Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 12 (2025)

Single-Layer 79 GHz Microstrip Patch Array for All-Weather Automotive Radar

DOI
https://doi.org/10.31875/2409-9848.2025.12.03
Published
2025-07-14

Abstract

Advanced driver-assistance systems (ADAS) demand radar sensors that combine centimetre-level resolution, wide angular coverage, and all-weather reliability, yet must fit behind a plastic bumper at automotive cost. This study meets that challenge with a fully self-contained 79 GHz front-end fabricated on a single-layer RO3003 printed-circuit board.

Closed-form cavity models, applied from first principles, yield patch dimensions without iterative tuning. Sixteen patches arranged in a 4 × 4 half-wavelength array deliver 16 dBi broadside gain, 3.2 GHz (−10 dB) impedance bandwidth, and a 33° half-power beam-width, thereby covering the entire 76–81 GHz allocation.

Solving the radar-range equation shows that even under 8 dB km⁻¹ heavy-rain attenuation the sedan detection limit contracts by only 2 m (51 m → 49 m), while motorcycle and pedestrian ranges are virtually unaffected. To our knowledge, this is the first single-layer PCB radar front-end to achieve such performance without empirical tuning, and it offers a clear upgrade path toward imaging radar and highway ACC.

References

  1. S. B. Yeap, X. Qing, and Z. N. Chen, “77-GHz dual-layer transmit-array for automotive radar applications,” IEEE Trans. Antennas Propag., vol. 63, no. 6, pp. 2833-2837, Jun. 2015. https://doi.org/10.1109/TAP.2015.2419691
  2. P. Liu, G. F. Pedersen, and S. Zhang, “Wideband low-sidelobe slot array antenna with compact tapering feeding network for E-band wireless communications,” IEEE Trans. Antennas Propag., vol. 70, no. 4, pp. 2676-2685, Apr. 2022. https://doi.org/10.1109/TAP.2021.3119030
  3. H. Aliakbari, M. Mosalanejad, C. Soens, G. A. Vandenbosch, and B. K. Lau, “79 GHz multilayer series-fed patch antenna array with stacked micro-via loading,” IEEE Antennas Wireless Propag. Lett., vol. 21, no. 10, pp. 1990-1994, Oct. 2022. https://doi.org/10.1109/LAWP.2022.3187764
  4. Q. Chen et al., “A low sidelobe 77 GHz centre-fed microstrip patch array antenna,” IET Microw. Antennas Propag., vol. 17, no. 11, pp. 887-896, Nov. 2023. https://doi.org/10.1049/mia2.12408
  5. A. Shaalan, M. El-Shamy, and M. F. Ahmed, “Analysis and design of 79 GHz patch antenna array for radar applications,” Egypt. Int. J. Eng. Sci. Technol., vol. 43, no. 2, pp. 81-87, 2023.
  6. G. R. Su et al., “79-GHz SIW slot-coupled patch antenna array with low cross-polarization and wide beamwidth,” J. Electromagn. Waves Appl., vol. 37, no. 1, pp. 38-52, Jan. 2023. https://doi.org/10.1080/09205071.2022.2111280
  7. Y. Chen, L. Zhang, Y. He, C. Mao, and S. S. Gao, “A low-cost, quad-beam, dual-polarized, 2-D leaky-wave antenna with wide-angle beam scanning for millimeter-wave applications,” IEEE Trans. Antennas Propag., vol. 71, no. 9, pp. 7342-7353, Sep. 2023. https://doi.org/10.1109/TAP.2023.3296164
  8. J. Sun, L. Wu, R. Li, X. Zhang, and Y. Cui, “A wideband cavity-slotted waveguide antenna for mm-wave automotive radar sensors,” IEEE Antennas Wireless Propag. Lett., vol. 23, no. 12, pp. 4758-4762, Dec. 2024. https://doi.org/10.1109/LAWP.2024.3470126
  9. C. Cui et al., “A 77-GHz FMCW radar system using on-chip waveguide feeders in 65-nm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 11, pp. 3736-3746, Nov. 2015. https://doi.org/10.1109/TMTT.2015.2477343
  10. C. A. Alistarh et al., “Sectorized FMCW MIMO radar by modular design with non-uniform sparse arrays,” IEEE J. Microw., vol. 2, no. 3, pp. 442-460, Mar. 2022. https://doi.org/10.1109/JMW.2022.3165401
  11. R. J. Hogan, D. Bouniol, D. N. Ladd, E. J. O’Connor, and A. J. Illingworth, “Absolute calibration of 94/95-GHz radars using rain,” J. Atmos. Oceanic Technol., vol. 20, no. 4, pp. 572-580, Apr. 2003. https://doi.org/10.1175/1520-0426(2003)20<572:ACOGRU>2.0.CO;2
  12. U. J. Lewark et al., “Experimental validation of heavy rain attenuation in E-band based on climate wind tunnel measurements at 77 GHz,” CEAS Space J., vol. 7, pp. 475-481, Dec. 2015. https://doi.org/10.1007/s12567-015-0100-6
  13. F. Norouzian et al., “Experimental study on low-THz automotive radar signal attenuation during snowfall,” IET Radar Sonar Navig., vol. 13, no. 9, pp. 1421-1427, Sep. 2019. https://doi.org/10.1049/iet-rsn.2018.5644
  14. Y. Izumi and M. Sato, “Evaluation of atmospheric phase-correction performance in 79 GHz ground-based radar interferometry: A comparison with 17 GHz ground-based SAR data,” Remote Sens., vol. 15, no. 16, Art. 3931, Aug. 2023. https://doi.org/10.3390/rs15163931
  15. N. Munte, A. Lázaro, R. Villarino, and D. Girbau, “Vehicle occupancy detector based on FMCW mm-wave radar at 77 GHz,” IEEE Sensors Journal, vol. 22, no. 24, pp. 24504-24515, Dec. 2022. https://doi.org/10.1109/JSEN.2022.3218454
  16. M. Dikshtein, O. Longman, S. Villeval, and I. Bilik, “Automotive radar maximum unambiguous velocity extension via high-order phase components,” IEEE Trans. Aerospace Electron. Syst., vol. 58, no. 1, pp. 743-751, Feb. 2022. https://doi.org/10.1109/TAES.2021.3103262
  17. Y. Zhang and J. Mao, “An overview of the development of antenna-in-package technology for highly integrated wireless devices,” Proc. IEEE, vol. 107, no. 11, pp. 2265-2280, Nov. 2019. https://doi.org/10.1109/JPROC.2019.2933267
  18. Y. P. Zhang, “Antenna-in-Package design for wireless system-on-a-chip,” in Antenna and Array Technologies for Future Wireless Ecosystems, 1st ed. Hoboken, NJ, USA: Wiley, 2022. https://doi.org/10.1002/9781119813910.ch5
  19. C. A. Balanis, Antenna Theory: Analysis and Design, 4th ed. Hoboken, NJ, USA: Wiley, 2016.
  20. J. R. James and P. S. Hall, Eds., Handbook of Microstrip Antennas, vol. 1, IEE Electromagn. Waves Ser. 28. London, U.K.: Peter Peregrinus Ltd., 1989. https://doi.org/10.1049/PBEW028G
  21. M. A. Richards, Fundamentals of Radar Signal Processing, 2nd ed. New York, NY, USA: McGraw-Hill, 2014.
  22. H. Winner, “Automotive radar,” in Handbook of Driver Assistance Systems: Basic Information, Components and Systems for Active Safety and Comfort, H. Winner, S. Hakuli, F. Lotz, and C. Singer, Eds. Cham, Switzerland: Springer, 2016. https://doi.org/10.1007/978-3-319-12352-3
  23. M. I. Skolnik, Introduction to Radar Systems, 2nd ed. New York, NY, USA: McGraw-Hill, 1980.
  24. J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, “Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 3, pp. 845-860, Mar. 2012. https://doi.org/10.1109/TMTT.2011.2178427