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Abstract: Structurally reconfigurable or variant robot systems can provide better mobility and environmental adaptability. 
In this paper it is shown that a class of nonholonomic constraints robot systems can be changed to a class of special 
linear time varying (LTV) systems, and by applying switching control strategy the control singular problems of 
nonholonomic systems caused by the local coordinates can be overcome, and provides a flexible approach of optimal 
motion planning for mobile robotic systems. For variant robot systems with switched discontinuous dynamics, it is shown 
that the switching control approaches can be used to stabilize a class of switched heterogeneous nonholonomic 
systems. Some numerical simulation results also demonstrate the effectiveness of the control strategy proposed in this 
paper. 
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1. INTRODUCTION 

Reconfigurable or variant robot systems have a 

wide application prospect in modern industry, extra- 

terrestrial exploration, and field working [1-3]. However, 

variant robot systems are commonly a class of hybrid 

dynamic systems [4], of which the motion control is 

generally a difficult subject that has not been thoroughly 

studied so far. Switched systems are a special class of 

hybrid systems and have been investigated more than 

twenty years [5, 6]. Due to the complexity of the control 

problems of switched systems, the switched linear or 

nonlinear systems are currently still an important and 

rather active research direction in control fields [7-9].  

For investigating the feasibility of developing variant 

mobile robot systems, we study the stabilization issues 

of a class of switched nonholonomic systems, which 

are a class of special hybrid nonlinear dynamic 

systems [7-9]. For the switched systems, to date the 

main research results are presented for switched linear 

time invariant (LTI) systems [7, 8] or some switched 

nonlinear systems with special properties [9]. For the 

switched nonholonomic systems，only a few research 

results can be found in literatures. In this research 

direction, switched nonholonomic systems are primarily 

caused by introducing some kinds of discontinuous 

feedback based on the Brockett’s theorem [10], which 

shows that nonholonomic systems can-not be stabil- 

ized by continuous differentiable, time invariant, pure 

state feedback control law. As shown by Bloch in [11], 

owing to the discontinuous feedback property sliding 

mode controller can be applied to stabilize some 

nonholonomic systems, although the method is difficult  
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to be generalized to stabilize general nonholonomic 

systems. In reference [12] the time invariant sliding 

mode control for nonholonomic systems was also 

extended to time varying sliding mode control that 

relied on finding a set of sufficiently smooth periodic 

odd functions. Astolfi also showed that the first order 

nonholonomic systems could be mapped to disconti- 

nuous nonholonomic systems by discontinuous coordi- 

nate transformation [13], and then the discontinuous 

systems can be used to design an exponentially stable 

controller for stabilizing the original systems. In [14] it 

was also shown that an underactuated autonomous 

surface vessel could be stabilized by a switching 

controller on the basis of the discontinuous coordinate 

transformation, which is similar to that used in [13]. 

With the aid of fractional power feedbacks, in the 

literature [15] switching controllers were also used to 

stabilize several kinds of underactuated nonholonomic 

systems in finite time. In [16] a logic-based switching 

controller was presented to stabilize the nonholonomic 

integrator. A similar strategy has also been used to 

stabilize a nonholonomic system with robots with a 

differential-drive mechanism [17], Pendubot systems 

[18], or mobile robotic systems [19]. Unfortunately, all 

of these presented approaches for stabilizing the 

nonholonomic systems or underactuated systems com- 

monly relate to the specific controlled plants, and the 

controlled plants are usually in single dynamic mode. 

From the point of view of switching control systems, 

these switched nonholonomic subsystems are homo- 

geneous [20]. 

For the purpose of searching for a feasible control 

scheme for reconfigurable or variant mobile robot 

systems, stabilization of switched nonholonomic mech- 

anical systems with hetero- generous [21] subsystems 

is investigated in this paper. By combing the globally 
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exponential coordinate transformations and switching 

control approaches, we show that a class of variant 

mobile robot systems can be globally stabilized under 

certain conditions. Since a class of nonholonomic 

systems could be changed to a kind of special LTV 

system by time varying coordinate transformations 

(TVCT) [22, 23], and stabilizing the nonholonomic 

systems can be changed to stabilize the special LTV 

systems, then on the basis of switching control theory, 

we show that not only the global stabilization issues of 

nonholonomic systems with single model can be 

resolved conveniently, but also globally stabilizing a 

class of variant mobile robot systems with multi-models 

is possible under rather relaxed conditions. 

This paper is organized as follows. In section Ⅱ, the 

theoretical basis of stabilizing a class of special 

switched LTV systems are presented. The main results 

of the paper are presented in section Ⅲ, where two 

propositions based on the TVCT methods and two 

theorems for stabilizing the switched nonholonomic 

systems are presented. To the best knowledge of the 

authors, it is the first time to discuss the global stabili- 

zation issues of switched nonholonomic mechanical 

systems with multi locomotion modes. We show that a 

class of multimode nonholonomic systems can be 

globally stabilized by isomorphic controllers, even 

though the different modes of the nonholonomic system 

are heterogeneous. This is helpful for simplifying the 

controllers of complex plants, such as the variant robot 

systems. In section Ⅳ, a variant mobile robot system, 

which is the combination of a wheeled mobile robot and 

a hovercraft robot, is introduced and the numerical 

simulation results are given in detail for the purpose of 

demonstrating the effectiveness of the proposed 

switching control strategy for stabilizing the switched 

nonholonomic systems. The last section includes the 

conclusions and some discussions. 

2. STABILITY OF A CLASS OF SWITCHED LTV 
SYSTEMS 

In this article, the following continuous time LTV 

systems are considered 

( ) uBxAAx 
++= )(21 t           (1) 

where n
Rx  is the continuous state, m

Ru  is the 

control input, →),0[:  is a piecewise constant 

switching signal,  s,,2,1: =  is a index set, the 

matrix pairs ( ) BA ,1  are controllable, and the time 

varying matrix )(2 tA satisfies the relationships 

0)(lim 2 =
→

t
t

A , and 


0

2 d)( ttA .        (2) 

Due to the following lemma, the issues of stabilizing 
a class of switched LTV systems can be further 
discussed. 

Lemma 1. [24] The LTV system 

( )xAAx )(21 t+= , n
Rxx = 0)0(         (3) 

where 1A  is a Hurwitz matrix, and )(2 tA  is a time-

varying continuous matrix. If )(2 tA  satisfies the 

conditions (2), i.e., 0)(lim 2 =
→

t
t

A  and 


0

2 d)( ttA , 

then the LTV system (3) is exponentially stable. 

Remark 2. Lemma 1 is included in some literatures, 
such as [24], but its proof is not very clear. For the 
purpose of helping to understand the main results of 
the paper, Lemma 1 is concisely analyzed as follows.  

The solution of the LTV system (3) can be written as 

( ) ++=
t

ssst
0

210 )d()()( xAAxx  

It can be shown that  

 ++
tt

ssssst
0

2

0

10 d)()(d)()( xAxAxx .       (4) 

The first term of the right hand side of the inequality 
(4) satisfies 

0

0

10 d)( xxAx
t

t

ess −+   

where   is a positive constant that can always be 

found since 1A is a Hurwitz matrix. According to Cauchy 

inequality, the second term of the right hand side of (4) 
satisfies 
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and due to the given condition 


0

2 d)( ttA , there 

exists a sufficiently large constant M  such that 

Mss
t


0

2 d)(A ,  Tt ,0 . Accordingly, for the inequality 

(4), we have + −
t

t ssMet
0

0 d)()( xxx
 for  )Tt ,0 .  
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According to Gronwall’s inequality (see [25]) it 
follows that 

( )
0)( xx

M tet +−  ,  )Tt ,0 . 

On the other hand, by the given condition

0)(lim 2 =
→

t
t

A , we can conclude that there exists a 

sufficiently large time T , so that M  is sufficiently small 
and then 0+− M . Therefore the LTV system (3) is 

exponentially stable. ◇ 

On the basis of Lemma 1, the issues of stabilizing 

the switched LTV systems (1) can be simplified to that 

of stabilizing the linear time invariant (LTI) systems 

uBxAx  += ,           (5) 

where nnRA and mnRB are constant matrices. 

Since all subsystems of (1) are assumed to be 

controllable, all the pairs of   BA1  (  ) are 

controllable. Suppose the feedback xKu −= (  ) 

stabilize the subsystem (5), where K ,   are the 

gain matrices of each mode respectively, then the 
closed-loop subsystems 

xAx = ,            (6) 

are exponentially stable, and  KBAA −= ,    

are Hurwitz matrices. It is well known that a switched 

system with all stable modes may be unstable under 

inappropriate switching modes, while a switched 

system with some unstable modes may be stabilized 

by proper switching modes. For the issues of stabilizing 

the switched nonholonomic systems, both of the two 

aspects are involved. The fact is that, on one hand the 

nonholonomic systems are a class of special nonlinear 

systems of which the linear approximation systems are 

general uncontrollable [11,12]. On the other hand, 

owing to the Brockett’s theorem [10] that demonstrates 

a nonholonomic constraint system could not be 

stabilized by any time invariant and smooth pure state 

feedback, discontinuous controllers are often employed 

to stabilize the nonholonomic systems. 

 The nonholonomic systems generally appear in 

mechanical systems, and it is different from a theoretic- 

cally switched system or a switched electronic/circuit 

system. Consequently the switched nonholonomic 

systems are generally a class of slow switching 

systems due to the non-ignorable system inertia. As an 

important foundation of investigating the stabilization of 

switched nonholonomic systems, the slowing switching 

theorem is presented as follows since it will be used in 

the sequel. 

Lemma 3 [7]. Assume that all subsystems in a 
switched linear system are exponentially stable. There 

exists a scalar 0* a  such that the switched system is 

exponentially stable if the average dwell time is larger 

than .*
a  

Remark 4. The average dwell time a  for a switch- 

ing signal   is defined to be 
0),( NtN

t
a

−

−









，where 

0t  and ),(  tN  denotes the number of mode 

switches of a given switching signal   over the interval 

( )t, , the scalar 00 N  is the chatter bound that is the 

maximal number of allowable switching over the 

interval ( )t, . In other words, in order to exponentially 

stabilize a switched linear system that has stable 
modes, the number of mode switches over the interval 

( )t,  should satisfy 
a

t
NtN






−
+ 0),( . Therefore, if 

the average dwell time a  is sufficiently large, then the 

switched linear system (6) is exponentially stable with 
the assumption that all the subsystems are 
exponentially stable. 

3. STABILIZING A CLASS OF SWITCHED 
NONHOLONOMIC SYSTEMS 

Nilpotent or nilpotentizable nonholonomic systems 

are a class of important mechanic systems in robotics 

field [26]. An essential property of the nilpotent or 

nilpotentizable nonholonomic systems is that the 

special nonlinear systems can be possibly changed to 

a chained form by nonlinear coordinate and feedback 

transformations [27]. For the first-order nonholonomic 

systems with two inputs, it is shown that the nonlinear 

systems could be globally transformed into the 

following normal form. 

21111 ,, uxxuxux nii === +


         (7) 

Where 1,,2 −= ni  , x  are the state variables of 

the system, iu , 2,1=i  are the inputs. By the method of 

TVCT presented in [22, 23], we can present the 
following proposition, which shows that the chained 
form systems (7) can be further transformed into a LTV 
system.  

Proposition 5: By applying the following TVCT  

nn

t
ii

xy

niexy

=

−== 1,,3,2, 

          (8) 

where t  is time variable, and selecting an input 
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tt ececu  −− += 101             (9) 

where 0c  and 1c  are two constants defined by the 

initial state ))0(,d)(( 1

t

0

1 xssx  of the subsystem 11 ux = at 

0=t , and 0  are two arbitrary constants. The 

chained form nonlinear system (7), excluding the linear 

subsystem 11 ux = , can be transformed into the 

following LTV system 

( ) 221 )( ut ByAAy ++=
        (10) 
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Proof: It is clear that the linear subsystem 11 ux = of 

(7) is exponentially stable by applying the input (9). By 
the TVCT given by (8) for ni ,,3,2 = , it follows that 

( ) i
t

i
tt

i
t

i

t
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t
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yexecec
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for 12 − ni . Note that t
ii eyx −
++ = 11  due to the 

TVCT defined by (8), then it follows that  

( ) ii
tt

i yyececy  ++= +
−

1
-

10


. 

Note that the constant matrix 1A  in (10) is given by 

the coefficients of the time-invariant terms of iy  for 

ni ,,3,2 = , while the time varying matrix )(2 tA is given 

by the coefficients of the time-varying terms of iy  for 

ni ,,3,2 = . Thus the nonlinear subsystem ix  

),,3,2( ni = of (7) can be transformed into the LTV 

system (10), and the time varying matrix )(2 tA satisfies 

the convergence conditions 0)(lim 2 =
→

t
t

A  and 




0

2 d)( ttA  . This completes the proof. ◇ 

Remark 6. For the first-order nonholonomic system 
given by the kinematics equations (7), the responses of 

the input 1u  are determined by the initial state

))0(),0(( 10 xx and the control parameters   and  , 

where ssxx d)(
t

0

10 = is a virtual value and can be 

arbitrarily chosen. If the model of the system is given 

by dynamics equations, then the input 1u  is determined 

by the actual initial state ))0(),0(( 11 xx  and the 

parameters   and  . 

In more recent years, it was also shown that some 

underactuated mechanical systems could be 

transformed into chained forms expressed by second-

order differential equations 

21111 ,, uxxuxux nii === +


       (11) 

The relevant systems include some underactuated 

manipulators in weightless field [22], underactuated 

rigid body [28] and underactuated hovercraft system 

[29] etc [30]. By applying the following coordinate 

transformations 

iiii xzxz ==− 212 , , ni ,,3,2,1 =       (12) 

the system (11) can be rewritten as 

21 zz =
, 12 uz =

      (13a) 

and 

22

212

12122

2232

514
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      (13b) 

For the special nonlinear system (13), the following 
proposition can be presented. 

Proposition 7: By applying the following TVCT 

nn

nn

t
ii
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niezy

22

1212
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       (14) 

and using the input 
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tt ececu  −− += 101          (15) 

where 0c and 1c  are two constants defined by the initial 

state ))0(),0(( 21 zz  of the subsystem (13a) at 0=t , and 

0  are two arbitrary constants, then the 

nonlinear subsystem (13b) can be transformed into the 
following LTV systems 

( ) 221 )( ut ByAAy ++=
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Proof: By proceeding along a similar line as the 
proof of Proposition 5, it can be shown that 
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for 22,,6,4 −= ni  . Then the nonlinear subsystem 

(13b) can be transformed into the LTV system (16), and 

the time varying matrix )(2 tA satisfies the conditions 

0)(lim 2 =
→

t
t

A  and 


0

2 d)( ttA  . This completes the 

proof. ◇ 

It is worth noting that, even though Propositions 5 
and 7 demonstrate that, some classes of nonholonomic 

constraints systems or underactuated systems, which 
are generally nonlinear in nature, can be changed to 
special LTV systems by the presented TVCT (8) or 
(14), the obtained LTV systems are not always 
controllable because of the introduced parameters 

( ) , and ( )10 ,cc  in (10) and (16). For instance, the 

LTV system (10) and (16) are not controllable if 0= . 

This reflects that it is not always possible for a 
nonholonomic constraint system to move between two 
arbitrarily given points in the state space, while the 

value of the parameters ( )10 ,cc  are determined by the 

two given points and the control parameters ( ) , . A 

feasible approach of removing the singular points of 
nonholonomic constraints systems is to use switching 
control. By adding an intermediate point between the 
two given points, control of a smooth LTV system (10) 
or (16) changes to control of a switched LTV system. 
Thereby for stabilizing a nonholonomic system by 
switching control, a theorem can be presented as 
follows. 

Theorem 8. If a nonholonomic constraints system 
can be changed to a LTV system that is given by 

( ) BuyAAy ++= )(21 t        (17) 

where n
Ry  is the state variables, m

Ru is the 

inputs, 1A  and B are time invariant matrices, the time 

varying matrix )(2 tA  satisfies the convergence 

conditions 

0)(lim 2 =
→

t
t

A  and 


0

2 d)( ttA       (18) 

and for the origin 0=y and an initial point 0y , there 

exists a series of intermediate points iy  

( 1,,2,1 −= pi  ) between the origin and initial point 0y , 

so that all curve segments iL  connecting two adjacent 

points iy and 1+iy  of the piecewise path 
1

0

−

=

=
p

i
iLL  are 

controllable, then the nonholonomic system can be 

exponentially stabilized to origin from initial point 0y by 

slowing switching control in accordance with the 
switching sequence 1210 −→→→→= p . 

Proof: Since all adjacent points are controllable, for 

every pair iy  and 1+iy  there exists a set of feasible 

parameters ( )


 0,c  so that the pair ( )


 BA ),,( 01 c is 

controllable for    1,,2,1,0 −= p . Suppose 

yKu  = is a feasible feedback for mode , then the 

smooth LTV system (17) is changed to a switched LTV 
system 

( ) yABKAy )(21 t +−=
,

 1,,2,1,0 −= p
    (19) 
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where  BKA −1  is a Hurwitz matrix, and the sequence 

of switching signal   is given by  

1210 −→→→→= p
. 

Without loss of generality, suppose *  is a 

permitted minimize dwell time of all modes, then by 
applying Lemma 1 and Lemma 3, it can be shown that 

along the curve segment iL there exists a sufficient 

large constant 0 and a sufficient small positive 

constant 0i , so that *  and )0()( i
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for  ,0t . Because of 0i for all  1,,2,1,0 − pi  , 

and the average dwell time *  , then 

 
0)(lim

,0
=

→  t
ty . This completes the proof. ◇ 

It is important to point out that a set of coordinates 

usually selected in Cartesian space is local coordinates 

for a nonholonomic system since the configuration 

space of a nonholonomic system is commonly not 

diffeomorphic to the Cartesian space. Therefore the 

selected local coordinates usually lead to control 

singularity for large range or global motion control 

tasks. At a control singular point the control inputs of a 

controlled system are infinite. Nevertheless, Theorem 8 

reveals that many nonholonomic constraint systems 

can be stabilized by switching control approaches even 

if the given initial point 0y  with respect to the origin is 

not controllable, or in other words, 0y  is a control 

singular point with respect to the origin in local 
coordinate system. By properly selecting an 

intermediate point *
y , the system can be stabilized to 

origin from any given initial point 0y  if the initial point is 

controllable with respect to the intermediate point *
y , 

while the intermediate point is controllable with respect 

to the origin. Therefore, even though the switching 

control strategy changes the control issues of a smooth 

system to the control issues of a discontinuous system, 

it is obvious that the switching control strategy 

commonly provides a larger stabilization range, or even 

global stabilization capability for controlling a non- 

holonomic system if the nonholonomic system can be 

changed to a chained form by nonlinear coordinate and 

input transformations. As it will be demonstrated in the 

next section, this property of the switching control 

approach for nonholonomic constraints systems is 

appealing for solving the issues of obstacle avoidance 

of robot system in complex environments, which is still 

a tricky problem that has not been thoroughly investi- 

gated for general nonholonomic systems. 

Another feature of Theorem 8 is that it does not 

depend on a specific nonholonomic system. For a re- 

configurable or variant robot system with nonholonomic 

constraints, a claim can be presented as follows based 

on Theorem 8. 

Theorem 9. Suppose the dynamics of a variant 
robot system with nonholonomic constraints in all 
locomotion modes can be changed to the LTV systems 

as given by (1), and the time varying matrix )(2 tA  

satisfies the conditions (2) for all   s,,2,1 = , 

which denotes the modes of the variant robot system, 

then for a given initial point 0x , if there exists a series of 

intermediate points ix ),2,1( pi = , and every curve 

segment iL connecting the two adjacent points ix and 

1+ix is controllable with regard to at least one robot 

mode , then the switched nonholonomic system can 

be stabilized from the initial point 0x  to origin by slow 

switching control. 

Proof: Since the feasible path from 0x to origin is 

connected by a curve segment iL , which is the curve 

segment between the two adjacent points ix and 1+ix  

for pi ,,2,1 = , and there exists a feasible control 

corresponding to a mode    s,,2,1 =  so that 

 KBAA −= is Hurwitz. Then there exists a positive 

constant 0)(  i  and a sufficiently large dwell time 

0  so that the state of the controlled system along 

the curve segment iL  satisfies )0()(
)(

i

t

i
iet xx
−

 ,

 ),0t , )()0(1 ii xx =+  for pi ,,2,1 =  and   

 s,,2,1 = . For the overall path 
p

i
iLL

1=

= , it follows that 

( )

( ) ( )



)0(
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1
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

p

t

p

t
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ee

et
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( ) ( )

0

1

1 x
tp

p

i

i

e
 −−



−

=

  
for  ,0t . This completes the proof. ◇ 

 



14     International Journal of Robotics and Automation Technology, 2020, Vol. 7 Su et al. 

Remark 10. In Theorem 8, the switching sequence 
→= 0  121 −→→→ p  just depends on the state 

of single LTV system, where the switching 
characteristic is caused by applying switching control, 
while the open loop dynamics of the robot system is 
invariant. Therefore the subsystems of the switched 
LTV systems are generally homogeneous. However, in 
Theorem 9, the switching sequence →→= 10  

→2  1−→ p  not only depends on the state of single 

LTV system, but also depends on the open loop 
dynamics of the robot mechanisms. Accordingly, the 
subsystems of the switched LTV systems permit to be 
heterogeneous. Theorem 9 reveals that a class of 
switched nonholonomic system can be stabilized under 
rather relaxed conditions, thus it is feasible to design a 
variant mobile robot system.  

4. NUMERICAL SIMULATIONS OF STABILIZING 
THE SWITCHED NONHOLONOMIC SYSTEMS 

To substantially improve the mobility of locomotion 

robotic systems, structurally variable robot systems or 

reconfigurable robot systems are a promising research 

direction. In this section, the dynamics and control for a 

dual-mode mobile robot are investigated. As illustrated 

in Fig. (1), the variant robot system is a combination of 

a wheeled mobile robot and a hovercraft robot. In both 

locomotion modes, the robot system is driven by two 

forces in horizontal plane. In land movement pattern, 

the robot system is a two wheeled mobile system with 

an auxiliary omni-directional wheel, while in water 

surface or swamp movement pattern, the system is a 

hovercraft system. Since suspension control can be 

decoupled from the propulsion control for a floating 

base robot system [31], suspension control in 

hovercraft mode will not be considered in this paper.  

),( yx

r
r

1F

2F

x

y

o
1o

2o

 

Figure 1: Diagram of a dual model mobile robot system. 

In this section, the system parameters of the variant 
robot are given as follows. The mass of the robot is

kg0.3=m , the moment of inertia with respect to the 

center of mass is 2mkg31 =J , the distance between 

the two thrust forces is rD 2= m6.0= , and the acting 

lines of the two forces are symmetric about the 

principal axis 21oo of the robot. 

A. Mode of a Wheeled Robot Actuated by Two 
Forces  

In land movement pattern, the dynamics of a two 

wheeled mobile robot can be written as [27] 

rFFJ

FFym

FFxm

)(

sin)(cos

cos)(sin

12

21

21

−=

++−=

++=













       (20) 

and the motions of the system are restricted by the first 

order nonholonomic constraint 0cossin =−  yx  , 

where ( ),, yx  is the local coordinates of the mobile 

robot as shown in Fig. (1),   in (20) is a scalar that 

denotes the constraint force caused by the 

nonholonomic constraint, 1F  and 2F are two thrust 

forces. By the following coordinate changes 







cossin

sincos

3

2

1

yxx

x

yxx

+−=

=

+=

        (21) 

and the input changes  

22
2
212311 , vuxxvxvu =−−= 

 

where 

( )
J

rFF
v

m

FF
v 12

2
21

1 ,
−

=
+

=
 

the dynamics (20) can be transformed to 

2132211 ,, xxxuxux  −===
      (22) 

By applying a new coordinate transformation  

331211 ,, xzxzxz === 
, 2524 , xzxz ==

      (23) 

the system (22) can be rewritten as 
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54

513
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=

=
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=
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
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

          (24) 

If the input )(1 tu  in (24) is chosen to be 
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tt ecectu   −− += 2

2

2

11 )(        (25) 

where 
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       (26) 

and the two parameters   and   satisfy 0 . 

By further applying a TVCT 

554433 ,, zyzyezy t === 

      (27) 

the subsystem ( )543 ,, zzz  of (24) can be changed to a 

form as the LTV system given by (17), and can be 
written as 

( ) 221 )( ut ByAAy ++=        (28) 

where 
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A  and

















=

1

0

0

B . Note that the system (28) is different from any 

of the systems (10) and (13) since here the dynamics 
system of a wheeled robot is considered. However, it is 

obvious that the time-varying matrix )(2 tA  also satisfies 

the convergence condition (18). From the example 
given above it is also observed that the time-varying 
coordinate transformations presented by (8) and (14) 
can be extended to a wider class of nonholonomic 
systems. 

Now we show the switching control can be used to 
stabilizing the wheeled mobile robot system with 
obstacle avoidance effects. Suppose the initial state of 
the wheeled robot is given by 

( ) ( )0,0,0,2,14,14,,,,, 0  = yxyx and the control 

parameters of 1u  in (25) are selected as ( )= , ( )3,1 , 

then by applying (26) we have (c1,c2) = (-16.3915,2.3915). 

The control gains of 2u  in (28) is calculated by LQR 

optimal control method with optimization criterion

 


+=
0

2

T

2

T dtRuuS Qyy , where the weight matrices Q

and R  are chosen as 33= REQ an identity matrix, 

and 1=R .  

The responses of the position and the speed of 
mobile robot are illustrated in Figs. (2 and 3) demons- 
trates the corresponding animations of the movements 

of the controlled robot. If there are two obstacles in the 
motion space of the robot as shown in Fig. (3), the 
generated trajectory will be infeasible and the 
trajectories could not be changed in a large range by 
only adjusting the control parameters of a non-switched 
controller. 
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Figure 2: (a) The position trajectory of a two wheeled mobile 
robot controlled by non-switched controller; (b) The speed 
trajectory of a two wheeled mobile robot controlled by non-
switched controller. 
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Figure 3: Animations of a two wheeled mobile robot 
controlled by non-switched controller. 

However, by applying switching control strategy, the 
mobile robot can be stabilized from the initial point to 
origin as shown by Fig. (4), and the animations 
illustrated in Fig. (5) visually show the robot can avoid 
the two obstacles and finally arrive at the origin. In this 
numerical simulation, the initial state and the control 

parameters of 1u  are not changed, i.e. ( )0,,,,,   yxyx

( )0,0,0,2,14,14 =  and ( )= , ( )3,1 . Whereas, the 

smooth LTV system (28) is changed to a switched LTV 
system (1) since the relative states are changed. By 

selecting an intermediate point ( ) =1,,,,,   yxyx  

( )0,0,0,0,9,8 , and a minimum dwell time s10* = , then 
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along the curve segment )( 101 PPL → the structure 

parameters ( )21,cc  in system (28) are calculated to be 

( ) ( )10,5, 21 −=cc  according to (26), while along the 

curve segment )( 12 oPL → the structure parameters in 

(28) are calculated to be ( ) ( )15.52,7.76, 21 −=cc . 
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Figure 4: (a) The position trajectory of a two wheeled mobile 
robot controlled by a switched controller; (b) The speed 
trajectory of a two wheeled mobile robot controlled by a 
switched controller. 
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Figure 5: Animations of a two wheeled mobile robot 
controlled by a switched controller. 

B. Mode of Hovercraft System Driven by Two 
Forces 

The dynamics of a hovercraft system can be written 
as [27] 

rFFJ

FFym

FFxm
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        (29) 

It is different from the wheeled mobile robot mode, 
and in hovercraft mode the dynamics of the robot 
system are not restricted by any external constrains. 
However, the motions of the hovercraft system are 
restricted by the second order nonholonomic constraint

0cossin =−  yx  , which is caused by the internal 

dynamics of the underactuated system. 

Using the following coordinate transformations  

yxxxx === 321 ,tan, 
      (30) 

and the input changes 
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      (31) 

system (29) can be transformed into the following 
chained form that is given by the second-order 
differential equations 

1232211 ,, uxxuxux === 
      (32) 

Furthermore, by using the coordinate 
transformations 

11 xz =
, 12 xz =

, 33 xz =
, 34 xz =

, 25 xz =
, 26 xz =

     (33) 

the state space equations of the system (32) can be 
presented as 
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Note that the system (34) is a special form of (13). 

However, here the input )(1 tu  is chosen to be 

tt ecectu   −− += 2

2

2

11 )( ,       (35) 

in order to solve the coefficients ( )21,cc  more easily by 

the initial state of the subsystem ),( 21 zz of the system 

(34), and the coefficients ( )21,cc  are calculated by 


















−−
=








−

)0(

)0(11

2

1

1

2

1

z

z

c

c


,       (36) 

and the two parameters and   satisfy 0 . By 

further using the following TVCT 
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the subsystem ( )6543 ,,, zzzz  of (34) can be changed to 

a form as the LTV system (17), which can be specified 
as 

( ) 221 )( ut ByAAy ++=        (38) 

where 
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It is obvious that the time varying matrix )(2 tA  in 

(38) satisfies the convergence condition (18). As 
demonstrated in the numerical simulations by a 
hovercraft system, switching control strategy can be 
used to overcome control singularity of the 
nonholonomic systems. With the assumptions that the 
parameters m , J and r  are same as the wheeled 

mobile robot, and herein the controller parameters in 

)(1 tu are selected to be ( ) ( )3,2, = , while the initial 

state of robotic system is given by ( )0,,,,,   yxyx

( )0,0,0,0,14,0= . Even though this is a parallel parking 

problem where the initial state of the system is 
controllable, a non-switching controller will result in 
infeasible large control inputs. However, as shown in 
Fig. (6), the control inputs can be reduced to a 
reasonable level if switching control is applied. In Figs. 
(6 and 7), the switching state is casually selected to be

( ) ( )0,0,0,0,0,10,,,,, 0 −=  yxyx . Fig. (8) shows the 

animations of the hovercraft system that is stabilized to 
origin from a control singular configuration

( )0,,,,,   yxyx  ( )0,0,0,2,10,0 = . Refer to (30), the 

hovercraft system is in a control singular configuration 

if 2 k= , )N( *k because of the local coordinates. 

By casually selecting an intermediate point 

( )0,,,,,   yxyx = ( )0,0,0,4,7,10 −  and using switching 

control approach, the control singular configuration is 
removed. 
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Figure 6: The input trajectory of parallel parking control a 
hovercraft system by a switching controller. 
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Figure 7: Animations of parallel parking control a hovercraft 

system by a switching controller. 

-15 -10 -5 0 5

0

2

4

6

8

10

12

14

16

)m(x

)
m (

y

start

final

 

Figure 8: Animations of stabilizing a hovercraft system from a 
control singular configuration by a switching controller. 

C. Switching Control of a Dual Mode Locomotion 
Robot System 

In this subsection, we show that a dual-mode 

variant robot system as illustrated in Fig. (1) can be 

stabilized to origin by switching control approaches. 

The robot is a combination of a two wheeled mobile 

robot and a hovercraft, both of which are actuated by 

two forces. Refer to the dynamics of the variant robot  
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(20) and (29), it is obvious that the dynamics of the 

variant robot in various mode are different. Even if the 

different dynamics can be changed to a class of similar 

LTV system as shown by (28) and (38), the switched 

nonholonomic system is heterogeneous from a point of 

view of control engineering, since the state space 

dimensions of the two modes are different. As claimed 

by Theorem 9, the switched system could be globally 

stabilized if there is a feasible piecewise path from the 

initial point to origin, and there at least exists one mode 

with respect to a curve segment that is controllable with 

respect to the current mode.  

Suppose that the given initial state is
0),,,,,(   yxyx  

( )0,0,0,0,20,20= , the input 1u  is selected as (25) or (35), 

of which the control parameters are selected to be 

( ) ,  ( )3,2= , and applying the LQR optimal control 

method to LTV subsystems (28) and (38), as shown by 
Figs. (9 to 13), the dual-mode variant robot system can 
be stabilized to origin by switching control. The closed-
loop trajectories of the position, the speed and the 
inputs of the variant robot system are plotted in Figs. 
(9-11) respectively. The corresponding switching 
sequence is illustrated in Fig. (12), and the animations 
of stabilizing process of the variant robot system are 
plotted in Fig. (13). 
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Figure 9: Position trajectory of the dual mode variant robot 
system stabilized by a switching controller. 
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Figure 10: Speed trajectory of the dual mode variant robot 

system stabilized by a switching controller. 

It is worth pointing out that the control parameters 
 and   in (25) for wheeled mode and in (35) for 

hovercraft mode can be selected under the single 
condition 0  since the nonholonomic systems 

considered in this paper can be changed to the chained 
normal forms. In practice, a larger value of  −  is 

helpful for accelerating the decay of the time-varying 

terms in )(2 tA  of the equations (28) and (38). 

Therefore, it is helpful for obtaining a locomotion 
trajectory with smaller fluctuation, and thereby permits 
accelerate the switching frequency of the controllers 
when it is necessary. A larger 0  is also 

advantageous to improve the dynamic responses 
speed of the closed-loop system. However, large 
control parameters   and   will result in large control 

inputs. As a class of slow switching systems due to the 
large inertia of the variant robot systems, the 
contradiction of selecting control parameters   and 

is not prominent. 
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Figure 11: Inputs trajectory of the dual mode variant robot 
system stabilized by a switching controller. 
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Figure 12: The switching sequence of the dual mode variant 
robot system in switching control. 

CONCLUSIONS 

In order to essentially increase the mobility of a 

robotic system, mechanically reconfigurable or variant 

robot system is a promising research direction. In this 
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Figure 13: Animations of the dual mode variant robot system 
stabilized by a switching controller. 

paper we show that the dynamics of a class of 

nonholonomic constraint robot systems can be 

changed to a class of special LTV systems based on 

the TVCT method, and by applying switching control 

strategy the motion control issues of nonholonomic 

systems can be resolved with better flexibility. On one 

hand, by changing a nonholonomic system to LTV 

system, we show that switching control approaches 

provide the capability of overcoming the control 

singular problems for nonholonomic systems, and 

provide a dexterous way for optimal motion planning of 

mobile robot system such as obstacle avoidance. On 

the other hand, we show that the switching control 

approaches can be used to stabilize a switched 

nonholonomic system even if the various modes of the 

switched nonholonomic system are heterogeneous. 

Thus the combination of TVCT and switching control of 

LTV systems provides a feasible approach to globally 

stabilize a class of variant mobile robot systems.  
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