations (19) and (20). Here, we take the 
Laplace transforms of the time functions to circumvent 
the computational difficulty created by the presence of 
the time derivatives of field solutions in the boundary 
conditions [equations (13)]. The Laplace transforms of 
time domain functions are denoted by replacing the 
time variable t with the complex variable s. Hereto, the 
solutions to Laplace equation for the three subregions 
can all be solved when we obtain the Laplace 
transforms of the eight unknown time-varying 
coefficients K

1
(s) , L

n

1
(s) , M

n

1
(s) , K

2
(s) , )(

2
sL

n
, 

)(
2
sM

n
, )(3 sK , and )(

3
sL

n
 (see Appendix). 

2.5 Electric field and Electrostatic Adhesion Force  

Each of the electric field components in subregions 
1, 2, 3 can be derived from equation (1) after we obtain 
the solutions to Laplace equation for the three regions, 
which are expressed as the product between the 
voltage difference V! (s)  and the sum of an infinite 
series of rational, second-order transfer functions, as 
follows: 

Er,x (x, y, s) =
!

p
V" (s) n# (n)

n=1

$

% sin(
n! x

p
)

&
a2,x
r
(n, y)s

2
+ a1,x

r
(n, y)s + a0,x

r
(n, y)

b2 (n)s
2
+ b1(n)s + b0 (n)

,

 

Er,y (x, y, s) = !
"

p
V# (s) n$ (n)

n=1

%

& cos(
n" x

p
)

'
a2,y
r
(n, y)s

2
+ a1,y

r
(n, y)s + a0,y

r
(n, y)

b2 (n)s
2
+ b1(n)s + b0 (n)

.

      (23) 

where r = 1, 2, 3  and 

al,x
1
(n, y) = al,L1 (n)sinh(

n! y

p
) + bl (n) cosh(

n! y

p
),  

al,y
1
(n, y) = al,L1 (n) cosh(

n! y

p
) + bl (n)sinh(

n! y

p
),

al,x
2
(n, y) = al,L2 (n)sinh(

n! y

p
) + al,M2

(n) cosh(
n! y

p
),  

al,y
2
(n, y) = al,L2 (n) cosh(

n! y

p
) + al,M2

(n)sinh(
n! y

p
),  

am,x
3
(n, y) = am,y

3
(n, y) = am,L3 (n) exp(

n! y

p
),  

a0,x
3
(n, y) = a0,y

3
(n, y) = 0,  

l = 0, 1, 2 m = 1, 2  

In this work, the electrostatic adhesion force exerted 
on the dielectric plate can be calculated by using the 
Maxwell stress tensor formulation. The net ith force 
component on a dielectric medium is obtained by 
integrating the Maxwell stress tensor Tij  over the 
enclosing surface S  [21], 

 

Fi = !0 (Tijn j )
s!" dA = !0 [(EiE j #

1

2
$ijEkEk )nj ]

s!" dA      (24) 

where the Einstein convention has been used for 
vector indices and !ij  is the Kronecker delta. In 
addition, the integration in equation (24) should take 
place over the outer boundary of the enclosing surface 
S . Since d4 >> d2 ,d4 >> d3  and d

4
 is usually treated 

as infinity for reasonable simplification, the potential on 
the lower surface of the dielectric plate decays to zero, 
and the electric field decays to zero as well. This 
implies that only the electric field solution in subregion 
2 is required in the integration, and the electrostatic 
adhesion force exerted on the dielectric plate of one 
period can be written as 

F =
!0L

2
[E2,y

2
(x, y, t) " E2,x

2
(x, y, t)]

0

p

# dx.       (25) 

The time domain electric filed components required 
to evaluate the above expression can be obtained 
straightforwardly by applying the inverse Laplace 
transform to equation (23). 

3. MODEL VERIFICATION AND ANALYSIS 

3.1. Field and Force Dynamics Under a Step 
Voltage Excitation 

Since free charges inside a conductor can move 
freely, these charges will appear on the surface facing 
the electrodes nearly uniformly immediately after 
voltages are applied to electrodes. However, in the 
case of a dielectric, charge collection mainly originates 
from polarization, which can usually not occur 
instantaneously. Hence, a dynamic relation, which 
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includes a time-varying function, exists between the 
applied electrode voltages and electrostatic adhesion 
force due to the resistivity of the dielectric or the 
delayed polarization. In this work, the field and force 
dynamics are assessed by evaluating the transient 
response of the field and force under a step in applied 
voltages, and these are in accord with the actual 
adhesion process where the voltages exerted to the 
electrodes may actually behave like a step input. Let us 
define the step voltages as 

Vp (t) = 0, if t ! 0

Vp (t) = Vp , if t > 0

"
#
$

%$
 and 

Vn (t) = 0, if t ! 0

Vn (t) = Vn , if t > 0

"
#
$

.       (26) 

The Laplace transforms of these step voltages are 
given by Vp (s) = Vp s  and Vn (s) = Vn s , respectively. 
Equation (23) demonstrates the relationship between 
the input voltage V! (s)  and each of the field 
components, which is described by an infinite series of 
second-order, rational transfer functions, whose 
denominator and numerator polynomial coefficients are 
functions of the summation index n. Since the transfer 
function completely represents a system differential 
equation, its poles, which are the roots of the 
denominator polynomials, and zeros, which are the 
roots of the numerator polynomials, can effectively 
define the system response. 

Let [p1(n); p2 (n)]  and [z1,l
r
(n); z2,l

r
(n)]  denote the 

poles and zeros of the second-order transfer functions 
in the series expansion of the field components 
[equation (23)], where the subscript l (l = x, y)  refers to 
the axis orientation of the field component and the 
superscript r (r = 1, 2, 3)  indicates the subregion. The 
step response of the field in the time domain can be 
expressed in terms of the poles and zeros on applying 
the inverse Laplace transform to equation (23), yielding 
the following field components: 

Er,x (x, y, t) =
!

p
(Vp "Vn ) n# (n)sin(

n! x

p
)

n=1

$

% Tr,x (y,n, t)  

Er,y (x, y, t) =
!

p
(Vp "Vn ) n# (n) cos(

n! x

p
)

n=1

$

% Tr,y (y,n, t)      (27) 

where the time domain function Tr,l (y,n, t)  is given by 

Tr,l (y,n, t) =
a2,l
r
(n, y)

b2 (n)
{
z1,l
r
(n)z2,l

r
(n)

p1(n)p2 (n)
+

[z2,l
r
(n) ! p1(n)][z1,l

r
(n) ! p1(n)]

p1(n)[p1(n) ! p2 (n)]
" exp[p1(n)t]

!
[z2,l
r
(n) ! p2 (n)][z1,l

r
(n) ! p2 (n)]

p2 (n)[p1(n) ! p2 (n)]

" exp[p2 (n)t]}

     (28) 

where r = 1, 2, 3  and l = x, y . Hence, the dynamic force 
expression can be derived by substituting E2,x (x, y, t)  
and E2,y (x, y, t)  into equation (25). 

3.2. Evaluation of Adhesion Performance on a 
Glass Pane 

To verify the model developed, adhesion 
performance of an electrode panel on a glass pane is 
evaluated. The electrode panel with a pair of interdigital 
electrodes as shown in Figure 2 is made from a flexible 
etched printed circuit board by removing copper films. 
The base of the panel is a polyimide film with 
d
2
= 50µm . Interdigital electrodes made from the 

copper film are deposited on the polyimide base, which 
are then covered by another polyimide film with 
d
1
= 50µm . The bulk electrical properties of the 

polyimide films are !p = 3.4!0  and !p = 10
-17
S/cm , 

where !
0
= 8.85 "10

-12
F/m  is the permittivity of 

vacuum. The width of the electrode and the space 
between neighbouring electrodes are both 1 mm, and 
the length of the electrode is L = 300 mm . The total 
area of the electrode panel is A = 300 mm ! 200 mm . 
The glass pane has a thickness ( d

4
) of mm5 , while 

the thickness of the air layer between the electrode 
panel and the glass pane due to the influence of 
roughness is assumed to be d

3
= 20 µm . The bulk 

electrical properties of the glass pane are given by 

0d 5.3 !! =  and !
d
= 10

-13
S/cm , and the applied step 

voltages are Vp = 800 V  and V
n
= !800 V . 

Since the series expansion of the field components 
are summations over an infinite number of terms, they 
need to be truncated by considering reasonable 
accuracy of the model and complexity of the 
computation. A detailed discussion of this problem will 
be given in the next section. Here, we just show the 
numerical results carried out by using the numerical 
software package MATLAB. In addition, experiment 
work of the electrode panel on the glass pane is 
conducted, and experimental results and theoretical 
consequences are both presented to verify the model. 

 
Figure 2: An electrode panel with a pair of interdigital 
electrodes. 
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Figure 3 depicts the time histories of the step 
response of the field components on the boundary 
y = !(d2 + d3)  in region 2 [Figure 3(a) and Figure 3(b)] 
and on the boundary y = !(d2 + d3 + d4 )  in region 3 
[Figure 3(c) and Figure 3(d)]. These plots show that all 
field components except for E2,y (x, y, t)  decay to zero 

as the time increases. We also notice that the field 
components on the boundary y = !(d2 + d3 + d4 )  are 
much smaller than that on the boundary y = !(d2 + d3) , 
which proves that ignoring the influence of field 
components on the boundary y = !(d2 + d3 + d4 )  in the 
integration [equation (25)] in calculating the adhesion 
force is reasonable. Figure 4 depicts the time histories 
of the electrostatic adhesion force exerted on the glass 
pane. Both the experimental data and theoretical data 
demonstrate that it needs almost 100s for the adhesion 
force to increase gradually to a steady value. The 
discrepancy between the presented experimental data 
and the theoretical results mainly results from two 
aspects: (a) the linear approximation of the potential 
distribution in the inter electrode gap, which results in 
the inherent error of the model; (b) the influence of the 
vacuum suction force, which will be discussed in the 
following section. 

4. DISCUSSION 

4.1. Approximation of the Interelectrode Potential 

The potential distribution on the entire electrode 
plane, bounded by the plane y = 0 , represents one of 
the boundary conditions required to determine the field 

             
     (a)      (b) 

             
     (c)      (d) 

Figure 3: The step response of the electric field components as a function of time (t) and distance (x) along the boundary 
y = !(d2 + d3 )  in region 2 [(a) and (b)] and y = !(d2 + d3 + d4 )  in region 3 [(c) and (d)]. 

 
Figure 4: Time histories of the electrostatic adhesion force 
exerted on the glass pane. Theoretical results (---) and 
experimental results (—). 
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distribution in subregion 1. Nevertheless, we apply 
known voltages only to the electrodes in practical 
electrode panel while the potential distributions 
between the electrodes are unknown. In the physical 
model given above, for clarity and convenience, we 
take the first-order Taylor series approximation, 
assuming that the potential varies linearly with distance 
in the electrode gaps. 

Since the electrodes are placed in a homogeneous 
dielectric medium (the top and bottom surface of the 
copper electrodes are both covered by a polyimide 
film), the field in the direction normal to the electrode 
plane is zero in the electrode gaps. This additional 
constraint for the electrical field configuration can be 
used to determine the potentials in the electrode gaps. 
The approach is as follows. First, the electrical potential 
in each interelectrode gap is expanded as a Taylor 
series with respect to the distance from the electrode 
gap centre with undetermined polynomial coefficients. 
Then, the expressions for the electrical potential and 
electric field component everywhere in terms of the 
undetermined coefficients can be obtained through 
symbolic calculation. Finally, values for these 
coefficients are determined by applying the field 
constraint condition, so that the field results are self-
consistent. 

The Taylor expansion of the electrical potentials in 
the electrode gaps is given as follows (even terms 
disappear due to the electrode symmetry) 

!(x, 0, t) =
Vp (t) +Vn (t)

2
+
[Vn (t) "Vp (t)]

2

# $2m+1

m=0

%

& (x " p / 2)2m+1

      (29) 

where w ! x ! p " w , and the polynomial coefficients 
!2m+1 (m = 0, 1, 2, ...)  satisfy 

!2m+1

m=0

"

# (p / 2 $ w)
2m+1

= 1        (30) 

We derive the analytical expressions for the field 
components and electrostatic adhesion force by 
substituting !(x, 0, t)  in terms of the undetermined 
polynomial coefficients !

2m+1
 into the derivation 

process in section 2, most conveniently by using 
symbolic manipulation by computer. The polynomial 
coefficients !

2m+1
 can then be determined from the 

constraint 

Ey (x, 0, t) = 0 w ! x ! p " w        (31) 

Practically, a finite number of polynomial terms is taken 
as an approximation, and an optimization function for 
determining the coefficients is then used to minimize 
the error resulting from the finite number of terms 

Min
!1 ,!3 ,...,!2m+1

{ Ey
2
(x, 0, t)dy

w

p"w

# }.        (32) 

Evidently, the optimization procedure results in the 
smallest magnitude of Ey  values in such a way that 
these magnitudes alternate about zero. Generally, a 
third or five order approximation for the potential in the 

  
     (a)       (b) 

Figure 5: Dependency of the transfer function poles p1(n) [(a)] and p2 (n) [(b)] on summation index n. 
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interelectrode gap is adopted by considering the model 
accuracy and complexity of computation at the same 
time. 

4.2. Truncation of Series Expansions of the Field 
Components 

From a computational point of view, the series 
expansion of the field components, which involve 
summations over an infinite number of terms, need to 
be truncated. The total number ( n

total
) of the summa-

tion terms required to sufficiently obtain the field 
dynamics and achieve reasonable accuracy of the 
model can be determined by identifying the dominant 
poles of the second order transfer functions for the field 
components given by equation (23). Figure 5 depicts 
the poles p1(n)  and p2 (n)  as a function of the 
summation index n. p1(n)  and p2 (n)  reflect the 
different speeds at which charges accumulate on the 
boundary y = !d

2
 and on the boundary y = !(d2 + d3) . 

Since the bulk conductivity of the polyimide film is 
much smaller than that of the glass panel, charges 
accumulation is mainly and much quicker at the 
boundary y = !(d2 + d3) . The dynamic properties of the 
field and adhesion force are mainly reflected by p2 (n)  
in the actual application. As the integer n varies from 1 
to 31, p2 (n)  decreases from -0.052 to -0.242. For 
higher value of n, p2 (n)  does not decrease apparently 
but comes to a steady value near -0.25. Meanwhile, we 
notice that the magnitude of field components decrease 
sharply as the integer value of n increases. Based on 
the above considerations, the choice of n

total
= 31  is 

verified to lead to a rapid convergence of the sum, and 
the dynamic properties of field and adhesion force can 
also be demonstrated well. 

4.3. Influence of Vacuum Suction Force 

The discrepancy between the theoretical and 
experimental results of the electrostatic adhesion force 
is demonstrated in Figure 4. From the observation of 
the performance of the electrode panel on the glass 
pane, it is speculated that vacuum suction force, such 
as that in a suction cup, is also involved in adhesion. 
Due to the flexibility of the electrode panel, the small 
gap with low air pressure is generated, resulting in the 
vacuum suction force when electrostatic adhesion is 
activated. At the initial phase of the adhesion, 
experimental data are smaller than the theoretical data 
because the contact between the electrode panel and 
the glass pane is not close enough, which certainly 
reduces the adhesion force. As the adhesion force 
gradually increases with time, the electrode panel 
contact more closely with the glass pane. Meanwhile, 

the air beneath the electrode panel is squeezed out 
and the negative pressure environment is formed, 
resulting in the vacuum suction force exerted on the 
electrode panel. The theoretical data are larger than 
the experimental data when the adhesion reaches a 
steady value at the final phase because of the 
influence of the vacuum suction force. 

5. CONCLUSIONS 

This paper has introduced an analytical model to 
analyze the dynamic properties of the electric field and 
electrostatic adhesion force generated by interdigital 
electrode arrays. The expressions of electric filed 
components are derived by solving the Laplace 
equation for the electrical potential in each subregion. 
The electrostatic adhesion force is calculated by using 
the Maxwell stress tensor formulation. Experiments are 
carried out to verify the model by evaluating the 
adhesion performance of an electrode panel on a glass 
pane. We find a relatively good agreement between 
theory and experiment. An approximation method for 
the potential distribution in the interelectrode gap is 
discussed in detail, which can further improve the 
model accuracy. In addition, we find that vacuum 
suction force is involved in the adhesion. The influence 
of this vacuum suction force to electrostatic adhesion is 
also discussed. 

The model proposed in this paper is not specific for 
a single problem but universal to many electrostatic 
adhesion problems, where interdigital electrodes are 
utilized to generate electric field and electrostatic 
adhesion force, such as the electrostatic chuck and 
electrostatic suspension system used in industry areas, 
and wall-climbing robots using electrostatic adhesion 
force. The outcome of this work can provide support for 
theoretical guidelines and system optimization for these 
electrostatic applications. Further study is needed to 
analyze the important factors which influence the 
electrostatic adhesion problem, especially the dynamic 
response speed of the adhesion force. Another area for 
future investigation can be focused on the 
mathematical modelling of the surface roughness 
instead of the simplified uniform air layer in this paper. 
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APPENDIX: SOLUTION TO THE LAPLACE EQUATION 

The Laplace equation was solved by symbolic computations of the software package called MATLAB. The 
analytical solutions of the Laplace transforms of the eight unknown time-varying coefficients were given by: 

K
1
(s) = K

2
(s) = K

3
(s) =

1

2
[Vp (s) +Vn (s)],  

L
n

1
(s) = V! (s)" (n)

a2, L1
(n)s

2
+ a1, L1

(n)s + a0, L1 (n)

b2 (n)s
2
+ b1(n)s + b0 (n)

,  

L
n

2
(s) = V! (s)" (n)

a2, L2
(n)s

2
+ a1, L2

(n)s + a0, L2 (n)

b2 (n)s
2
+ b1(n)s + b0 (n)

,  

L
n

3
(s) = V! (s)" (n)

a2, L3
(n)s

2
+ a1, L3

(n)s

b2 (n)s
2
+ b1(n)s + b0 (n)

,  

M
n

1
(s) = V! (s)" (n),  

M
n

2
(s) = V! (s)" (n)

a2, M2
(n)s

2
+ a1, M2

(n)s + a0, M2
(n)

b2 (n)s
2
+ b1(n)s + b0 (n)

,  

where 

V! (s) = Vp (s) "Vn (s),  

! (n) =

0 n = even

4 cos(n"w / p)
n
2" 2 (1# 2w / p)

n = odd

$

%
&

'
&

,  

and the numerator polynomial coefficients, which are functions of the summation index n, are defined as 

a2, L1 (n) = !0
2 cosh(

n"d2

p
)sinh(

n"d3

p
) + !0!p cosh(

n"d3

p
)

# sinh(
n"d2

p
) + !d!p sinh(

n"d3

p
)sinh(

n"d2

p
)

+ !0!d cosh(
n"d3

p
) cosh(

n"d2

p
),

a1, L1 (n) = !0"d cosh(
n#d2

p
) cosh(

n#d3

p
) + !0"p cosh(

n#d3

p
)

$ sinh(
n#d2

p
) + !d"p sinh(

n#d3

p
)sinh(

n#d2

p
)

+ !p"d sinh(
n#d3

p
)sinh(

n#d2

p
),

a0, L1 (n) = !d!p sinh(
n"d2

p
)sinh(

n"d3

p
),  

a2, L2 (n) = !p!d cosh[
n" (d2 + d2 )

p
]+ !0!p sinh[

n" (d2 + d2 )

p
],

a1, L2 (n) = !p"d cosh[
n# (d2 + d3)

p
]+ "0!p sinh[

n# (d2 + d3)

p
]

+ "p!d cosh[
n# (d2 + d3)

p
],

a0, L2 (n) = !d!p cosh[
n" (d2 + d3)

p
],  

a2, L3 (n) = !0!pexp[
n" (d2 + d3)

p
],  
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a1, L3 (n) = !0"pexp[
n# (d2 + d2 )

p
],  

a2, M2
(n) = !p!d sinh[

n" (d2 + d3)

p
]+ !0!p cosh[

n" (d2 + d3)

p
],

a1, L2 (n) = !p"d sinh[
n# (d2 + d3)

p
]+ "0!p cosh[

n# (d2 + d3)

p
]

+ "p!d sinh[
n# (d2 + d3)

p
],

a0, L2 (n) = !d!p sinh[
n" (d2 + d3)

p
],  

and finally the denominator polynomial coefficients are given by 

b2 (n) = !0
2 sinh(

n"d2

p
)sinh(

n"d3

p
) + !0!p cosh(

n"d3

p
)

# cosh(
n"d2

p
) + !d!p sinh(

n"d3

p
) cosh(

n"d2

p
)

+ !0!d cosh(
n"d3

p
)sinh(

n"d2

p
),

b1(n) = !0"d sinh(
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p
) cosh(
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p
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p
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$ cosh(
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p
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