
40 International Journal of Robotics and Automation Technology, 2020, 7, 40-49

 E-ISSN: 2409-9694/20 © 2020 Zeal Press

µ-Planner: A Robot Path Planning Approach Based on Language
Measure of Unsupervised Automata

Jose G.N. Carvalho Filho, Lucas Molina, Eduardo O. Freire and Elyson A.N. Carvalho*

Electrical Engineering Department - UFS, Sergipe, Brazil
Abstract: This paper proposes a robot path planner based on language measure, µ-planner. Workspace is discretized in
a occupancy grid map and we model the system by considering how events, associated to robot’s motions, take it to
different cells (discrete positions). The calculated language measure values corresponds to a gradient, which the robot
can use reach its destination by choosing events that take it to states with higher measure values. Concepts of Lapace’s
equation and harmonic functions are used to prove that our method guarantees both the existence and monotonicity of
language measure. The proposed method is simple and computationally inexpensive and guarantees existence of path
from any co-accessible state to the destination. Experiments considering different scenarios have been performed to
validate and compare µ-planner with similar methods.

Keywords: Path planning, Language measure, Event probability, Mobile robots and grid map.

1. INTRODUCTION

Path planning is one of the most basic tasks to be
performed in mobile robot applications. Several methods
have been proposed in the last decades to allow robots
calculating a path from its current position to a desired
destination [10-13, 16, 19].

Based on the mathematical tools used to describe
the workspace and calculate a path taking the robot
toward the destination, most methods can be classified
in grid maps, roadmaps and potential field planners,
[17]. Path planners based on both grid maps and
roadmaps describe how a robot can move through the
workspace using a graph, than search algorithms, such
as Dijkstra and A*, can be used to obtain a path
connecting the robot’s initial position to the destiny. The
main difference in these methods is how they discretize
workspace in nodes and define edges connecting
them.

Potential field methods define a potential value for
each robot configuration (position in the workspace, for
instance). Potential values usually are calculated
defining repulsive forces from obstacles and attractive
forces from destiny.

Authors also proposed path planning methods
based on Discrete Event Systems (DES) [2, 18, 24].
Most methods use automaton or Petri net structures
and formal verification to generate paths, as sequences
of events representing robot actions or states repre-
senting discrete positions in the workspace. Recently,

*Address correspondence to this author at the Electrical Engineering
Department - UFS, Sergipe, Brazil; E-mail: jgnunes@ufs.br

methods based on language measure, [4, 5, 21, 22],
have been proposed to calculate robot paths. The
basic idea of language measure is to attribute a value
to each state based on how close they are to marked
states and how many event strings intersects on them.

Path planners based on language measure model
the robot possible motions through a workspace as an
automaton, marking states representing the destiny
and obstacles. By attributing positive values (+1) to the
destiny state and negative (-1) to the obstacles (or
collision) states, the methods can generate a gradient
without local maximum (or minimum), allowing the
robot to reach the destination from any co-accessible
state. However, the computational cost can be quite
high.

This paper proposes µ-planner, a simple and
computationally efficient method based on language
measure. The method is able to produce paths similar
to those obtained from [4 and 5] at much lower com-
putational cost. µ-planner does not require a super-
visory control to ensure the existence of numerical
solution and absence of local minimum or maximum
values. By defining an automaton structure that already
guarantees both existence of a solution and its
monotonicity, µ-planner avoids iterative processes to
obtain a supervisory, being able to calculate language
measure with a single matrix inversion.

2. LANGUAGE MEASURE THEORY

Let G = (Q,!,",qinit ,Qm) be a deterministic finite-

state automaton (DFSA) and !̂ :Q " #* $Q the
extended state transition function. In addition, let Gi be
a version o G in which qinit = qi !Q .

A Robot Path Planning Approach Based on Language Measure International Journal of Robotics and Automation Technology, 2020, Vol. 7 41

Definition 1. The generated and marked languages
of an automaton Gi , L(Gi) and Lm (Gi) , are defined
as:

 L(Gi) = {s ! "* | #̂(qi , s) !Q} (1)

 Lm (Gi) = {s ! "* | #̂(qi , s) !Qm} (2)

Definition 2. Language L(qi ,qj) (or simply Li, j)
corresponds to the set of strings starting in qi and
terminating in qj . Formally, L(qi ,qj) is defined as:

 L(qi ,qj) = {s ! "* | #̂(qi , s) = qj !Q} (3)

Language L(qi) , the set of all strings allowed in G
from state qi , is defined as:

L(qi) = !
q j!Q

L(qi ,qj) " L(Gi) (4)

Language L(G) corresponds to the set with all
strings initiating at any state of Q . Formally, we have
that:

L(G) = !

qi!Q

L(qi) (5)

The set of marked states, Qm , can be partitioned as
Qm =Qm

+ !Qm
" , where Qm

+ represents the set of states
we desire to reach and Qm

! the states we have to
avoid.

Definition 3. The language measure function

 µ : 2
L (G) !! associates a real value to a language

L(qi) ! L(G) , such that:

 µ(L(qi))
= 0, qi !Qm

> 0, qi "Qm
+

< 0, qi "Qm
#

$

%
&

'
&

 (6)

In order to give a physical meaning to the measure
µ of a language L(qi) , [22] defined it as the probability
of reach a state in Qm

+ from a state qi , while avoiding
states in Qm

! .

The computation of µ relies on three structures:

event probability (or cost) matrix
!! ; state transition

probability matrix ! and the characteristic function
! :Q" [#1,1] .

Definition 4. For each event ! k " # and state
qj !Q , the probability of triggering ! k at qj ,

!!(qj ," k)

(or simply

!! jk), is defined such that:

1.

!! jk " [0,1) and

!
k

!" jk < 1

2.

!!(qj ,") = 1 and

!! jk = 0 if !(qj ," k) is undefined;

3.

!!(qj ," k s) = !!(qj ," k) !!(#(qj ," k), s) .

Item (1) provides a sufficient condition to existence
of a finite value of µ [22]. Items (2) and (3) provide an
iterative way to get the probability of occurring a string
s from a state qj .

Considering |Q |= n and | ! |= l , the event
probability matrix is defined as:

!! =

!"11 !"12 " !"1l
!"21 !"22 " !"2l
$
!"n1 !"n2 " !"nl

#

$

%
%
%
%

&

'

(
(
(
(

 (7)

Definition 5. The probability of reaching a state qj
from qi , with the occurrence of a single event, is
defined as:

! ij = "
#$%|& (qi ,#)=q j

!!(qi ,#) (8)

Based on (8), the state transition probability matrix
is defined as ! |ij= " ij .

Definition 6. The characteristic function
! :Q" [#1,1] allows the designer to set weights on the
states based on its perception of the application.
Formally, we have that:

 !qi "Q, #(qi) "
[$1, 0) , qj "Qm

$

(0,+1] , qj "Qm
+

0 , qj %Qm

&

'
(

)
(

 (9)

The state weighting vector, ! -vector, is defined by

 ! = [!1!2!!n]
T , where ! j " !(qj) . The signed real

measure of a language L(qi) is defined as:

 µi ! µ(L(qi)) = "
q j#Q

µ(L(qi ,qj)) (10)

where µ(L(qi ,qj)) is defined by (11).

42 International Journal of Robotics and Automation Technology, 2020, Vol. 7 Filho et al.

µ(L(qi ,qj)) = !
s"L (qi ,q j)

!#(qi , s)
$

%

&
&

'

(

)
)
* j (11)

In [22], the authors show that Equation (10) can be
expressed as:

 µi =!" ij #µ j
q j$Q

+ %i (12)

Considering a matrix structure, Equation (12) can
be expressed as:

 µ =!µ + " (13)

The solution of (13) is given by:

 µ = (I !")!1# (14)

where I is the n ! n identity matrix.

After obtaining the µ -vector, µ = [µ1µ2!µn] , the
system gets a metric from which it can choose the next
action (enabled event in the plant G). By choosing the
event that leads to the state with higher µ value, the
system will be executing the string with higher
probability to reach a state in Qm

+ .

3. LANGUAGE MEASURE ON ROBOT PATH
PLANNING

In the last decades, several works on path planning
based on language measure have been proposed.
Next, we present a brief overview of how language
measure have been applied in robotics.

In [21 and 22], the authors define the basis of
signed real language measure. Other works from the
same research group address specific issues such as
computational costs of the algorithms proposed to
obtain the language measure, [20]; present proofs that,
under some conditions, its always possible to obtain a
finite measure µ , [23]; etc.

An important aspect often addressed by the authors
is how guarantee that (I !") is an inversible matrix. In

[23], the author redefine
!! based on Markov

conditional probability and presents a method for
estimating it that results in ! as a stochastic matrix.

As result of the use of stochastic matrices, the
premise

 k! !" i k < 1 is not satisfied anymore and there

is no guarantee matrix (I !") is inversible. To
circumvent such problem, the authors proposed

choosing a convenient value of a parameter ! , such
that 0 < ! <<1 , and calculating the language measure
as:

 µ(!) = [I " (1"!)#]"1$ (15)

The chosen ! must be small enough to guarantee
that µ(!) is invariant to ! , i.e.
!qi ,qj "Q | µi < µ j#µ($)i < µ($) j , and higher enough
to guarantee that there will be no numerical problem to
calculate the inverse.

Chattopadhyay and Ray [6] addresses this problem
and proposes an extension of language measure, the
renormalized language measure. In [7], the authors
proposed an algorithm to estimate the critical lower
bound of ! , namely !* .

In [4 and 5], authors proposed a path planning
method based language measure and supervisory
control theories. The workspace is discretized in a grid
and it’s considered the robot can move to one of its 8
neighbors, each motion represented by an event
! k " #C , with k = {1,!, 8} . Transitions to states
representing occupied positions are allowed. However,
once in such a state, there is a single uncontrollable
event ! u that can occur and taking plant G to Ob
state, which represents a collision with an obstacle.
Also, the boundaries of the workspace are not
considered in the model, i.e. there are no states
representing them.

Figure 1 illustrates how the workspace is discretized
and an automaton G representing how the robot can
move through the workspace grid cells. The events
representing the robot motions where suppressed to
simplify the figure.

Figure 1: Illustration of the discretized workspace and an
automaton modeling the robot motion.

A Robot Path Planning Approach Based on Language Measure International Journal of Robotics and Automation Technology, 2020, Vol. 7 43

Formally, the system is represented by an
automaton G = (Q,!,",#,qinit ,Qm) . The set Q is formed
by states representing both the free (QF) and occupied
(QO) cells in the grid map and state Ob ,
Q =QF !QO ! {Ob} . The alphabet is defined by
! = !C " {# u} and Qm = {qgoal ,Ob} . Finally, function

! :Q" 2# indicates which events are enabled at each
state.

The event probability matrix,
!! , is defined based

on the number of events enabled in each state. For
states representing occupied positions, only event ! u
is enabled and the probability is set as 1. Equation (16)
presents how event probabilities are defined:

!! |ik=

1
| "(qi)#$C |

, if % k & "(qi)#$C

0 , if % k ' "(qi)#$C

1 , if % k =% u & "(qi)

(

)

*
**

+

*
*
*

 (16)

Characteristic function ! is defined as follows:

 !(qi) =
"1 , if qi #QO

1 , if qi = qgoal
0 , otherwise

$

%
&

'
&

 (17)

In order to ensure global monotonicity of the
language measure, [4 and 5] propose an algorithm to
compute the optimal supervisor for G . Iteratively, the
algorithm recalculates the language measure, defined
by Equation (18), and use it to obtain the set of
disabled transitions.

 ! ="*[I # (1#"*)$]#1% (18)

where !* is the critical lower bound of ! and ! is
obtained according to Definition 5.

At each iteration, the algorithm disables controllable

transitions qi !
"

qj such that ! i > ! j . When a transition
is disabled, the value ! ij is added to ! ii (self-loop) and

! ij is set to 0. Then, !* and ! are recalculated based
on the updated ! . The algorithm terminates when the
sets of disabled transitions (D) of two consecutive
iterations coincide. Final language measure, ! # , is
defined as the ! from the last iteration.

Since the method ensures global monotonicity, the
robot can navigate toward the goal by simply moving

from its current position to its neighbor with the highest
! # value.

Other works focusing in specific aspects such as
localization uncertainties, smoother paths, efficient re-
planning and navigation without global positioning
facilities have been proposed, [3, 8, 9, 14 and 15].
However, as these works are based on the same
framework to calculate ! , we do not present them in
this paper.

4. PROPOSED METHOD

In this paper, the path planning problem is also
addressed considering a language measure approach.
However, we define event probability matrix

!! in a
way that guarantees the existence of matrix (I !")
inverse and that µ , defined by Equation (14),
corresponds to a globally monotonic gradient.
Specifically, we propose a definition for event
probability matrix

!! that results in a µ function that
holds maximum and minimum principle. By doing so,
our method does not need to calculate neither a !
value nor a supervisor, making it computationally
inexpensive.

Maximum and minimum principle states that there is
no local (or even global) maximum or minimum in the
gradient inner region [1]. The maximum and minimum
values occurs only in the boundary region and critical
points. In path planning applications, the boundary
region, !" , corresponds to the workspace borders and
obstacles. A single critical point represents the
destination.

Let G = (Q,!,",#,qinit ,Qm) be an automaton
representing how the robot can move through a 2-D
workspace and ! = {"1,!," 8} the event set, as
illustrated in Figure 2. Also, let the set of states be
defined as a partition Q =Qf !Qo ! {qgoal} , in which Qo
is the set of states representing positions in !" and
Qf the states in the free space region. In this paper,
we propose a µ function definition, presented in
Equation (19), that satisfies the maximum and
minimum principle.

µ(qi) =

1
8 !

" k#$(qi)

µ(%(qi ," k)) , if qi #Qf

K1 if qi #Qo

K2 if qi = qgoal

&

'

(
(
(

)

(
(
(

 (19)

44 International Journal of Robotics and Automation Technology, 2020, Vol. 7 Filho et al.

Figure 2: Events associated with the robot’s motion.

where K1 and K2 are chosen constants that just need
to be different. If K2 > K1 , the language measure grows
toward the destiny

Proof. The classical example of functions that holds
maximum and minimum principle are the harmonic
functions. Thus, the µ defined by Equation (19) being a
harmonic function is a sufficient, but not necessary,
condition to ensure the maximum and minimum
principle.

Let ! :Q!"2 be a function that maps a state qi to
its position (x, y) in the grid cell and µ(qi) ! µ(x, y) , if

 !(qi) = (x, y) .

A harmonic function is a solution for Laplace’s
equation, defined by Equation (20) for a 2-dimensional
space:

!2U(q) = "
2U
"x2

+
"2U
"y2

= 0, #q = (x, y) $ % (20)

where U(q) is a harmonic function defined over region
! .

To solve Laplace’s equation in discretized environ-
ments, the partial differential equations are often
replaced by finite difference equations, an approxima-
tion obtained by Taylor series around a point (x0 , y0) .

By considering µ(x, y) as a Talyor series limited to
second-order (around x0 and y0), we have that:

µx,y = µx0 ,y0
+ (x ! x0)

"µ
"x
(x0 , y0)+ (y ! y0)

"µ
"y
(x0 , y0)

+
(x ! x0)

2

2
"2µ
"x2

(x0 , y0)+
(y ! y0)

2

2
"2µ
"y2

(x0 , y0)

+(x ! x0)(y ! y0)
"
"x

"µ
"y
(x0 , y0)

 (21)

Evaluating (21) for !x > 0 and !y > 0 on both sides
of x0 and y0 , we can rewrite Equation (20) as a finite
difference equation centered in (x0 , y0):

!2µ(x, y) = "
i, j#{$1,0,1}
i%0 or j%0

µ(x0 + i&x , y0 + j&y)

$8µ(x0 , y0) = 0

 (22)

Considering !x = !y =1 (smallest displacement in
the grid cell), Equation (22) can be rewritten as:

µx!1,y!1 +µx,y!1 +µx+1,y!1 +µx,y!1 +µx,y+1

+µx+1,y!1 +µx+1,y +µx+1,y+1 ! 8µx,y = 0
 (23)

Thus, for each position that is not a critical point or
inside the boundary region, the µ value can be
calculated based on (23). Analysing Equation (23), one
can notice it corresponds to the first line of our µ
definition, presented in Equation (19).

Considering Dirichlet’s condition [1], we can set
constant values to the potential of points in !" and of
critical points, such as:

 U(q) =
K1 ,!q " #$

K2 ,q = qgoal

%
&
'(

 (24)

in which K1,K2 ! ! are chosen constant values.

Notice that Equation (24) corresponds to the remain-
ing lines of Equation (19). Harmonic functions proper-
ties also guarantees that the magnitude of | K2 ! K1 |
does not influence the gradient directions. Thus, for
any K2 > K1 , the generated path will be the same. 

Our goal, then, is to propose a formulation to
!!

such that state transition matrix ! and characteristic
function ! results in the µ(qi) definition from (19). To
do so, we define automaton G transitions allowing only
events taking the robot to a neighbor in Qf . Formally:

 !(qi ," k) =
qj , if qi ,qj #Qf

undefined , otherwise
$
%
&

 (25)

Based on automaton G ,
!! can be defined as:

!! |ik=
1
8

, if " k # $(qi)0.1cm

0 , otherwise

%

&
'

('
 (26)

The characteristic function ! is defined as follows:

A Robot Path Planning Approach Based on Language Measure International Journal of Robotics and Automation Technology, 2020, Vol. 7 45

 !(qi) =
K1 , if qi "Qo

K2 , if qi = qgoal
0 , otherwise

#

$
%

&
%

 (27)

Thus, the system defined by Equation (19), for all
q !Q , can be represented by:

 µ = µ!+" (28)

As presented in section 2, µ can be obtained as:

 µ = (I !")!1# (29)

However, our automaton G and
!! definitions

guarantees both the existence of a numerical solution
for the system and monotonicity of the obtained µ .

The path taking the robot from its current position to
destination can be obtained as sequence of neighbor
states with highest µ value. Formally:

 path = [q1q2!qn] (30)

where q1 = qinit , qn = qgoal and qj+1 = !(qj ,") , such that
! = max

! k"#(q j)
µ($(qj ,! k)) .

Next, we present the experiments performed in
order to evaluate the similarity of the plans obtained
from µ-planner with those obtained using !* path
planning.

5. RESULTS AND DISCUSSIONS

In order to validate the proposed method and
evaluate the quality of paths it generates, we perform
experiments considering different workspaces and
robot positions. The path planner proposed by [5], ! * ,
is also implemented and used to generate paths in the
same scenarios. Both methods are compared based on
the time necessary to calculate the language measure
vectors and the similarity of the paths. All experiments
were performed using a PC with 4 GB of RAM and
Processor Intel I3 running Linux Mint (18.2). Next, we
present the metrics used to evaluate the paths.

5.1. Metrics

Paths are compared regarding four metrics: number
of steps, length and minimum and average distance to
obstacles. Number of steps, nsteps , corresponds to the
number states in the path, while the length, plen , is the
real distance the robot have to move. These metrics
can be defined as:

 nsteps =| path | !1 (31)

plen = !

i=1

nsteps

!(qi+1)" !(qi) (32)

where qi ! path is the i -th state in the path, !(qi)
corresponds to qi position in the grid and operator !
is the Euclidean distance.

Regarding the distance to obstacles, let dco (qi) be
the Euclidean distance between qi ’s cell (position in
the grid map) and the closest obstacle. The minimum,
dmin , and average, d , distances to obstacles can be
defined as:

 dmin = min
qi!path

dco (qi) (33)

 d = 1
| path | !qi"path

dco (qi) (34)

Figure 3 illustrates part of a path and the distance
between each cell in the path and its closest obstacle.

Figure 3: Path length and distances to obstacles.

5.2. Experiments

We performed experiments in three different
workspaces, presented in Figure 4. For each
workspace, a destiny and 10 different initial positions
were randomly chosen. Then, the proposed method
and ! * path planner were used to calculate paths for
each configuration. For simplicity, we chose K1 = !1
and K2 = 1 for our method.

Additionally, we calculate paths using ! * algorithm
with constant (arbitrary) values of ! (10!2 and 10!3).
Thus, one can observe the impact of ! values in path
generation and the cost of calculating !* (lower bound
of !) at each iteration.

46 International Journal of Robotics and Automation Technology, 2020, Vol. 7 Filho et al.

Figure 4: Workspaces considered in the experiments.

Figures 5, 6 and 7 present the paths, for a single
(qinit ,qgoal) configuration, generated by the proposed

method and ! * .

Figure 5: Experiment in workspace prone to local minimum.

Figure 6: Experiment in cave like workspace.

Figure 7: Experiment in workspace with scattered obstacles.

Table 1 presents the data of trials for a single
(qinit ,qgoal) configuration (shown in figure 5) of the
experiment with workspace prone to local minimum.
The critical lower bound, at the last iteration, was
!* = 9.2 "10#12 .

Tables 2 and 3 presents the data of the trials shown
in Figures 6 and 7, respectively. The critical lower
bound in these experiments were !* = 3.6 "10#14 and
!* = 9.1"10#15 , respectively.

For each experiment, different initial positions are
considered, so the number of steps and length of paths
vary widely in trials. Thus, we compare paths obtained
from ! * path planner and the proposed method by
calculating the difference of steps, length and distance
to obstacle for each trial. Table 4 presents the average
value and standard deviation of these differences.

5.3. Discussions

Both Figures 5, 6 and 7 and Tables 1, 2, 3 and 4
show the proposed method generate paths similar to
those obtained using ! * path planner. For instance, in
experiments with the workspace prone to local

Table 1: Results of Experiments in a Workspace Prone to Local Minimum

 Time (s) nsteps plen dmin d

Proposed 0.084 ± 0.001 21 28.04 1 1.34 ± 0.50

!* 1.590± 0.025 23 30.87 1 1.27± 0.47

!* (! = 10"3) 0.995± 0.098 23 30.87 1 1.27± 0.47

!* (! = 10"2) 0.957± 0.031 21 28.87 1 1.25± 0.46

A Robot Path Planning Approach Based on Language Measure International Journal of Robotics and Automation Technology, 2020, Vol. 7 47

minimum, the difference in the number of steps is 1±1 .
Such value represents less than 0.5% of nsteps , for the
paths presented in Figure 5. Regarding the distance to
obstacles, the difference is less than 1 cell unit.
Differences increases a little for workspaces with
scattered obstacles, due to the higher number of
possible paths, but it still less than 1% of the values
presented in Table 3.

On the other hand, Tables 1, 2 and 3 show that, as
the workspace’s size increases, ! * path planner
becomes computationally expensive due to !*
calculation. Notice that, when ! is previously defined,
the time necessary to execute ! * decreases
significantly.

Another important aspect is that, for both the
proposed method and ! * path planner, diagonal
motions “cost” the same as an one direction motion
(up, down, left or right). So, “unecessary” diagonal
motions may occur in the generated paths, as in ! * ’s
path shown in Figure 7. However, by defining ! matrix
based on Laplace’s equation, the proposed method

generates smoother paths (as can be better illustrated
in Figure 6), usually keeping farther away from
obstacles.

6. CONCLUSIONS

This paper presents a path planning method based
on language measure of unsupervised automata. By
considering path planning problem from both DES and
the maximum and minimum principle viewpoints, we
propose a methodology to define the event probability
matrix,

!! , that guarantees existence of a numerical
solution for µ = (I !")!1# .

Additionally,
!! ’s definition guarantees the

monotonicity of the solution. Thus, language measure
µ can be view as a gradient without local maximum (or
minimum) and, from any free cell, it’s possible to
generate a path to destiny by iteratively choosing the
neighbor with highest µ value. Also, changes in the
workspace can be handled online by adding/removing
transitions in automaton G and recalculating µ , since
µ-planner is computationally inexpensive.

Table 2: Results of Experiments in a Cave Like Workspace

 Time (s) nsteps plen dmin d

Proposed 1.10± 0.01 79 104.68 1.4 3.64 ±1.2

!* 609.1± 2.7 75 99.85 1 2.99±1.92

!* (! = 10"3) 25.83± 0.52 75 100.68 1 2.86±1.92

!* (! = 10"2) 25.89± 0.093 75 99.85 1 2.88±1.93

Table 3: Results of Experiments in a Workspace with Scattered Obstacles

 Time (s) nsteps plen dmin d

Proposed 1.00± 0.04 48 60.43 1 1.98± 0.72

!* 242.2± 4.0 46 61.74 1 1.81± 0.59

!* (! = 10"3) 28.46± 0.59 45 61.98 1 1.81± 0.63

!* (! = 10"2) 27.87± 0.41 45 60.33 1 1.81± 0.60

Table 4: Summarized Results for all (qinit ,qgoal) Configurations Considered in the Experiments

Workspace !steps !len !d

Local minimum 1.00±1.05 1.05±1.00 0.076± 0.208

Cave like 1.80±1.32 2.46±1.08 0.71± 0.23

Scattered obst. 3.3± 3.2 3.69± 3.30 0.24 ± 0.18

48 International Journal of Robotics and Automation Technology, 2020, Vol. 7 Filho et al.

Experiments with several workspaces show µ-
planner generates paths similar to those obtained using
! * planner. However, since our

!! definition already
guarantees existence of solution, there is no need to
iteratively compute a supervisor and ! values, which
decreases greatly our method computational cost.
Specifically, µ-planner considers a single matrix
inversion to calculate µ language measure vectors.

6.1 Future Works

In future works, strategies to smooth generated
paths and better cope with dynamic environments, as
those proposed in [3 and 15], will be addressed.
Additionally, other

!! definitions will be studied, in
order to allow considering different “costs” for diagonal
motions.

REFERENCES

[1] Sheldon Axler, Paul Bourdon, and Ramey Wade. Harmonic
Function Theory, volume 137. Springer Science & Business
Media, 2001.
https://doi.org/10.1007/978-1-4757-8137-3

[2] José Gilmar Nunes Carvalho Filho, Jean-Marie Alexandre
Farines, and José Eduardo Ribeiro Cury. Modeling and
synthesis of controllers for multi-robot systems using game
structures. In 2013 16th International Conference on
Advanced Robotics (ICAR), pages 1-8. IEEE, 2013.
https://doi.org/10.1109/ICAR.2013.6766560

[3] Ishanu Chattopadhyay, Anthony Cascone, and Asok Ray.
Formal-language-theoretic optimal path planning for
accommodation of amortized uncertainties and dynamic
effects. arXiv preprint arXiv:1008.3760, 2010.

[4] Ishanu Chattopadhyay, Goutham Mallapragada, and Asok
Ray. L: An intelligent path planning algorithm based on
renormalized measure of probabilistic regular languages. In
2008 American Control Conference, pages 1249-1254. IEEE,
2008.
https://doi.org/10.1109/ACC.2008.4586664

[5] Ishanu Chattopadhyay, Goutham Mallapragada, and Asok
Ray. : a robot path planning algorithm based on renormalised
measure of probabilistic regular languages. International
Journal of Control, 82(5):849-867, 2009.
https://doi.org/10.1080/00207170802343196

[6] Ishanu Chattopadhyay and Asok Ray. Renormalized
measure of regular languages. International Journal of
Control, 79(9):1107-1117, 2006.
https://doi.org/10.1080/00207170600801429

[7] Ishanu Chattopadhyay and Asok Ray. Language-measure-
theoretic optimal control of probabilistic finite-state systems.
International Journal of Control, 80(8):1271-1290, 2007.
https://doi.org/10.1080/00207170701286322

[8] Ishanu Chattopadhyay and Asok Ray. Generalization of path
planning for accommodation of amortized dynamic
uncertainties in plan execution. In 2009 American Control
Conference, pages 2415-2420. IEEE, 2009.
https://doi.org/10.1109/ACC.2009.5160367

[9] Pritthi Chattopadhyay, Devesh K Jha, Soumik Sarkar, and
Asok Ray. Path planning in gps-denied environments: A
collective intelligence approach. In 2015 American Control
Conference (ACC), pages 3082-3087. IEEE, 2015.
https://doi.org/10.1109/ACC.2015.7171806

[10] Stuart Eiffert, He Kong, Navid Pirmarzdashti, and Salah
Sukkarieh. Path planning in dynamic environments using
generative rnns and monte carlo tree search. In 2020 IEEE
International Conference on Robotics and Automation
(ICRA), pages 10263-10269. IEEE, 2020.
https://doi.org/10.1109/ICRA40945.2020.9196631

[11] Raouf Fareh, Mohammed Baziyad, Tamer Rabie, and
Maamar Bettayeb. Enhancing path quality of real-time path
planning algorithms for mobile robots: A sequential linear
paths approach. IEEE Access, 8:167090-167104, 2020.
https://doi.org/10.1109/ACCESS.2020.3016525

[12] Alessandro Gasparetto, Paolo Boscariol, Albano Lanzutti,
and Renato Vidoni. Path planning and trajectory planning
algorithms: A general overview. Motion and operation
planning of robotic systems, pages 3-27, 2015.
https://doi.org/10.1007/978-3-319-14705-5_1

[13] Alejandro Hidalgo-Paniagua, Miguel A Vega-Rodrguez,
Joaqun Ferruz, and Nieves Pavón. Solving the multi-
objective path planning problem in mobile robotics with a
firefly-based approach. Soft Computing, 21(4):949-964,
2017.
https://doi.org/10.1007/s00500-015-1825-z

[14] Devesh K Jha, Pritthi Chattopadhyay, Soumik Sarkar, and
Asok Ray. Path planning in gps-denied environments via
collective intelligence of distributed sensor networks.
International Journal of Control, 89(5):984-999, 2016.
https://doi.org/10.1080/00207179.2015.1110754

[15] Devesh K Jha, Yue Li, Thomas A Wettergren, and Asok Ray.
Robot path planning in uncertain environments: A language-
measure-theoretic approach. Journal of Dynamic Systems,
Measurement, and Control, 137(3):034501, 2015.
https://doi.org/10.1115/1.4027876

[16] Rahul Kala, Anupam Shukla, and Ritu Tiwari. Fusion of
probabilistic a* algorithm and fuzzy inference system for
robotic path planning. Artificial Intelligence Review,
33(4):307-327, 2010.
https://doi.org/10.1007/s10462-010-9157-y

[17] Jean-Claude Latombe. Robot motion planning, volume 124.
Springer Science & Business Media, 2012.

[18] Brenan J McCarragher. Petri net modelling for robotic
assembly and trajectory planning. IEEE Transactions on
Industrial Electronics, 41(6):631-640, 1994.
https://doi.org/10.1109/41.334580

[19] Pablo Muñoz, Mara D R-Moreno, and Bonifacio Castaño.
3dana: A path planning algorithm for surface robotics.
Engineering Applications of Artificial Intelligence, 60:175-192,
2017.
https://doi.org/10.1016/j.engappai.2017.02.010

[20] Asok Ray, Jinbo Fu, and Constantino Lagoa. Optimal
supervisory control of finite state automata. International
Journal of Control, 77(12):1083-1100, 2004.
https://doi.org/10.1080/0020717042000273762

[21] Asok Ray and Shashi Phoha. Signed real measure of regular
languages for discrete-event automata. International Journal
of Control, 76(18):1800-1808, 2003.
https://doi.org/10.1080/00207170310001635392

[22] Asok Ray and Xi Wang. Signed real measure of regular
languages. In Quantitative Measure for Discrete Event
Supervisory Control, pages 3-37. Springer, 2005.
https://doi.org/10.1007/0-387-23903-0_1

[23] Asok Ray. Signed real measure of regular languages for
discrete event supervisory control. International Journal of
Control, 78(12):949-967, 2005.
https://doi.org/10.1080/00207170500202447

A Robot Path Planning Approach Based on Language Measure International Journal of Robotics and Automation Technology, 2020, Vol. 7 49

[24] Faranak Rahimi Soofiyani, Amir Masoud Rahmani, and
Mehran Mohsenzadeh. A straight moving path planner for
mobile robots in static environments using cellular automata.
In 2010 2nd International Conference on Computational

Intelligence, Communication Systems and Networks, pages
67-71. IEEE, 2010.
https://doi.org/10.1109/CICSyN.2010.28

Received on 20-11-2020 Accepted on 28-12-2020 Published on 31-12-2020

DOI: https://doi.org/10.31875/2409-9694.2020.07.5

© 2020 Filho et al.; Zeal Press.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in
any medium, provided the work is properly cited.

