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Abstract: The inhomogeneous plastic deformation has important effects on the manufacturing process and the fatigue 
property of mechanical products. To directly and correctly evaluate the deformation inhomogeneity of grain scale under 
cyclic loading, a statistical method is proposed and named as the normalized standard deviation. The method is 
comprised of the following steps: (1) Construct a representative volume element (RVE) of polycrystalline by Voronoi 
tessellation and electron backscatter diffraction, and calculate the grain strain by a constitutive model of crystal cyclical 
plasticity. (2) Deal with grain strain data of RVE by Min-max normalization method. (3) Compute the standard deviation 
of the normalized data as the identification of mesoscopic inhomogeneity. In order to validate the proposed normalized 
standard deviation, the contrastive analyses with the strain contours, the weighted standard deviation and the coefficient 
of variation are conducted at the same conditions of cyclic loading. The results demonstrated that the normalized 
standard deviation was the best as the indication of cyclic plasticity inhomogeneity among the above methods. 
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1. INTRODUCTION 

Polycrystalline metals are generally assumed as 
homogeneous in engineering applications [1], while 
their mechanical behaviors are very inhomogeneous at 
grain scale [2]. Since the shape, size and orientation of 
grains are different from each other [3], strain 
incompatibility will occur between two grains and then 
lead to inhomogeneous deformation [4, 5]. Because 
the inhomogeneous plastic deformation has important 
effect on micro metal forming [4, 5], surface roughness 
[6, 7], fatigue crack nucleation [8-10], and so on, 
correctly evaluating the deformation inhomogeneity at 
grain scale has great significance for improving the 
design theories and manufacturing process of 
products. 

To the best of authors’ knowledge, three methods of 
the strain contour [11, 12], the weighted standard 
deviation [13-15] and the coefficient of variation [16] 
have been widely used to evaluate the inhomogeneous 
deformation under cyclic loading. With the method of 
strain contour, using the picture of strain distribution 
[11] or extracting the grain strain along a selected line 
[12] is to analyze the deformation inhomogeneities of 
materials. This method of describing inhomogeneity is 
easy, but it cannot quantitatively evaluate the evolution 
of the whole inhomogeneities. 
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With the method of weighted standard deviation, the 
governing formulas take the following forms: 
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where nSRVE is the total number of the finite elements 
contained in the SRVE; is the mean strains of the 
SRVE; is, respectively, the strains of the k-th element; 
denotes the volume of the k-th element, and V is the 
total volume of the SRVE. 

The method of weighted standard deviation can 
quantitatively evaluate the inhomogeneity at every time 
of cyclic deformation and is applied to predict the 
low-cycle fatigue life of metals [13, 14]. However, the 
above inhomogeneity at every time cannot be 
compared with each other. It is because the applied 
loading to calculate the grain strain is different at every 
time and the resulting mean strain of grains is also 
different. This is said that the standard deviation cannot 
be applied directly to compare the variation of the mark 
for the general population of different levels [15].  

With the method of variation coefficient [16], the 
governing formulas take the following forms:  
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where n is the total number of the finite elements 
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contained in the SRVE; is the standard deviation of 
stress of the SRVE. is the mean stress of the SRVE; is, 
respectively, the stress of the k-th element. 

The method of variation coefficient can 
quantitatively describe the inhomogeneous 
deformation of the material, and can be used to 
compare the inhomogeneity of the material at any time 
of cyclic deforming. However, once the mean strain as 
the denominator is small, the ratio of the standard 
deviation to the mean strain will increase abnormally 
and lead to the results inaccurate. 

To solve the problems of the above three methods, 
a normalized standard deviation is proposes to 
describe the inhomogeneity of material deformation. 
Firstly, the finite element analysis of crystal plasticity for 
the cyclic behavior of polycrystals in the RVE; Secondly, 
the Min-max normalization method for cyclic plasticity 
data preprocessing, Lastly, calculate the standard 
deviation of the preprocessed data to quantitatively 
describe the heterogeneous of metal deformation. 

2. DESCRIPTION OF INHOMOGENEITY BASED ON 
CRYSTAL PLASTICITY 
2.1. Constitutive Models 

The crystal plasticity model is formulated by Asaro 
and Needleman (1985) and used by Inal et al [17]. A 
total deformation gradient is given as follows [18]: 

F = Fe !F p         (3) 

Where Fe  refers to the deformation gradient 
produced by lattice distortion and rigid rotation, F p

represents the deformation gradient corresponding to 
the uniform shear of the crystal along the slip direction. 

The above equation allows the velocity gradient to 
be divided into two parts. 

L = Le + Lp         (4) 

Le  is the corresponding lattice distortion and rigid 
rotation part. Lp  is the corresponding slip part, among 
them 
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!!"  denotes the shear strain rate on the !  slip 

system. m!  and n!  are the direction vector and the 
normal vector of the !  slip system respectively. The 
plastic part of the velocity gradient can be decomposed 
into a symmetrical part DP

 and an anti-symmetric 

part WP , given by the following formulas: 
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The microscopic deformation in polycrystalline 
materials follows the deformation law of the single 
crystal. Hill, Rice, Asaro and Hutchinson have 
established and developed a plasticity theory for 
describing plastic deformation of the crystal. The 
elastic deformation is determined by the anisotropic 
elastic stress-strain relationship. The plastic 
deformation part is determined by the relationship 
between shear rate and shear stress of all activated 
slip systems. For a rate-dependent inelastic formula, 
which the plastic slip rate for a given slip system follows 
a power law given by [19]: 
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Where !!"  denotes the reference strain rate; ! " is the 

resolved shear stress on the α-slip system and x! is 
backstress; m is the rate sensitivity coefficient; g!  is 
the plastic slip hardening function of the α slip system 
according to: 
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where h!" (# ) are the slip-plane hardening moduli, 
which is given by: 
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where the self hardening modulus h !( )  is obtained 
as: 
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Where h0  is the initial hardening modulus ; !0  is the 

initial critical resolved shear stress; ! s  is the 
saturation value of critical resolved shear stress and γ 
is the accumulated shear strain in all slip systems, 
which is expressed as: 
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The kinematic hardening 
αχ  [20] is: 
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where a is the material constant representing linear 
hardening; c and p are the material constants 
representing nonlinear hardening; e1  and e2  are the 
material constants that regulates the saturation value 
of nonlinear hardening. 

2.2. A Method of Mesoscopic Strain Inhomogeneity 
Description 

Considering the above limits of the strain contours, 
the weighted standard deviation and the coefficient of 
variation, a statistical method is proposed to describe 
the deformation inhomogeneity at grain scale, and the 
method is named as the normalized standard deviation. 
The calculation steps of this method are as follows: (1) 
Min-max normalization method is adopted; (2) The 
standard deviation of the normalized data is computed 
as the identification of mesoscopic strain 
inhomogeneity. 

Firstly, the crystal grain interior stresses and plastic 
strains are calculated on the basis of the crystal 
plasticity model and the user-supplied subroutine 
UMAT implemented in the FE code ABAQUS. 

Secondly, Min-max normalization method is 
adopted to preprocess the plastic strain of every 
element in the RVE under cyclic loading, and the 
normalization equation can be described as the 
following formula [21]: 
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where !
ij

*  and !ij  are the normalized strain value 

and the longarithmic strain tensor, respectively; the 
subscript contained k denotes the k-th element in the 
RVE; !min  is the minimum longarithmic strain and 

!max  is the maximum longarithmic strain of all 
elements. By the min-max data normalization method, 
the strains of all elements become the dimensionless 
data in the range of [0, 1]. 

Lastly, to describe meso-strain inhomogeneity of 
the above elements, the statistical analyses are 
implemented to obtain the mean value and the 
standard deviation of the preprocessed data. The 
governing formulas take the form:  

!̂ij =
1
n

!
ij

*( )
k
!!

ij

*!
"#

$
%&

k=1

n

!
2

, !
ij

* =
!
ij

*( )
kk=1

n

!
n

  (15) 

Where n is the total number of finite elements in the 

RVE; !
ij

*  is the mean value of all normalized strains; 

!̂ ij  is the corresponding standard deviation of !
ij

*  in 

the RVE. 

3. VALIDATION 

3.1. Materials and Experiments 

The used material is ultrafine grained pure copper 
(T2), which is processed by equal-channel angular 
pressing. After 8 passes of equal-channel angular 
pressing, microstructures of the specimens are 
investigated by Electron Backscatter Diffraction 
(EBSD). The inverse pole figures and grain size 
distributions of ultrafine grained pure copper are shown 
in Figure 1. As shown in Figure 1(b), the average grain 
diameter is about 1 µm. 

  
    (a)The grain morphology of the ultrafine-grain pure copper  (b) The distribution histogram of grain size 

Figure 1: The EBSD map of the ultrafine-grain pure copper. 
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To identify the parameters of constitutive model 
based on crystal cyclic plasticity, some uniaxial tensile 
and symmetrical tensile-compressive cyclic loading 
experiments are conducted using a servo-hydraulic 
load frame which has a capacity of±20kN in the axial 
load. The testing system was controlled by a computer, 
and the specimens are shown as Figure 2. For the 
monotonic loading experiments and the 
strain-controlled cyclic loading experiments, a clip-on 
extensometer with a gage length of 12.5 mm and a 
range of ±10% was used for the strain measurement. 
All the experiments were conducted in ambient air. 

3.2. Parameter Identification and Validation of the 
Constitutive Model 

3.2.1. Voronoi Tessellation and Boundary 
Conditions 

The representative volume element (RVE) is used 
to reflect the configuration and size of grain and lattice 
orientation of metal materials. The RVE model is 
constructed by Voronoi tessellation as displayed in 
Figure 2 [14]. The details are as follows: (1) The RVE 
consists of 20! 20! 20= 8,000 C3D8R elements and 
9,261 nodes. (2) The coordinates of grain’s crystal 

nucleus of all the 100 grains are generated by random 
numbers, and then the 8000 units are divided into 100 
grains. The initial crystal orientations of each grain are 
implemented from EBSD to RVE by python software. 

The boundary conditions are shown in Figure 3: The 
bottom plane (x-z) of the RVE is constrained by U2=0, 
the left rear plane (y-z) by U1=0, and the right rear 
plane (x-y) by U3=0, respectively. Then a displacement 
in the y direction is applied on the top plane, where the 
magnitude of the displacement is coincided with the 
experiment. 

3.2.2. Parameter Identification of the Constitutive 
Model 

According to the above experimental conditions, the 
stress-strain curves of uniaxial tensile and the stable 
hysteresis loops under different strain amplitudes 
(0.4%, 0.5%, 0.6% and 0.8 %) are obtained. Then the 
RVE model of 100 grains is fitted by simulating uniaxial 
tensile stress-strain curve (Figure 4) and hysteretic 
curve (Figure 5) with reference to the experimental 
data, respectively. The model parameters are 
determined as shown in Table 1. 

 

Figure 4: The comparison of experiments and simulations, 
the stress–strain curves of ultrafine copper under the uniaxial 
tensile. 

 

Figure 2: The specimens of uniaxial tensile and symmetrical cyclic tensile-compressive experiments. 

 

Figure 3: The boundary conditions of RVE. 
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3.3. Case Analysis and Comparison Among Four 
Methods 

Because the stable hysteresis loops under the 
strain amplitude of 0.8 % is the most representative in 
Figure 5, the symmetrical tensile-compressive cyclical 
experiments under strain amplitude of 0.8 % are 
selected as the case analysis of all above methods. For 
the statistical analyzability of the computed data, the 
second cycle and the third cycle with strain amplitude 
of 0.008 are taken as an example to evaluate the strain 
inhomogeneity. According to statistics, standard 
deviation can be directly used to compare the 
dispersion of fluctuant data only with the same mean 
values. Therefore, the displacements of ±0.005 
moment are taken as the examples. The strain 
inhomogeneity from point A to point H is obtained and 
analyze by the four methods, which can describe the 
inhomogeneous deformation during cyclic loading of 
materials as follows.  

 

Figure 6: The variation of the displacement in the second 
cycle and the third cycle with strain amplitude of 0.008; the 
displacement of ±0.005 is expressed as eight points from A to 
H during the cycling; the displacement of 0 at the end of the 
third cycle is expressed as I. 

 

Figure 5: The comparison of experimental results and simulations, stable stress–strain hysteresis loops under uniaxial cyclic 
deformation with R = −1 with strain amplitudes of 0.4%, 0.5%, 0.6% and 0.8%. 

 
Table 1: Material parameters of ultrafine pure copper constitutive model 
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The strain contours method is used to assessment 
the inhomogeneity of strain distributions by taking the 
point A and point E in Figure 6 as an example, the 
pictures which describe the true strain situation of the 
two points are shown in Figures 7(a) and (b). It can be 
seen that the true strain distribution of the RVE is 
changing during the cycling. We can only roughly 
compare the inhomogeneities of RVE surface, but it is 
difficult to express the interior strain, and to accurately 
quantify the variation of the RVE strain during the entire 
process. 

The remaining three methods can quantitatively 
describe the inhomogeneity of the RVE strain. The 
differences among the calculated data of the three 
methods are too large to be directly compared, so the 
three sets of data are linearly transformed to the value 
range between 0 and 1 as shown in Figure 8. 

It can be seen from Figure 8 that the strain 
inhomogeneities at the displacement of ±0.005 in 
different cycles are in the evolution. The overall trend of 
the inhomogeneities calculated by the strain between 
the normalized and the weighted standard deviation 
methods are similar except only point C and point G, 
but the coefficient of variation method is different from 
the above trend. For example, the values of points D 
and H calculated by the standard deviation method and 
the normalized standard deviation method are 
respectively higher than that of the points C and G, 
while the coefficient of variation method is on the 
contrary. Although Figure 8 provides a preliminary 
comparison of the predictability of the three methods, it 
still does not confirm which method is the best. In order 
to accurately judge the usability of the three methods, 
the compared analyses of the four irregular points C, D, 

 

      (a) The true strain distribution of point A   (b) The true strain distribution of point E 

Figure 7: The true strain distribution of point A and E in Figure 6. 

 

Figure 8: Three methods for describing strain inhomogeneity during cyclic stretching with the amplitudes of 0.005 in the 3rd cycle 
and 4th cycle; the eight points from A to H have the same meaning as in Figure 6. 
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G and H with the other regular points are carried out by 
strain-frequency distribution diagram. 

At first, the strain-frequency distribution diagrams of 
all elements at points D and E of Figure 8 are showed 
in Figure 9(a). The variation range of the element 
strains at point D is larger than that at point E, and the 
peak value of point D is smaller than that of point E. 
Therefore, the deformation inhomogeneity of point D is 
greater than that of point E. Similarly, point H should 
also be higher than point G through the analyses of the 
strain-frequency distribution diagrams in Figure 9(b). 
However, in Figure 7, the deformation inhomogeneities 
of points D and H are smaller than those of points E 
and G calculated by the coefficient of variation method, 
respectively. These are demonstrated that the 
coefficient of variation method is not accurate in 
describing the deformation inhomogeneity. 

Then, the strain-frequency distribution diagrams of 
all elements at points C and G of Figure 8 are showed 

in Figure 9(c). The variation range of the element 
strains at point G is larger than that at point C, and the 
peak value is smaller than that at point C. Therefore, 
the deformation inhomogeneity of point G is larger than 
that of point C. In Figure 8, the deformation 
inhomogeneity of point G are larger than that of point C 
calculated by the normalized standard deviation 
method, but the result of the weighted standard 
deviation method is contrary. It is demonstrated that 
the normalized standard deviation method is more 
accurate than the weighted standard deviation method 
in describing the deformation inhomogeneity. 

4. CONCLUSIONS 

(1) Ultrafine grained pure copper (T2) with grain 
size about 1 µm is taken as experimental materials to 
identify the constitutive model parameters of crystal 
plasticity under uniaxial tensile of quasi-static state and 
symmetric strain cycle loading of different strain 
amplitudes (0.4%, 0.5%, 0.6% and 0.8 %). 

 

     (a) Compare point D and point E in Figure 8       (b) Compare point G and point H in Figure 8 

 

      (c) Compare point C and point G in Figure 8 

Figure 9: True strain-frequency distribution diagram at different points. 
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(2) On the basis of the RVE consisting of a 
polycrystalline aggregation and the crystal plasticity 
theory, the simulations can capture the experimental 
stress-strain hysteresis loops and represent the 
inhomogeneous microstructures evolutions of 
materials. 

(3) A statistical method of mesoscopic 
inhomogeneity description is proposed, which is named 
as the normalized standard deviation. The method is 
comprised of the following two steps: (1) Min-max 
normalization method is adopted to deal with the strain 
of every grain in RVE; (2) The standard deviation of the 
normalized data is computed as the identification of 
mesoscopic inhomogeneity. 

(4) By the contrasts of four methods at the same 
conditions, the proposed normalized standard 
deviation has overcome the limits of the strain contours, 
the weighted standard deviation and the coefficient of 
variation, and can be applied to directly and correctly 
evaluate the deformation inhomogeneity of grain scale 
under cyclic loading. 
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