
106 International Journal of Robotics and Automation Technology, 2022, 9, 106-113  

 
E-ISSN: 2409-9694/22 

Virtual Sensor Design for Linear and Nonlinear Dynamic Systems 

Alexey Zhirabok1,2,*, Alexander Zuev1,2 and Kim Chkhun Ir1 

1Department of Automation and Robotics, Far Eastern Federal University, Vladivostok, 690950 Russia 
2Department of Intelligent Control, Institute of Marine Technology Problems, Vladivostok, 690950 Russia 

Abstract: The problem of virtual sensors design in linear and nonlinear systems is studied. The problems is solved in 
three steps: at the first step, the linear model invariant with respect to the disturbance is designed; at the second step, a 
possibility to take into account the nonlinear term and to estimate the given variable is checked; finally, stability of the 
observer is achieved. The relations allowing to design virtual sensor of minimal dimension estimating prescribed 
component of the state vector of the system are obtained. The theoretical results are illustrated by practical example.  
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1. INTRODUCTION 

Different sensors are an integral part of modern 
complex technical systems, in particular, they are used 
for measuring the state vector components to solve the 
problems of control and fault diagnosis. Clearly, the 
more components are measured, the simpler solution 
can be obtained. The use of additional physical 
sensors may result in extra expenses and not always 
can be realized in practice. Besides, such sensors are 
of not high reliability. In this case, virtual sensors are of 
the most interest. Besides, virtual sensors can be used 
to replace the faulty sensors and in sensorless control. 

There are many papers considering different 
problems in design and application of virtual sensors 
[1-13, 15, 18-20]. Most of these papers consider 
different practical applications of virtual sensors: for 
health monitoring of automotive engine [1], for active 
reduction of noise in active control systems [3], for 
hiding the fault from the controller point of view [6], in 
walking legged robots [7], for failure diagnosis in 
aircraft [8], in the process of fault detection in industrial 
motor [9], for fault detection, isolation, and data 
recovery in a bicomponent mixing machine [10], in the 
sensor-cloud platform [15], for a tunnel furnace [20]. A 
new architectural paradigm for remotely deployed 
sensors whereby a sensor’s software is separated from 
the hardware are presented in [18]. In [2, 13], different 
theoretical aspects of using virtual sensors in linear 
systems are considers; in [19], virtual sensors are used 
for fault tolerant control in linear descriptor systems. 
Detailed procedure to design virtual sensors of full 
dimension for linear systems is suggested in [4]. 
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The main contribution of the present paper is that a 
procedure to design virtual sensors of minimal 
dimension for nonlinear systems estimating prescribed 
components of the state vector is developed. This 
allows to reduce complexity of the virtual sensors in 
comparison with cited above papers where such 
sensors of full order are constructed. Besides, the 
limitations imposed on the initial system are relaxed 
that allows to extend a class of systems for which the 
virtual sensors can be constructed. The suggested 
solution is based on the reduced order model of the 
original system. The reduced model may have different 
properties with respect to the faults and disturbances. 
When the model is sensitive to the faults and 
insensitive to the disturbances, the problem of exact 
fault identification can be solved. If the reduced model 
is sensitive both to the faults and the disturbances, the 
problem of approximate fault identification can be 
solved only. 

The set of the prescribed components depends on 
the problem of control or fault diagnosis under 
consideration. Note that in [16] the problem of 
estimating the prescribed components was solved 
based on sliding mode observers [5, 17]. Virtual 
sensors can be useful to simplify this problem solution. 

The rest of the paper is organized as follows. In 
Section 2, virtual sensor is designed for linear systems. 
Section 3 considers such a problem for general 
discrete-time nonlinear systems. In Section 4, the 
problem is solved by so-called logic-dynamic approach. 
Practical example is considered in Section 5. Section 6 
concludes the paper. 

2. LINEAR SYSTEMS 

2.1. The Main Models 

Consider system described by linear dynamic model  
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!x(t) = Fx(t)+Gu(t)+ L!(t),
y(t) = Hx(t),

         (1) 

where x(t)!Rn , u(t)!Rm , y(t)!Rl  are vectors of 
state, control, and output, F , G , H , and L  are known 
constant matrices, !(t)"Rp  is the unmatched 
disturbance, it is assumed that !(t)  is an unknown 
bounded function of time. 

The problem is as follows: given yv(t) = Hvx(t)  for 
known matrix Hv , construct virtual sensor of minimal 
dimension estimating the variable yv(t)!R

p .  The 
problem is solved by using Luenberger observer 
invariant with respect to the disturbance estimating the 
variable yv(t).  In addition to yv(t) , such an observer 
should estimate some output variable y*(t)  for 
generating the residual r(t)  to achieve stability of the 
observer. The observer is based on the model of the 
the original system given by  

 

!xv(t) = F*xv(t)+G*u(t)+ J*H 0x(t),
yv(t) = H*vxv(t)+Qy(t),
y*(t) = H*xv(t),
r(t) = R*y(y)! y*(t),

        (2) 

where xv(t)!R
k , k ! n , is the state vector, F* , G* , J* , 

H* , H*v , Q , and *R  are matrices to be determined,  

H 0 =
H
Hv

!

"
#

$

%
& , y0 = H 0x =

y
yv

!

"
##

$

%
&&
.  

The problem is solved in three steps: initially, the 
model of minimal dimension estimating the variable 

)(* ty  is designed, then a possibility to estimate the 

variable )(tyv  is checked; finally, the matrix K*  
ensuring stability of the observer is found. 

To implement the first step, introduce the matrix !  
such that xv(t) =!x(t).  It is known [22] that matrices 
describing the model satisfy the conditions  

R*H = H*!, !F = F*! + J*H 0,
!G = G*, !L = 0.

        (3) 

The additional condition appears due to the 
equation  

yv(t) = Hvx(t) = H*vxv(t)+Qy(t);  

since xv(t) =!x(t)  and y(t) = Hx(t) , it follows  

Hv = H*v! +QH .           (4) 

Previously, it is necessary to check a possibility to 
design the model invariant with respect to the 
disturbance. Introduce the matrix L*  of maximal rank 
such that L*L = 0 . Since the condition of invariance is 
of the form !L = 0 , then ! = NL*  for some matrix N . 
Replace the matrix !  in the equation R*H = H*!  by 
NL* : R*H = H*NL* , or  

(R* ! H*N )
H
L*

"

#
$

%

&
' = 0.  

Clearly, the last equation has a solution if  

rank
H
L*

!

"
#

$

%
& < rank(H )+ rank(L*).         (5) 

Similar replacing in !F = F*! + J*H 0  and 
Hv = H*v! +QH  gives NL*F = F*NL* + J*H 0  and 
Hv = H*vNL* +QH ; these equations are solvable if  

rank
L*F
L*
H 0

!

"

#
#
#

$

%

&
&
&

< rank(L*F)+
H 0

L*

!

"
##

$

%
&&
,        (6) 

rank
H
L*

!

"
#

$

%
& = rank

H
L*
Hv

!

"

#
#
#

$

%

&
&
&
,         (7) 

respectively. 

If (5) or (6) or (7) is not satisfied, the model invariant 
with respect to the disturbance does not exist and one 
has to use robust methods [22]. Assume that (5)-(7) 
are satisfied and construct the model. 

2.2. Model Design 

The matrices F*  and H*  are sought in the 
canonical form  

F* =

0 1 0 ... 0
0 0 1 ... 0
... ... ... ...
0 0 0 ... 0

!

"

#
#
#
#

$

%

&
&
&
&

, H* = ( 1 0 0 ... 0 ).

             (8) 

Clearly, this is always possible if (F*,H*)  in (2) is 
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observable. If (F*,H*)  is unobservable, system (2) can 
be transformed into observable canonical form and 
then the matrices describing the observable part of this 
form can be presented in the above-described 
canonical form of less dimension. 

Using these matrices, one obtains from (3) 
equations for rows of the matrices !  and J* :  

!1 = R*H , !iF =!i+1 + J*iH 0,
i = 1,...,k "1, !kF = J*kH 0,

        (9) 

where !i  and J*i  are i -th rows of the matrices !  and 
J* , i =1,...,k.  As is shown in [22-24], equations (9) can 
be transformed into the single equation  

( R* !J*1 ... !J*k )W (k ) = 0,       (10) 

where  

W (k ) =

HFk

H 0F
k!1

...
H 0

"

#

$
$
$
$$

%

&

'
'
'
''

.  

The condition !L = 0  of invariance with respect to 
the disturbance can be taken into account in the form 
[22-24]  

( R* !J*1 ... !J*k )L(k ) = 0,  

where  

L(k ) =

HL HFL ... HFk!1L
0 H 0L ... H 0F

k!2L
... ... ... ...
0 0 ... 0

"

#

$
$
$
$

%

&

'
'
'
'

.  

The last equation and (10) result in single equation  

( R* !J*1 ... !J*k )(W (k ) L(k ) ) = 0.       (11) 

Equation (11) has a nontrivial solution if  

rank(W (k ) L(k ) ) < l + (l +1)k.        (12) 

To construct the model, find from (12) the minimal 
dimension k  and the row ( R* !J*1 ... !J*k )  

satisfying (11). Then calculate the rows of the matrix 
!  based on (9). 

At the second step, a possibility to estimate the 
variable yv(t)  is checked based on (4). Rewrite it in the 
form  

Hv = (H*v Q)
!
H

"
#$

%
&'
.         (13) 

This equation has a solution if  

rank !
H

"
#$

%
&'
= rank

!
H
Hv

"

#

$
$
$

%

&

'
'
'
.        (14) 

If (14) is satisfied, the variable yv(t)  can be 
estimated by observer. Otherwise, one finds another 
solution of (11) with former or incremented dimension 
k . If (14) is not satisfied for all k ! n , the problem 
cannot be solved. 

Assuming that (14) is satisfied for some k , we find 
the matrices H*v  and Q  from (13) and set G* =!G . 
As a result, the model of minimal dimension invariant 
with respect to the disturbance and estimating the 
variable yv(t)  has been designed in the form  

 

!xv(t) = F*xv(t)+G*u(t)+ J*y0 (t),
yv(t) = H*vxv(t)+Qy(t),
y*(t) = H*xv(t).

      (15) 

2.3. Observer Design 

Introduce the estimation error e(t) =!x(t)" xv(t)  and 
write down the equation for e(t)  taking into account 
relations (3) and feedback K*r(t) :  

 

!e(t) = !Fx(t)+!Gu(t)
"(F*xv(t)+G*u(t)+ J*y0 (t)+ K*r(t))

= (!F " J*H 0 )x(t)" F*xv(t)" K*(R*y(t)" y*(t))
= F*!x(t)" F*xv(t)" K*(R*Hx(t)" H*xv(t))
= F*e(t)" K*(H*!x(t)" H*xv(t))
= (F* " K*H*)e(t).

 

It follows from (8) that the pair (F*,H*)  is 
observable, therefore the matrix K*  exists such that 
F* ! K*H*  is stable matrix. Set K* = (K1 K2 ...Kk )

T , then  

F* ! K*H* =

!K1 1 0 ... 0
!K2 0 1 ... 0
... ... ... ...

!Kk 0 0 ... 0

"

#

$
$
$
$$

%

&

'
'
'
''

.  
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It is known that if !1 , !2 , ..., !k  are desirable 
eigenvalues of the observer, then  

K1 = !("1 + ...+ "k ),
K2 = "1"2 + ...+ "k!1"k ,

...
Kk = (!1)k"1..."k .

 

3. NONLINEAR SYSTEMS. GENERAL SOLUTION 

For simplicity, consider discrete-time systems since 
a solution for continuous-time case is more complex. 
Let the system be described by nonlinear dynamic 
model  

x(t +1) = f (x(t),u(t),!(t)),
y(t) = h(x(t)).

       (16) 

Here x !X " Rn , u !Rm , y!Rl  are vectors of state, 
control, and output; !(t)"Rs  is the disturbance, it is 
assumed that !(t)  is unknown bounded function of 
time, f  and h  are nonlinear functions, the function f  
may be non-differentiable with respect to x . 

The problem is to design virtual sensor insensitive 
to the disturbance and estimating the variable 
yv(t) = hv(x(t))!R

p  for the prescribed function hv . Such 
a sensor is based on the model  

x*(t +1) = f*(x*(t),u(t), y(t)),
yv(t) = hv*(x*(t), y(t)),
y*(t) = h*(x*(t)),

       (17) 

where x* !R
k  is a state vector, y*(t)!R  is a variable 

such that y*(t) =! (y(t))  for some function ! ; f* , hv* , 
h* , and !  are functions to be determined. 

The approach to design the model (17) is based on 
special mathematical technique, algebra of functions, 
developed in [21]. The elements of algebra of functions 
are vector functions with the domain X ; its main 
ingredients are relation of partial preorder ! , two 
binary operations !  and ! , binary relation ! , and 
operators m  and M ; these ingredients are described 
in [21]. Note that the relation ! " #  can be treated as 
follows: the function !  contains information about 
states from X  no less than !.  

To design the model, we assume that the function 
!  exists such that x*(t) =!(x(t)).  It was shown in that 
the function !  satisfies the condition [21]  

h !" # M (").          (18) 

Note that the condition (18) describes the first 
equation in (17). 

The best solution is the model insensitive to the 
disturbance. To design such a model, introduce 
minimal (in the sense of relation ! ) function ! 0  
containing maximal number of functionally independent 
components such that the function ! 0 ( f (x,u,"))  does 
not depend on !.  Define for i !1  the sequence of non-
decreasing functions ! 0 "! 1 " ...  using the formula  

! i+1 =! i "m(! i # h), i = 0,1,...  

By results in [11, 21], there exists a finite k  such 
that ! k+1 " ! k .  Define ! :=" k .  

Theorem. [11, 21] The function !  is minimal 
(containing maximal number of independent 
components) satisfying the conditions (18) and ! 0 "# . 

It follows from definitions of the operator M  and 
relation !  that the condition (18) implies existence of 
the function f*  such that  

f*((! " h)(x(t)),u(t)) =!( f (x(t),u(t),#(t)));       (19) 

in addition, the condition ! 0 "#  means that the 
disturbance !(t)  does not affect the function f* . 

To design the dynamic part of the model (17), write 
down the relation  

x*(t +1) =!(x(t +1)) =!( f (x(t),u(t),"(t)))  

and transform its right hand side based on (19); as a 
result, one obtains the dynamic part of (17). 

To design the functions h*  and hv* , write down the 
relations y* = h*(x*)  and yv = hv*(x*, y)  as follows:  

! (h(x)) = h*("(x)), hv(x) = hv*("(x),h(x)),  

that is equivalent to the functional inequalities  

! " h # const, ! $ h % hv .         (20) 

If these conditions are true for the function ! , the 
functions h*  and hv*  can be obtained based on (20) 
and definition of the relation ! . As a result, the model 
(17) insensitive to the disturbance has been designed. 
Otherwise, the estimate of the variable yv(t)  is 
approximate only. 
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To transform the model (17) into the observer, its 
stability should be ensured. This can be achieved by 
known methods [14]. 

4. LOGIC-DYNAMIC APPROACH 

4.1. Model Design 

If !  is a linear function, the problem can be solve 
by simpler method. To achieve this goal, the nonlinear 
system should be described as follows:  

 

!x(t) = Fx(t)+Gu(t)+C!(x(t),u(t))+ L"(t),
y(t) = Hx(t).

     (21) 

This model differs from (1) by nonlinear term 
!(x,u) :  

!(x,u) =
"1(A1x,u)

...
"q (Aqx,u)

#

$

%
%
%

&

'

(
(
(
,         (22) 

where A1 , ..., Aq  are constant matrices, !1,  ..., !q  are 
nonlinear functions. It is assumed that the function 
C!(x,u)  satisfies Lipschitz condition about x  uniformly 
for u :  

     (23) 

where M > 0  is some constant. 

The problem of the virtual sensors design for 
nonlinear systems is solved now according to so-called 
logic-dynamic approach [22-24] which is based on the 
solution for linear part of the system [22]. As a result, a 
solution is similar to that for linear system with only 
difference that at the second step a possibility to 
express the nonlinear term via linear solution is 
checked additionally. 

The nonlinear observer is given by  

 

!xv(t) = F*xv(t)+G*u(t)+ J*y0 (t)
+C*!(xv(t), y0 (t),u(t))+ K*r(t),

yv(t) = H*vxv(t)+Qy(t),
y*(t) = H*xv(t),
r(t) = R*y(t)" y*(t),

     (24) 

where C* =!C,   

C*!(xv , y0,u) =

"i1 (A*1i1xv + A*2i1y0,u)

...
"ik (A*1ik xv + A*2ik y0,u)

#

$

%
%
%

&

'

(
(
(
,       (25) 

A*1i1 , A*2i1 , ..., A*1ik , A*2ik  are matrices satisfying the 

conditions  

Ai = (A*1i A*2i )
!
H 0

"

#
$

%

&
' , i = i1,...,ik;       (26) 

i1,...,ik  are nonzero columns of the matrix C* . 

In addition to (5) and (6), a possibility to design the 
nonlinear model invariant with respect to the 
disturbance can be checked previously. Rewrite (26) in 
more general form with ! = NL*   

A = A*
NL*
H 0

!

"
##

$

%
&&

 

that is equivalent to the condition  

rank
H
L*

!

"
#

$

%
& = rank

H
L*
A

!

"

#
#
#

$

%

&
&
&
,  

where A =
A1
...
Aq

!

"

#
#
#

$

%

&
&
&

. If this condition is not satisfied, the 

nonlinear model invariant with respect to the 
disturbance does not exist, and the robust methods 
should be used [22]. 

Similar to the linear case, one has to solve (11) for 
minimal k , find from (9) rows of the matrix !  and 
check the condition (14); we assume it is satisfied. 

To construct the nonlinear term, set C* :=!C , 
calculate (25) and check the condition  

rank
!
H 0

"

#
$

%

&
' = rank

!
H 0

Ai

"

#

$
$
$

%

&

'
'
'
, i = i1,...,ik .       (27) 

If it is satisfied, set G* :=!G ; the matrices A*1i  and 
A*2i , i = i1,...,ik , are found from (26). If (27) is not 
satisfied, one finds another solution of (11) with former 
or incremented dimension k . If (27) is not satisfied for 
all k ! n , the nonlinear model cannot be designed. 
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As a result, the model (15) takes the form  

 

!xv(t) = F*xv(t)+G*u(t)+ J*y0 (t)
+C*!(xv(t), y0 (t),u(t)),

yv(t) = H*vxv(t)+Qy(t),
y*(t) = H*xv(t).

 

4.2. Stability Analysis 

The equation for e(t)  in the nonlinear case takes 
the form  

 !e(t) = F**e(t)+ !"(t),  

where F** = F* ! K*H* ,  

!"(t) =C*("(#x(t), y0 (t),u(t))$"(xv(t), y0 (t),u(t))).  

Since the function !  satisfies the condition (23), then 
!"(t)  satisfies similar condition as well:  

        (28) 

for some M* > 0.  Since the matrix F**  is stable due to 
the choice of the matrix K* , the symmetric positive 
definite matrices P  and W  exist such that  

F**
T P + PF** = !W .         (29) 

Consider Lyapunov candidate function V = eTPe(t)  
and take its derivative using (28) and (29):  

 

Clearly, if  

M* <
!min (W )
2!max (P)

,          (30) 

then  
!V (t) < 0 , the observer is stable, and there is no 

need to use a feedback. Note that this approach is 
considered in [14]. It follows from (30) that the 
approach imposes severe conditions on the function 
!  since as a rule, M* < 1  in (30). Only k =1  implies 
!min (W ) = 2PK*  and M* < K* , that is K*  always can be 
chosen to satisfy the condition M* < K*  for arbitrary 
Lipschitz function. 

5. EXAMPLE 

Consider the control system  

 

!x1 = a1u1 /!1 " a2a4 x1 " x2 ,

!x2 = a3u2 /!2 + a2a4 x1 " x2 " a5 x2 " x3 ,

!x3 = a5 x2 " x3 " a6 x3 "!7 " #,
y1 = x1, y2 = x2.

     (31) 

The equations (31) constitute a modified model of 
the well-known example of three-tank system (Figure 
1). The system consists of three consecutively united 
tanks with areas of the cross-section !1 , !2 , and !3 . 
The tanks are linked by pipes with areas of the cross-
section !4  and !5 . The liquid flows into the first and 
the second tanks and follows from the third one 
through the pipe with area of the cross-section !6  
located at height !7 ; !8  is the gravitational constant. 
The levels of liquid in the tanks are x1 , x2 , and x3 , 
respectively. Assume for simplicity that 
a1 = a2 = ... = a6 =1,  !7 = 0 . 

 
Figure 1: Three tank system. 

Clear, F = 0  in the model (31). To overcome this 
difficulty, transform (31) by entering formal addends 
!(x1 ! x2 )+ (x1 ! x2 ),  
((x1 ! x2 )! (x2 ! x3))! ((x1 ! x2 )! (x2 ! x3))  and 
(x2 ! x3 ! x3)! (x2 ! x3 ! x3)  in the first, second, and third 
equations, respectively. As a result, the system is 
described by matrices and nonlinearities as follows:  

F =
!1 1 0
1 !2 1
0 1 !2

"

#

$
$

%

&

'
' ,G =

1 0
0 1
0 0

"

#

$
$

%

&

'
' ,

H = 0 1 0
0 0 1

"
#$

%
&'
, L =

0
0
1

"

#

$
$

%

&

'
' ,C =

1 0 0
0 1 0
0 0 1

"

#

$
$

%

&

'
' ,

((x) =

! A1x + A1x

A1x ! A2x ! (A1x ! A2x)

A2x ! A3x ! (A2x ! A3x)

"

#

$
$
$
$

%

&

'
'
'
'

,

A1 = (1!10), A2 = (01!1), A3 = (0 01).
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Assume that Hv = (1 0 0) . One can show that the 
condition (12) is satisfied for k =1  but (14) is not 
satisfied therefore set k = 2 . The matrix (V (2) L(2) )  is of 
the form  

(V (2) L(2) ) =

!3 6 !4 0 1
1 !4 5 1 !2
1 !2 1 0 0
0 1 !2 0 1
!1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0

"

#

$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'

.  

This equation has several solutions, consider the 
first one:  

(R* ! J*1 ! J*2 ) = (1 0 2 !1 0!1 0 1).  

It gives R* = (1 0) ,  

J = !2 1 0
1 0 !1

"
#$

%
&'
, ( = 1 0 1

1 0 0
"
#$

%
&'
.  

Since !C = 1 0 1
1 0 0

"
#$

%
&'
,  then j1 = 2  and j2 =1 ,  

!A =
A2
A1

"

#
$$

%

&
''
= 0 1 (1

1 (1 0
"
#$

%
&'
.  

Clearly, the condition (27) is satisfied, and (26) 
yields the solution A*1 = (0 1 !1 0 0)  and 
A*2 = (0 0 1 !1 0).  

As a result, the model is given by  

 

!xv1 = xv2 ! 2y1 + y2 + u2 + xv2 ! y1 ! y1 ! y2
!(xv2 ! y1 ! (y1 ! y2 ))

= u2 + xv2 ! y1 ! y1 ! y2 ,

!xv2 = !yv + y1 + u1 ! xv2 ! y1 + xv2 ! y1
= !xv2 + u1 ! xv2 ! y1 + xv2
= u1 ! xv2 ! y1 ,

y* = xv1, yv = xv2,

 

The equation for the error e(t)  takes the form  

 

!e(t) =
!K1 0.5(xv2 ! y1)

!1/2

!K2 !0.5(xv2 ! y1)
!1/2

"

#
$
$

%

&
'
'
e(t).  

Set !1 = !2 = "1 , then  

K1 = 2 !
1

2 xv2 ! y1
,K2 =

4(xv2 ! y1)+1
2 xv2 ! y1

! 2.  

Final description of the virtual sensor is given by  

 

!xv1 = u2 + xv2 ! y1 ! y1 ! y2 + K1r,

!xv2 = u1 ! xv2 ! y1 + K2r,
y* = xv1, yv = xv2,
r = y1 ! y*.

      (32) 

Note that the approach suggested in [16] does not 
allow to identify the fault in the first sensor because of 
the condition R*D ! 0  in this case. Since the virtual 
sensor (32) gives identical matrix H 0 , the problem of 
sensor fault identification can be solved for all sensors 
successfully. 

For simulation, consider system (31) and the 
observer (32) with the controls u1(t) =1 , t !1,  
u2 (t) = 0.5 , t ! 5 , !1(t) = "0.3 , t ! 6,  !2 (t) = "0.4 , 
t !10 . Simulation results are shown in Figure 2, where 
the functions x1(t)  and yv(t)  are presented. 

6. CONCLUSION 

In this paper, the problem of virtual sensor design 
has been studied for systems described by linear and 
nonlinear models under the disturbance. The 
suggested approach allows to obtain virtual sensor of 
minimal dimension estimating prescribed components 
of the state vector and insensitive to the disturbance.  

 

Figure 2: Estimation of the functions x1(t)  and yv (t)  
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