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Stabilizing a Class of Switched Nonholonomic Mechanical Systems
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Abstract: Structurally reconfigurable or variant robot systems can provide better mobility and environmental adaptability.
In this paper it is shown that a class of nonholonomic constraints robot systems can be changed to a class of special
linear time varying (LTV) systems, and by applying switching control strategy the control singular problems of
nonholonomic systems caused by the local coordinates can be overcome, and provides a flexible approach of optimal
motion planning for mobile robotic systems. For variant robot systems with switched discontinuous dynamics, it is shown
that the switching control approaches can be used to stabilize a class of switched heterogeneous nonholonomic
systems. Some numerical simulation results also demonstrate the effectiveness of the control strategy proposed in this

paper.
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1. INTRODUCTION

Reconfigurable or variant robot systems have a
wide application prospect in modern industry, extra-
terrestrial exploration, and field working [1-3]. However,
variant robot systems are commonly a class of hybrid
dynamic systems [4], of which the motion control is
generally a difficult subject that has not been thoroughly
studied so far. Switched systems are a special class of
hybrid systems and have been investigated more than
twenty years [5, 6]. Due to the complexity of the control
problems of switched systems, the switched linear or
nonlinear systems are currently still an important and
rather active research direction in control fields [7-9].

For investigating the feasibility of developing variant
mobile robot systems, we study the stabilization issues
of a class of switched nonholonomic systems, which
are a class of special hybrid nonlinear dynamic
systems [7-9]. For the switched systems, to date the
main research results are presented for switched linear
time invariant (LTI) systems [7, 8] or some switched
nonlinear systems with special properties [9]. For the
switched nonholonomic systems, only a few research
results can be found in literatures. In this research
direction, switched nonholonomic systems are primarily
caused by introducing some kinds of discontinuous
feedback based on the Brockett's theorem [10], which
shows that nonholonomic systems can-not be stabil-
ized by continuous differentiable, time invariant, pure
state feedback control law. As shown by Bloch in [11],
owing to the discontinuous feedback property sliding
mode controller can be applied to stabilize some
nonholonomic systems, although the method is difficult
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to be generalized to stabilize general nonholonomic
systems. In reference [12] the time invariant sliding
mode control for nonholonomic systems was also
extended to time varying sliding mode control that
relied on finding a set of sufficiently smooth periodic
odd functions. Astolfi also showed that the first order
nonholonomic systems could be mapped to disconti-
nuous nonholonomic systems by discontinuous coordi-
nate transformation [13], and then the discontinuous
systems can be used to design an exponentially stable
controller for stabilizing the original systems. In [14] it
was also shown that an underactuated autonomous
surface vessel could be stabilized by a switching
controller on the basis of the discontinuous coordinate
transformation, which is similar to that used in [13].
With the aid of fractional power feedbacks, in the
literature [15] switching controllers were also used to
stabilize several kinds of underactuated nonholonomic
systems in finite time. In [16] a logic-based switching
controller was presented to stabilize the nonholonomic
integrator. A similar strategy has also been used to
stabilize a nonholonomic system with robots with a
differential-drive mechanism [17], Pendubot systems
[18], or mobile robotic systems [19]. Unfortunately, all
of these presented approaches for stabilizing the
nonholonomic systems or underactuated systems com-
monly relate to the specific controlled plants, and the
controlled plants are usually in single dynamic mode.
From the point of view of switching control systems,
these switched nonholonomic subsystems are homo-
geneous [20].

For the purpose of searching for a feasible control
scheme for reconfigurable or variant mobile robot
systems, stabilization of switched nonholonomic mech-
anical systems with hetero- generous [21] subsystems
is investigated in this paper. By combing the globally
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exponential coordinate transformations and switching
control approaches, we show that a class of variant
mobile robot systems can be globally stabilized under
certain conditions. Since a class of nonholonomic
systems could be changed to a kind of special LTV
system by time varying coordinate transformations
(TVCT) [22, 23], and stabilizing the nonholonomic
systems can be changed to stabilize the special LTV
systems, then on the basis of switching control theory,
we show that not only the global stabilization issues of
nonholonomic systems with single model can be
resolved conveniently, but also globally stabilizing a
class of variant mobile robot systems with multi-models
is possible under rather relaxed conditions.

This paper is organized as follows. In section II, the
theoretical basis of stabilizing a class of special
switched LTV systems are presented. The main results
of the paper are presented in section III, where two
propositions based on the TVCT methods and two
theorems for stabilizing the switched nonholonomic
systems are presented. To the best knowledge of the
authors, it is the first time to discuss the global stabili-
zation issues of switched nonholonomic mechanical
systems with multi locomotion modes. We show that a
class of multimode nonholonomic systems can be
globally stabilized by isomorphic controllers, even
though the different modes of the nonholonomic system
are heterogeneous. This is helpful for simplifying the
controllers of complex plants, such as the variant robot
systems. In section IV, a variant mobile robot system,
which is the combination of a wheeled mobile robot and
a hovercraft robot, is introduced and the numerical
simulation results are given in detail for the purpose of
demonstrating the effectiveness of the proposed
switching control strategy for stabilizing the switched
nonholonomic systems. The last section includes the
conclusions and some discussions.

2. STABILITY OF A CLASS OF SWITCHED LTV
SYSTEMS

In this article, the following continuous time LTV
systems are considered

x=(A + A1), x+B,u (1)

where xeR" is the continuous state, ue R™ is the
control input, o:[0,0) >N is a piecewise constant

switching signal, N:={.2,...,s} is a index set, the
matrix pairs (A,,B,) are controllable, and the time
varying matrix A,_(t) satisfies the relationships

lim A,, (1) =0, and [|A,, O)]dt <. )

Due to the following lemma, the issues of stabilizing
a class of switched LTV systems can be further
discussed.

Lemma 1. [24] The LTV system
X =(A+A, )X, x(0) =%, eR" (3)

where A is a Hurwitz matrix, and A,(t) is a time-
varying continuous matrix. If A,(t) satisfies the

conditions (2), ie., limA,®)=0 and [|A,®)dt<w,
—>0 0
then the LTV system (3) is exponentially stable.

Remark 2. Lemma 1 is included in some literatures,
such as [24], but its proof is not very clear. For the
purpose of helping to understand the main results of
the paper, Lemma 1 is concisely analyzed as follows.

The solution of the LTV system (3) can be written as
t

X(t) = X, + [ (A + Ay ())x(s)ds
0

It can be shown that

[x] <

X + iAlx(s)ds

+ 1A ()x(S)]ds @)

The first term of the right hand side of the inequality
(4) satisfies

<e x|

X, + j A x(s)ds

where « is a positive constant that can always be
found since A is a Hurwitz matrix. According to Cauchy

inequality, the second term of the right hand side of (4)
satisfies

I (oxoles < lautoles | Tixels .

and due to the given condition T||Az(t)||dt<oo, there
0

exists a sufficiently large constant M such that

j||A2(s)||ds <M, te[0,T]. Accordingly, for the inequality
0

(4), we have |x(t)] < e ||x,[ + M j||x(s)||ds for te[0,T).
0
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According to Gronwall’s inequality (see [25]) it
follows that

[x(®)] <=M x|, te[0,T).

On the other hand, by the given condition
!im A,(t)=0, we can conclude that there exists a

sufficiently large time T, so that M is sufficiently small
and then—-a+ M <0. Therefore the LTV system (3) is

exponentially stable. <&

On the basis of Lemma 1, the issues of stabilizing
the switched LTV systems (1) can be simplified to that
of stabilizing the linear time invariant (LTI) systems

X=AX+B,u, ceN (5)

where A eR™and B_eR™™are constant matrices.

Since all subsystems of (1) are assumed to be
controllable, all the pairs of[A_, B,] (ceX) are

controllable. Suppose the feedback u=-K_x(oeN)
stabilize the subsystem (5), where K_,oc e are the

gain matrices of each mode respectively, then the
closed-loop subsystems

X = Kox, oeN (6)
are exponentially stable, and A =A -B_K_, ceXN
are Hurwitz matrices. It is well known that a switched
system with all stable modes may be unstable under
inappropriate switching modes, while a switched
system with some unstable modes may be stabilized
by proper switching modes. For the issues of stabilizing
the switched nonholonomic systems, both of the two
aspects are involved. The fact is that, on one hand the
nonholonomic systems are a class of special nonlinear
systems of which the linear approximation systems are
general uncontrollable [11,12]. On the other hand,
owing to the Brockett’s theorem [10] that demonstrates
a nonholonomic constraint system could not be
stabilized by any time invariant and smooth pure state
feedback, discontinuous controllers are often employed
to stabilize the nonholonomic systems.

The nonholonomic systems generally appear in
mechanical systems, and it is different from a theoretic-
cally switched system or a switched electronic/circuit
system. Consequently the switched nonholonomic
systems are generally a class of slow switching
systems due to the non-ignorable system inertia. As an
important foundation of investigating the stabilization of
switched nonholonomic systems, the slowing switching
theorem is presented as follows since it will be used in
the sequel.

Lemma 3 [7]. Assume that all subsystems in a
switched linear system are exponentially stable. There

exists a scalar z, >0 such that the switched system is
exponentially stable if the average dwell time is larger
than 7,.

Remark 4. The average dwell time 7, for a switch-
-7

N, (t,z)—Ng

t>z>0 and N_(t,z) denotes the number of mode

switches of a given switching signal o over the interval
(z,t), the scalar Ny >0 is the chatter bound that is the
maximal number of allowable switching over the
interval (z,t). In other words, in order to exponentially
stabilize a switched linear system that has stable
modes, the number of mode switches over the interval
t—-7

ing signal o is defined to be 7, < where

(z,t) should satisfy N_(t,7)<Ng+ . Therefore, if
Ta
the average dwell time 7, is sufficiently large, then the

switched linear system (6) is exponentially stable with
the assumption that all the subsystems are
exponentially stable.

3. STABILIZING A CLASS OF
NONHOLONOMIC SYSTEMS

SWITCHED

Nilpotent or nilpotentizable nonholonomic systems
are a class of important mechanic systems in robotics
field [26]. An essential property of the nilpotent or
nilpotentizable nonholonomic systems is that the
special nonlinear systems can be possibly changed to
a chained form by nonlinear coordinate and feedback
transformations [27]. For the first-order nonholonomic
systems with two inputs, it is shown that the nonlinear

systems could be globally transformed into the
following normal form.
¥ =y, i = Uiy, X = Uy @)
Where i=2,------ ,n—1,x are the state variables of

the system, u;, i=12 are the inputs. By the method of

TVCT presented in [22, 23], we can present the
following proposition, which shows that the chained
form systems (7) can be further transformed into a LTV
system.

Proposition 5: By applying the following TVCT

y =xe,i=23,...,n-1

Yn =X, (8)

where t is time variable, and selecting an input
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U =Coe ® +ce? )

where ¢, and c, are two constants defined by the
t

initial state ([x,(s)ds,x (0)) of the subsystem x =u,at
0

t=0, and f>a>0 are two arbitrary constants. The
chained form nonlinear system (7), excluding the linear

subsystem ¥ =u;, can be transformed into the
following LTV system
y= (Ai + Az(t))y +Bu, (10)
Where y = [yZ y3 yn]T , B = [0 0 1]T ,
0 -
0 «
A=l i
0 0 . 0
|10 0 ... 0 0] _and
0 ce®+ce” ... 0 0 ]
0 0 .. 0 0
A )=\t R :
0 0 . 0 ce™+ce”
0 0 ... 0 0 ]

Proof: It is clear that the linear subsystem X, =u, of
(7) is exponentially stable by applying the input (9). By
the TVCT given by (8) for i=2,3,...,n, it follows that

yi = Xleat +0{X|eat
at
=U X8 +ay;

= (Coe_wt +ce )><i+1ewt +ay,

for 2<i<n-1. Note that x,, =y;,e® due to the
TVCT defined by (8), then it follows that

Vi = (Coeﬂ)lt +ce” )Yi atay;

Note that the constant matrix A in (10) is given by
the coefficients of the time-invariant terms of vy, for
i=23,...,n, while the time varying matrix A, (t) is given
by the coefficients of the time-varying terms of y, for
i=23...,n. Thus the nonlinear subsystem x;
(i=23,...,n)of (7) can be transformed into the LTV
system (10), and the time varying matrix A, (t) satisfies

the convergence conditions !im A,(t)=0 and

T||A2(t)||dt <. This completes the proof. <
0

Remark 6. For the first-order nonholonomic system
given by the kinematics equations (7), the responses of
the input u, are determined by the initial state

(%9(0), %, (0)) and the control parameters o and g,
t

where x, =[x/(s)sis a virtual value and can be
0

arbitrarily chosen. If the model of the system is given
by dynamics equations, then the input u, is determined
by the actual initial state (x(0), % (0)) and the
parameters « and £ .

In more recent years, it was also shown that some
underactuated mechanical systems could be
transformed into chained forms expressed by second-
order differential equations

% =y, i =X g, X =U, (11)

The relevant systems include some underactuated
manipulators in weightless field [22], underactuated
rigid body [28] and underactuated hovercraft system
[29] etc [30]. By applying the following coordinate
transformations

ZZi—l = Xi’ ZZi = Xi, | 21,2,3,...,n (12)

the system (11) can be rewritten as

=1, , Z; =\ (13a)
and
Zyn-3 =122 (13b)

Zyn_p =UWiZpn

Zn-1= 122

Zn =Up

For the special nonlinear system (13), the following
proposition can be presented.

Proposition 7: By applying the following TVCT

y; =ze®,i=34,...2n-2

Yon1=Zon1

Yon = Zon (14)

and using the input



12 International Journal of Robotics and Automation Technology, 2020, Vol.

Su et al.

i s
U =Coe ™ +ce (15)

where ¢, and ¢, are two constants defined by the initial
state (z;(0),z,(0)) of the subsystem (13a) at t=0, and
p>a>0 are two arbitrary constants, then the

nonlinear subsystem (13b) can be transformed into the
following LTV systems

y=(A+A0)y+Buy, (16)
0 1]

¥l B=[0

a 1 0 -~ 00
0O O -~ 00

0 0 ¢ --- 00
A= . T T
0 0 O 01
000 = 00]
0 0 0 0 0]
0 0 ce™+ce™” 0 0
t) = . : . .
A0 00 0 ce™+ce”™ 0
0 0 0 0 0
0 0 0 - 0 0]

Proof: By proceeding along a similar line as the
proof of Proposition 5, it can be shown that

ot
=Zin® T oy
=ayi + VYiu

for i =3,5,...,2n—3, and

at
= (i, ™ + oy
= (coe”"t +ce? )zme”’t + ay;
—at -
=(Coe +Ge ﬁt)yi+1 + oy

for i=4,,...,2n—2. Then the nonlinear subsystem
(13b) can be transformed into the LTV system (16), and
the time varying matrix A,(t) satisfies the conditions

lim A, (t)=0 and T||A2(t)||dt <. This completes the
- 0
proof. &

It is worth noting that, even though Propositions 5
and 7 demonstrate that, some classes of nonholonomic

constraints systems or underactuated systems, which
are generally nonlinear in nature, can be changed to
special LTV systems by the presented TVCT (8) or
(14), the obtained LTV systems are not always
controllable because of the introduced parameters
(a,B)and (cy,c) in (10) and (16). For instance, the
LTV system (10) and (16) are not controllable ifa¢ =0.
This reflects that it is not always possible for a
nonholonomic constraint system to move between two
arbitrarily given points in the state space, while the
value of the parameters (c,,c;) are determined by the

two given points and the control parameters (a, ). A

feasible approach of removing the singular points of
nonholonomic constraints systems is to use switching
control. By adding an intermediate point between the
two given points, control of a smooth LTV system (10)
or (16) changes to control of a switched LTV system.
Thereby for stabilizing a nonholonomic system by
switching control, a theorem can be presented as
follows.

Theorem 8. If a nonholonomic constraints system
can be changed to a LTV system that is given by

y=(A+A,t)y+Bu (17)

where yeR" is the state variables, ueR"is the
inputs, A and Bare time invariant matrices, the time

varying matrix A,(t) satisfies the convergence
conditions
lim A, (t) =0 and [[A®)]dt < o0 (18)
—>0 0

and for the origin y=0and an initial point y,, there
series of intermediate points ;
(i=12,..., p-1) between the origin and initial point vy, ,
so that all curve segments L; connecting two adjacent

exists a

p-1
points y;and vy, of the piecewise path L=]JL; are

i=0
controllable, then the nonholonomic system can be
exponentially stabilized to origin from initial point y, by

slowing switching control in accordance with the
switching sequence 0=0—>1—->2—...—> p-1.

Proof: Since all adjacent points are controllable, for
every pair y;, and vy, there exists a set of feasible

parameters (a,c,), so that the pair (A (a,c,),B), is
oceN ={012,...,p-1. Suppose
u, =K_yis a feasible feedback for mode o , then the

smooth LTV system (17) is changed to a switched LTV
system

yzﬂﬂa—BKJ+AwaﬂyffeN=@LZ””p—ﬂ (19)

controllable for
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where A —BK_ is a Hurwitz matrix, and the sequence
of switching signal o is given by

c=0-51-52—>...>p-1

Without loss of generality, suppose 7 is a
permitted minimize dwell time of all modes, then by
applying Lemma 1 and Lemma 3, it can be shown that
along the curve segment L;there exists a sufficient

large constantz >0and a sufficient small positive
constantg; >0, so that r>z"and |y;t)|<e™*"|y;(0)],
tel0,7), vi,1(0)=vyi(z) for all ie{012,...,p-1}. Then

p-1
along the overall path L= ULi it follows that
i=0

yo<e

<e ¢

Yp1(0)]
]y, 0)]

=) &7

—&pat
<e ™yl

for t<[0,z]. Because of & >0for allie{012,...,p-1},

and the average dwell timer>7¢ , then
Iim||y(t)||t€[0 ;=0 This completes the proof. ¢

It is important to point out that a set of coordinates
usually selected in Cartesian space is local coordinates
for a nonholonomic system since the configuration
space of a nonholonomic system is commonly not
diffeomorphic to the Cartesian space. Therefore the
selected local coordinates usually lead to control
singularity for large range or global motion control
tasks. At a control singular point the control inputs of a
controlled system are infinite. Nevertheless, Theorem 8
reveals that many nonholonomic constraint systems
can be stabilized by switching control approaches even
if the given initial point y, with respect to the origin is
not controllable, or in other words, y, is a control
singular point with respect to the origin in local
coordinate system. By properly selecting an
intermediate point y*, the system can be stabilized to
origin from any given initial point vy, if the initial point is
controllable with respect to the intermediate pointy”,
while the intermediate point is controllable with respect
to the origin. Therefore, even though the switching
control strategy changes the control issues of a smooth
system to the control issues of a discontinuous system,
it is obvious that the switching control strategy

commonly provides a larger stabilization range, or even
global stabilization capability for controlling a non-
holonomic system if the nonholonomic system can be
changed to a chained form by nonlinear coordinate and
input transformations. As it will be demonstrated in the
next section, this property of the switching control
approach for nonholonomic constraints systems is
appealing for solving the issues of obstacle avoidance
of robot system in complex environments, which is still
a tricky problem that has not been thoroughly investi-
gated for general nonholonomic systems.

Another feature of Theorem 8 is that it does not
depend on a specific nhonholonomic system. For a re-
configurable or variant robot system with nonholonomic
constraints, a claim can be presented as follows based
on Theorem 8.

Theorem 9. Suppose the dynamics of a variant
robot system with nonholonomic constraints in all
locomotion modes can be changed to the LTV systems
as given by (1), and the time varying matrix A,_(t)

satisfies the conditions (2) for all ceN={2,...s},

which denotes the modes of the variant robot system,
then for a given initial point x, , if there exists a series of

intermediate points x; (i=12...,p), and every curve
segment L,connecting the two adjacent points x; and
X;,,iS controllable with regard to at least one robot
mode o , then the switched nonholonomic system can
be stabilized from the initial point x, to origin by slow
switching control.

Proof: Since the feasible path from x,to origin is
connected by a curve segmentL;, which is the curve
segment between the two adjacent points x;and x;,,
fori=12,...,p, and there exists a feasible control
corresponding to a mode oceX ={2...,s} so that
A=A, —B_K_is Hurwitz. Then there exists a positive
constant ¢,(c)>0 and a sufficiently large dwell time
>0 so that the state of the controlled system along
the curve segmentl, satisfies|x,(t)|<e™"|x(0)],
telo.r), %.(0)=x()
={12,...,s}. For the overall path L = UL, , it follows that

i=1

fori=12,...,p and oceN

x| <e ¥ x, )]

£
-1

e . I
...... =€

°

1
[N

(o)t
Il
for t [0, z]. This completes the proof. <
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Remark 10. In Theorem 8, the switching sequence
c=0—> 1-52—...—> p-1 just depends on the state
of single LTV system, where the switching
characteristic is caused by applying switching control,
while the open loop dynamics of the robot system is
invariant. Therefore the subsystems of the switched
LTV systems are generally homogeneous. However, in
Theorem 9, the switching sequence o=0->1—
2—... > p-1 not only depends on the state of single
LTV system, but also depends on the open loop
dynamics of the robot mechanisms. Accordingly, the
subsystems of the switched LTV systems permit to be
heterogeneous. Theorem 9 reveals that a class of
switched nonholonomic system can be stabilized under
rather relaxed conditions, thus it is feasible to design a
variant mobile robot system.

4. NUMERICAL SIMULATIONS OF STABILIZING
THE SWITCHED NONHOLONOMIC SYSTEMS

To substantially improve the mobility of locomotion
robotic systems, structurally variable robot systems or
reconfigurable robot systems are a promising research
direction. In this section, the dynamics and control for a
dual-mode mobile robot are investigated. As illustrated
in Fig. (1), the variant robot system is a combination of
a wheeled mobile robot and a hovercraft robot. In both
locomotion modes, the robot system is driven by two
forces in horizontal plane. In land movement pattern,
the robot system is a two wheeled mobile system with
an auxiliary omni-directional wheel, while in water
surface or swamp movement pattern, the system is a
hovercraft system. Since suspension control can be
decoupled from the propulsion control for a floating
base robot system [31], suspension control in
hovercraft mode will not be considered in this paper.

ylk

Figure 1: Diagram of a dual model mobile robot system.

In this section, the system parameters of the variant
robot are given as follows. The mass of the robot is
m=3.0kg, the moment of inertia with respect to the

center of mass isJ =1/3kg-m?*, the distance between

the two thrust forces is D=2r =0.6m, and the acting
lines of the two forces are symmetric about the
principal axis 0,0, of the robot.

A. Mode of a Wheeled Robot Actuated by Two
Forces

In land movement pattern, the dynamics of a two
wheeled mobile robot can be written as [27]

mX = Asiné + (F, + F,)cosd
my =—-Acosd + (F, + F,)sin@

JO=(F,—F)r (20)

and the motions of the system are restricted by the first
order nonholonomic constraint xsiné-ycosé =0,

where (x,y,6) is the local coordinates of the mobile

robot as shown in Fig. (1), 4 in (20) is a scalar that
denotes the constraint force caused by the
nonholonomic constraint, F and F,are two thrust

forces. By the following coordinate changes

X, = XC0s@+ysiné
X, =0 (21)
X5 =—XSin@+ ycosd

and the input changes

U =V) —XgVp — X1X221 U; =V,
where
F+F (Fz - Fl)r
Vl = VZ e
m J

the dynamics (20) can be transformed to

X2 ZUZ,

% = Uy, X3 ==X X, (22)
By applying a new coordinate transformation

the system (22) can be rewritten as

L=1
Z; =U
Z3=-15 (24)
=15
Z5 = Uy

If the input u,(t) in (24) is chosen to be
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u,(t) =ca’e™™ +c,p%e” (25)

where

-1
1 1 0

ol Sl e
] [—a —-B] |20

and the two parameters o« and g satisfy f>a>0.
By further applying a TVCT

ys =25e%, Ya =14, Y5 =175 (27)

the subsystem (23, zZ,, 25) of (24) can be changed to a

form as the LTV system given by (17), and can be
written as

y=(A+A 1)y +Bu, (28)
where
a 0 -c 0 0 —cel”t
A=0 0 1 | A({)=|00 0 and
0 0 O 00 0
0
B =| 0. Note that the system (28) is different from any
1

of the systems (10) and (13) since here the dynamics
system of a wheeled robot is considered. However, it is
obvious that the time-varying matrix A, (t) also satisfies
the convergence condition (18). From the example
given above it is also observed that the time-varying
coordinate transformations presented by (8) and (14)
can be extended to a wider class of nonholonomic
systems.

Now we show the switching control can be used to
stabilizing the wheeled mobile robot system with
obstacle avoidance effects. Suppose the initial state of
the wheeled robot is given by

(x.y,6,%y,6), =(1414,7/2000)and  the  control
parameters of u, in (25) are selected as(a, )= (13),

then by applying (26) we have (c1,c2) = (-16.3915,2.3915).
The control gains of u, in (28) is calculated by LQR

optimal control method with optimization criterion
S:j[yTQeruzTRuz}:it, where the weight matrices Q
0

and R are chosen as Q=E < R*®an identity matrix,
and R=1.

The responses of the position and the speed of
mobile robot are illustrated in Figs. (2 and 3) demons-
trates the corresponding animations of the movements

of the controlled robot. If there are two obstacles in the
motion space of the robot as shown in Fig. (3), the
generated trajectory will be infeasible and the
trajectories could not be changed in a large range by
only adjusting the control parameters of a non-switched
controller.

15
—~ " \ —X
810+ \ """ y

N p —-.—- 4

(a) £ sl
= LN
S '

Z 0
o . LTE
] =
5 i
0 5 time(s) 10 15

—~
4
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Figure 2: (a) The position trajectory of a two wheeled mobile
robot controlled by non-switched controller; (b) The speed
trajectory of a two wheeled mobile robot controlled by non-
switched controller.
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Figure 3: Animations of a two wheeled mobile robot
controlled by non-switched controller.

However, by applying switching control strategy, the
mobile robot can be stabilized from the initial point to
origin as shown by Fig. (4), and the animations
illustrated in Fig. (5) visually show the robot can avoid
the two obstacles and finally arrive at the origin. In this
numerical simulation, the initial state and the control
parameters of u; are not changed, i.e. (x, V,0,%,Y, 9)0
=(1414,7/2,000) and (a,f)=(L3). Whereas, the
smooth LTV system (28) is changed to a switched LTV
system (1) since the relative states are changed. By

selecting an intermediate point(x, Y,0,X%, y,é’)1 =
(8,9,0,0,0,0), and a minimum dwell time 7" =10s, then
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along the curve segmentl (R, — R)the structure
parameters (cl,cz) in system (28) are calculated to be
(ci,c,)=(~105) according to (26), while along the
curve segment L,(P, — 0) the structure parameters in
(28) are calculated to be (c;,c,)=(~15527.76 ).
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Figure 4: (a) The position trajectory of a two wheeled mobile
robot controlled by a switched controller; (b) The speed
trajectory of a two wheeled mobile robot controlled by a
switched controller.
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Figure 5: Animations of a two wheeled mobile robot

controlled by a switched controller.

B. Mode of Hovercraft System Driven by Two
Forces

The dynamics of a hovercraft system can be written
as [27]

mX = (R, + F,)coséd

my = (R +F,)siné

Jo=(F,—F)r

(29)

It is different from the wheeled mobile robot mode,
and in hovercraft mode the dynamics of the robot
system are not restricted by any external constrains.
However, the motions of the hovercraft system are
restricted by the second order nonholonomic constraint
Xsin@—ycosd =0, which is caused by the internal

dynamics of the underactuated system.
Using the following coordinate transformations

X, =tané,

X=X 3=y (30)
and the input changes
u —l(F + F,)cosé
1 m 1 2
U, =~ (F, - F,)sec? 6 + 26° tanfsec 0
! (31)

system (29) can be transformed into the following
chained form that is given by the second-order
differential equations

5(1=U1,

X, = Uy, X3 = XoUy

(32)

Furthermore, by using the coordinate
transformations

Z1=X1122=>'(1,23=X3,Z4=>'<3,25=X2,26=>’<2 (33)

the state space equations of the system (32) can be
presented as

13=1,
LW =12 i, =UZ
.1 2 .4 145 (34)
Z=U i5 = Zg

26:U2

Note that the system (34) is a special form of (13).
However, here the input u,(t) is chosen to be
u, (t) =ca’e ™ +c,p%e ™, (35)

in order to solve the coefficients (c,,c,) more easily by
the initial state of the subsystem (z,,z,) of the system
(34), and the coefficients (c,,c,) are calculated by

oL )
Co —a -pB] 2,00
and the two parameterso and g satisfy >a >0. By
further using the following TVCT

: (36)
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Y = 28%
_ at
Y4 =748 (37)
Y5 =15
Yo = Zg

the subsystem (z3,2,,25,25) of (34) can be changed to

a form as the LTV system (17), which can be specified
as

y=(A +At)y+Bu, (38)
where
a1l 0 0
A= 0 a ca® 0
oo 0 1
00 0 O
00 0 0
0 0 c,p%*" ¢
A (t) = 2
00 0 0
00 0 0

,and B=[0 0 0 1.

It is obvious that the time varying matrix A,(t) in
(38) satisfies the convergence condition (18). As
demonstrated in the numerical simulations by a
hovercraft system, switching control strategy can be
used to overcome control singularity of the
nonholonomic systems. With the assumptions that the
parametersm,Jand r are same as the wheeled
mobile robot, and herein the controller parameters in
u(t) are selected to be(a,f)=(23), while the initial

state of robotic system is given by (x, Y, 0, X, y,a’)o
=(0,14,0,0,0,0). Even though this is a parallel parking
problem where the initial state of the system is
controllable, a non-switching controller will result in
infeasible large control inputs. However, as shown in
Fig. (6), the control inputs can be reduced to a
reasonable level if switching control is applied. In Figs.
(6 and 7), the switching state is casually selected to be
(x,y,6,%,y,60), =(-10,00,000). Fig. (8) shows the
animations of the hovercraft system that is stabilized to
origin  from a control singular configuration
(x,y.0,% .6} =(010,7/2,000). Refer to (30), the
hovercraft system is in a control singular configuration
if @=+kz/2, (keN")because of the local coordinates.
By casually selecting an intermediate point
(x, Y, 0, %, y,é)o =(~10,7,7/4,0,0,0) and using switching
control approach, the control singular configuration is
removed.
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Figure 6: The input trajectory of parallel parking control a
hovercraft system by a switching controller.
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Figure 7: Animations of parallel parking control a hovercraft
system by a switching controller.

16
2 &5 L}%
12

101 x% start

y(m)

o N M O

final

-15 -10

Figure 8: Animations of stabilizing a hovercraft system from a
control singular configuration by a switching controller.

C. Switching Control of a Dual Mode Locomotion
Robot System

In this subsection, we show that a dual-mode
variant robot system as illustrated in Fig. (1) can be
stabilized to origin by switching control approaches.
The robot is a combination of a two wheeled mobile
robot and a hovercraft, both of which are actuated by
two forces. Refer to the dynamics of the variant robot
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(20) and (29), it is obvious that the dynamics of the
variant robot in various mode are different. Even if the
different dynamics can be changed to a class of similar
LTV system as shown by (28) and (38), the switched
nonholonomic system is heterogeneous from a point of
view of control engineering, since the state space
dimensions of the two modes are different. As claimed
by Theorem 9, the switched system could be globally
stabilized if there is a feasible piecewise path from the
initial point to origin, and there at least exists one mode
with respect to a curve segment that is controllable with
respect to the current mode.

Suppose that the given initial state is (x,y,8,%, Y, 9)0
=(20,20,0,0,0,0), the input u, is selected as (25) or (35),
of which the control parameters are selected to be
(a,8) =(23), and applying the LQR optimal control
method to LTV subsystems (28) and (38), as shown by
Figs. (9 to 13), the dual-mode variant robot system can
be stabilized to origin by switching control. The closed-
loop trajectories of the position, the speed and the
inputs of the variant robot system are plotted in Figs.
(9-11) respectively. The corresponding switching
sequence is illustrated in Fig. (12), and the animations
of stabilizing process of the variant robot system are
plotted in Fig. (13).
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Figure 9: Position trajectory of the dual mode variant robot
system stabilized by a switching controller.
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Figure 10: Speed trajectory of the dual mode variant robot
system stabilized by a switching controller.

It is worth pointing out that the control parameters
aand g in (25) for wheeled mode and in (35) for

hovercraft mode can be selected under the single
condition B>« >0 since the nonholonomic systems

considered in this paper can be changed to the chained
normal forms. In practice, a larger value of f—a is

helpful for accelerating the decay of the time-varying
terms in  Ay(t) of the equations (28) and (38).

Therefore, it is helpful for obtaining a locomotion
trajectory with smaller fluctuation, and thereby permits
accelerate the switching frequency of the controllers
when it is necessary. A largera>0 is also
advantageous to improve the dynamic responses
speed of the closed-loop system. However, large
control parameters o and g will result in large control

inputs. As a class of slow switching systems due to the
large inertia of the variant robot systems, the
contradiction of selecting control parameters « and g

iS not prominent.
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Figure 11: Inputs trajectory of the dual mode variant robot
system stabilized by a switching controller.
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Figure 12: The switching sequence of the dual mode variant
robot system in switching control.

CONCLUSIONS

In order to essentially increase the mobility of a
robotic system, mechanically reconfigurable or variant
robot system is a promising research direction. In this



Stabilizing a Class of Switched Nonholonomic Mechanical Systems

International Journal of Robotics and Automation Technology, 2020, Vol. 7 19

Y

Figure 13: Animations of the dual mode variant robot system
stabilized by a switching controller.

paper we show that the dynamics of a class of
nonholonomic constraint robot systems can be
changed to a class of special LTV systems based on
the TVCT method, and by applying switching control
strategy the motion control issues of nonholonomic
systems can be resolved with better flexibility. On one
hand, by changing a nonholonomic system to LTV
system, we show that switching control approaches
provide the capability of overcoming the control
singular problems for nonholonomic systems, and
provide a dexterous way for optimal motion planning of
mobile robot system such as obstacle avoidance. On
the other hand, we show that the switching control
approaches can be used to stabilize a switched
nonholonomic system even if the various modes of the
switched nonholonomic system are heterogeneous.
Thus the combination of TVCT and switching control of
LTV systems provides a feasible approach to globally
stabilize a class of variant mobile robot systems.
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