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Abstract: Quarrying and processing of granite produce large amounts of waste residues. Besides being a loss of 
resources, improper disposal of these wastes results in pollution of the soil, water and air around the dumpsites. The 
main components of granite waste are quartz, feldspars and a small amount of biotite. Due to its hard and dense texture, 
high strength, corrosion resistance and wear resistance, granite waste may be recycled into building materials, 
composite materials and fine ceramics, effectively improving their mechanical properties and durability. By using the 
flotation process, high value-added products such as potash feldspar and albite may be retrieved from granite waste. 
Also, granite waste has the potential for application in soil remediation and sewage treatment. This review presents 
recent advances in granite waste reutilization, and points out the problems associated with its use, and the related 
countermeasures, indicating the scale of high value-added reutilization of granite waste. 
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1. INTRODUCTION 

As a typical decorative architectural material, 
granite is an acidic volcanic rock formed by the 
condensation of magma in deep underground layers. 
Some granites have been metamorphosed into gneiss 
or migmatite. The main mineral is quartz, together with 
small amounts of anorthite, microcline, mica, 
hornblende and pyroxene, and secondary minerals 
(e.g., tourmaline, apatite, zircon, garnet and 
magnetite). Granite usually has a light color, but may 
become gray, pink or orange depending on the content 
of feldspar and other minerals [1]. Granite is widely 
distributed in large reserves around the world; the 
major producers of granite are China, Brazil, India, 
South Africa, Spain, Finland, Norway and the U.S.A. In 
the past decade, China’s granite exports have 
increased steadily, and the disposal of granite 
processing waste has become a severe environmental 
challenge [2]. 

During the excavation of granite and subsequent 
mechanical processing, some cannot be used due to 
blasting damage, cracks and defects. Granite 
processing factories produce tens of millions of tonnes 
of waste residues, 40 percent of which is derived from 
the cutting and polishing processes [3]. The impact of 
granite waste on the environment is threefold: (1) 
marginally useful scrap generated during quarrying and 
processing, which is randomly discarded in farmlands 
and rivers, causing the pollutions of soils and water 
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resources; (2) dust generated from the cutting and 
polishing may be inhaled, causing lung damage [4]; 
and (3) cutting coolants (mineral oil, alkaline additives 
and surfactants) to reduce the wear on cutting saws 
and to reduce noise pollution are not readily 
precipitated and are strongly adhesive. Coolant 
discharge containing granite sludge pollutes farmland 
and rivers. Contamination of soils by granite waste 
permanently alters its texture, pH, redox potential and 
conductivity, reducing moisture and organic matter 
content. In addition, the build-up of heavy metals from 
this source leads to the deterioration of soil quality [5]. 

At present, disposal of granite wastes is frequently 
treated in simple accumulation or landfill, and its 
reutilization is relatively low [6]. Figure 1 shows the 
extent of reutilization of granite waste in construction 
materials in various countries [7]. It is primarily used as 
aggregates, fillers or additives in construction 
materials. It does not adversely affect the product 
performance, but its economic value is low and 
utilization is limited accordingly. This review 
systematically introduces the status of granite waste 
reutilization and analyzes the problems and their 
countermeasures, thus, laying the foundation for 
sustainable development of the granite industry. 

2. STATUS OF GRANITE WASTE REUTILIZATION 

2.1. Green Building Materials 

2.1.1. Cements 

As indispensable cementitious materials, cements 
are extensively applied globally in modern housing and 
infrastructure. Cement production is one of the main 
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sources of greenhouse gas. The production of 1 tonne 
of cement emits 1 tonne of CO2, and accounts for 
about 7 percent of total global emissions. Granite 
waste is frequently used to replace part of the raw 
materials in cement production, which helps to reduce 
CO2 emission [7]. Because the active silica in granite 
waste is very similar to the content in cement, it can be 
directly used in the production of ordinary Portland 
cement without any pretreatment [8]. The hydration 
reaction produces calcium silicate hydrate (C-S-H) gel 
and layered double hydroxides (LDH). The content of 
C-S-H gel increases with time, which improves the 
durability of cement [9] and reduces the CO2 emission 
in the hydration reaction [10]. Granite powder plays an 
important role in forming a dense microstructure, 
improving the packing density of particles and reducing 
porosity, thus increasing the compressive strength of 
fly ash magnesium oxychloride cement [11]. 

When cement is used in oil well concreting material, 
granite waste is used to replace part of the silica fume, 
increasing the compressive and tensile strengths of the 
concrete by 5.7% and 39.3%, respectively, and 
decreasing its permeability and porosity by 64.7% and 
17.9%, respectively [10]. The use of granite waste to 
partly replace the cement content has been found to 
improve the anti-corrosion performance of the 
concrete. Reports of controlled experiments indicate 
that it also has higher resistance to corrosion, frost and 
abrasion [12, 13]. Soaking in a sulfuric acid solution 
produces ettringite and precipitates gypsum in the 
pores, which increases the corrosion resistance of 
concrete components [14]. With a dense matrix in 
concrete, the expansion of concrete containing granite 
waste was reduced by 38%. The aluminate in granite 
waste reacts with chlorides to form chloroaluminate, 
increasing chloride resistance by 70% [15]. 

Granite waste can be used to replace fine 
aggregate in the cement mortar. Compared with the 
traditional cement mortar, the difference in mechanical 
properties is very small, and conforms to European 
standards [16]. When 30% and 40% granite waste 
replace fine aggregate, the water content of cement 
mortar is reduced by 7% and 3%, respectively. The 
lower water content helps to improve the mechanical 
properties of the mortar, and both the tensile strength 
and bonding strength are increased by 23% [17]. 
Marmol et al. [18] studied the role of granite waste in 
cement mortar and found that the addition of granite 
waste increases its compressive strength. The Fe2O3 in 
granite waste calcined at 700–900°C is converted to a 
reddish color. In this way, colored cement mortar can 
be prepared without affecting the compressive 
strength. 

Refined granite waste improves the densification of 
the concrete and reduces its porosity. For a setting 
time of 7 to 28 days, the porosity and water absorption 
of all the tested cement mortars decreased with 
increasing setting time, and the bulk density increased 
with increased setting time [19]. The hydration product 
fills the pores in the mortar, thereby improving the 
compressive strength of the concrete after setting. The 
filling effect of granite waste produces a lower porosity 
matrix, which inhibits acid intrusion and improves its 
corrosion resistance. However, it was found that 
excessive substitution by granite waste in the mortar 
matrix leads to lower density and increased porosity, 
and reduces the compressive strength and corrosion 
resistance [20]. 

Using granite waste to simultaneously replace part 
of both sand and cement in mortar improves its 
strength and fluidity. After setting, it has a better overall 

 

Figure 1: Reutilization of granite waste in construction materials in different countries. 
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performance, with a compressive strength up to 66.2 
MPa [21]. In another study, nanosized granite powder 
was used to replace 5% of the cement and 10% of the 
sand in the mortar. The simultaneous replacement 
increased the hydration rate of the cement mortar, 
reduced its porosity and increased its 28-day 
compressive strength [22]. 

2.1.2. Concrete and Geopolymers 

Concrete is the most important building material in 
civil construction works and other infrastructure. The 
fine aggregate in concretes accounts for about 35% of 
its volume. River sand is a commonly used natural fine 
aggregate, but is faced with increasingly depleted 
resources and strict restrictions in environmental 
protection regulations. The main minerals in granite 
waste are quartz and feldspars, which have 
characteristics of granulation, compactness and water 
absorption similar to river sand. The addition of granite 
waste into concrete has been found not to affect the 
concrete structure or the formation of hydration products 
[23]. Taji et al. [24] studied the mechanical properties of 
concretes containing granite waste and its effect on the 
corrosion of steel reinforcing bars. The addition of 10% 
granite waste distinctly improved corrosion resistance. 
When 20% of granite waste was added, the mechanical 
properties of concrete were not affected, indicating that 
granite waste is a high-quality aggregate in the 
concretes. 

(1) Compressive Strength 

Compared with natural fine aggregate, coarse 
granite powder (CGP) has a rougher surface, and the 
angle and geometry of the particles vary greatly. The 
specific particle surface produces higher friction in 
cement slurry, implying that it is suitable as a concrete 
aggregate. Figure 2 compares the compressive 
strength of concretes with added granite powder for 
different setting times. Compared with the control 
sample (CM), the addition of granite powder basically 
did not affect the compressive strength of concretes, 
which in fact increased with longer setting times. The 
optimal replacement amount was found to be 10% [25]. 

Due to the large surface area of fine granite 
particles, an excessive addition of granite powder 
increases the amount of cement binder, resulting in 
poor density and reduced compressive strength [26]. 
After the addition of granite powder, the C-S-H phase 
in the concrete increases, while the calcium hydroxide 
(CH) phase decreases. The increased density and 
reduced porosity of the concrete are favorable for 

increasing the compressive strength and reducing 
water absorption [27]. 

 

Figure 2: Variation of compressive strength of granite-added 
concretes vs. setting time. 

When marble and granite powders are used as the 
concrete mineral admixture, the fine particles fill the 
pores and effectively disperse the cement, producing 
concrete with stronger cohesion and denser 
microstructure, which improves its compressive 
strength [28]. The granite sludge generated by the 
gang saws contains worn steel particles. The dense 
mixture of steel particles and granite particles contains 
15% Fe2O3 and up to 5% CaO, which can be used to 
prepare ultra-high-performance concrete [29]. It has 
been found [30] that the addition of steel fibers to self-
compacting concrete with granite significantly improves 
its compressive strength, exceeding 55 MPa with 0.2% 
added steel fibers. Likewise, increased compressive 
strength of concrete with granite powder was achieved 
by partially replacing cement and fine aggregate with 
10% wollastonite fibers [31]. 

(2) Flexural Strength 

Granite waste has been used to replace fine sand in 
the production of self-compacting concrete [32], 
increasing the flexural strength by 5.65% after 28 days 
setting time. This is due to the rough surface of the 
granite particles, which causes rigid accumulation 
between cement and aggregate. The granite particles 
provide a hard filling in the concrete, thereby improving 
the flexural strength. For a water: cement ratio of 0.30–
0.40, the 28-day flexural strength of the mixture with 
25% granite waste was the largest. The increase in 
flexural strength is due to the enhanced adhesion 
between the aggregate and the cement paste [33]. Due 
to high content of C-S-H in the hydration products, the 
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flexural strength of the modified concrete was 20–50 
MPa, which is 15%–60% higher than that of ordinary 
concrete [27]. 

Patil et al. [34] used granite waste and copper slag 
to replace 30% of the river sand in concrete. After 28-
days the flexural strength of the concrete increased by 
5%, but as the replacement increased, too much water 
remained in the concrete and increased the porosity, 
and both the compressive strength and flexural 
strength were reduced. When the fine aggregate was 
composed of river sand and granite waste, the early 
flexural strength of the concrete was relatively low, but 
it increased by 3.6, 9.5 and 13.4% with the setting 
times of 28 days, 56 days and 90 days, respectively 
[35]. 

(3) Durability 

Concretes using granite waste as fine aggregate 
were subjected to chloride ion penetration experiments 
[25]. Higher aggregate replacement resulted in greater 
chloride permeability. This was attributed to poor 
compaction, resulting in a high-porosity microstructure 
and discontinuous pore system. Nevertheless, the 
permeability of concrete containing less than 15% of 
granite waste was substantially the same as for the 
control group. After setting for 180 days and 365 days, 
the concretes were soaked in Na2SO4 and MgSO4 
solutions for the acid resistance experiments. The 
compressive strength of the concrete with granite 
waste was largely lost; this became more serious with 
increase of replacement ratio. The use of petroleum 
ether (hydrocarbon) to chemically bleach the granite 
waste to remove the organic matter improved the 
sulfate resistance of concrete. 

Granite waste was substituted for river sand to 
prepare autoclaved aerated concrete. An acid erosion 
experiment was carried out in 5% HCl and 5% H2SO4 
solutions. The compressive strength loss in HCl 
solution was 19.44% and 13.14% for the control and 
20% for the replacement samples. The compressive 
strength losses in H2SO4 solution were 27.88% and 
12.82%, respectively, indicating that granite waste 
aggregate effectively improves the acid resistance of 
concretes [36,37]. The water absorption of concretes 
was tested using magnetized water with higher water 
molecular activity, and it was found that concrete with 
granite waste had a reduced water absorption and 
significantly improved compressive strength and acid 
erosion resistance [38]. The addition of soda lime glass 
powder increases the concrete density, reduces its 

water permeability and water absorption, and further 
improves its acid resistance [39]. 

As a cementitious material, geopolymers have 
excellent mechanical strength, heat resistance and 
favorable stability in acidic and alkaline environments. 
The main component of granite waste is silicon-
aluminum oxide, suitable for the production of 
geopolymers by the alkali activation method. Granite 
waste reacts with the alkaline activator (sodium silicate, 
or water glass) to form a geopolymer binder mainly 
composed of sodium aluminosilicate hydrate (N-A-S-H) 
gel. Depending on the amount of Na2O and curing time 
in the alkali activation process, the compressive 
strength of geopolymer mortar reaches up to 40.5 MPa 
[40]. When the activator solution consists of 18% 
Na2SiO3, 7% NaOH and 75% distilled water, the 
silicon-based geopolymer from granite waste has a 
maximum compressive strength of 22 MPa after curing 
at 220°C for 2 h [41]. 

Extending the curing time improves the flexural 
strength and crack resistance of granite waste 
geopolymer. The content of granite waste and water 
glass has the greatest impact on the flexural strength; 
the alkali content has little effect on the flexural 
strength of the geopolymer mortar [42]. When 
metakaolin and blast furnace slag were used as the 
starting materials for geopolymer synthesis, the 
bonding strength between the geopolymer and the 
granite aggregate decreased with increase in the 
activator modulus and the liquid/solid ratio, but it was 
much higher than between cement paste and granite. A 
liquid/solid ratio of 0.35 gives a maximum bonding 
strength of 1.53 MPa [43]. 

When nanosized alumina (Al-0450) and liquid 
hydroxyl functionalized nanotubes (MWCNT-OH) were 
added to granite waste-based geopolymers (GP), they 
were uniformly distributed within the geopolymers to 
form a dense and ductile structure, resulting in 
enhanced mechanical properties and delayed setting 
times for the slurries, as shown in Figure 3 [44]. 

2.1.3. Unfired and Fired Bricks 

Granite powder has been used as part of the fine 
aggregate in the preparation of hollow concrete blocks. 
With a liquid/cement ratio of 0.55 and a fine/coarse 
aggregate ratio of 15%, the prepared blocks meet the 
strength requirements and have good frost resistance 
[45]. For sintered floor tiles and clay bricks, the addition 
of granite waste increases the bulk density and 
mechanical properties [46-48]. This is attributable to 
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the densification by liquid-phase sintering and is 
derived from the low-temperature melting of alkali 
feldspars in the granite waste. 

2.2. Composite Materials 

Composite materials are filled with granite powder 
to improve their mechanical properties and durability. 
For example, in wind turbine blade manufacture, 
composite materials with a density of 1.108 to 1.321 
g⋅cm–3 were prepared by adjusting the addition of 
granite powder without changing the contents of 
polyamide fibers and polyester resin. In air jet erosion 
experiments, the addition of less than 10% granite dust 
had a minor effect on the erosion rate of composites. 
Conversely, the Rockwell hardness increased with 
increased granite powder content: a composite with 5% 
granite dust withstands up to 60 ℃ [49]. In the case of 
decorative construction materials, marble and granite 
powder were added to high-density polyethylene to 
prepare a new type of composite material [50]. The 
flexural strength of the composite increased up to 23.5 
MPa with increasing marble and granite powder 
content. Similarly, a composite material prepared with 
epoxy resin as the matrix and granite powder as the 
reinforcement [51] gave a Vickers hardness and impact 
strength of 22.93 and 42 J⋅m–2, respectively. These 
composites are typical of simple, low-cost 
manufacturing processes. 

Environmentally friendly composites have 
successfully been prepared using acrylonitrile 
butadiene styrene (ABS) and granite powder as raw 
materials [52]. The stiffness and thermal conductivity of 
the composites increased and the elastic modulus 
more than doubled with increasing content of granite 

powder; the flexural strength and fracture toughness 
decreased with the addition of more than 50 wt% 
granite powder. 

To investigate the deterioration of mechanical 
properties, granite powder was modified by stearic acid 
to disperse granite particles in polystyrene composites 
[53]. Although the bending and impact strength of 
composites decreased with increased granite powder 
content, their surface hardness was increased by 
130%. 

Incorporation of granite powder into natural-fiber-
reinforced polyester composites [54] continuously 
increased the tensile, flexural and impact strengths of 
the composites with increase of granite filler content up 
to 15%, then deteriorated due to the agglomeration of 
granite particles. 

Polypropylene has excellent properties such as 
dimensional stability, thermal stability, optical 
properties, flame retardancy and high deformation 
temperature. The addition of granite powder to 
polypropylene was found to reduce the thermal 
expansion coefficient and improve heat resistance of 
the composite material [55]. 

2.3. Sintered Ceramics and Glass-Ceramics 

Sintering in ceramic manufacture usually needs the 
addition of sintering additives. The liquid phase formed 
at the sintering temperature, viscosity and surface 
tension are important factors for selecting sintering 
additives. The chemical composition of granite waste 
contains alkaline oxides and alkaline earth oxides, 
which are suitable as sintering additives [56]. In the 

 

Figure 3: Mechanical strength of granite-based geopolymers with different setting times. (a) tensile strength, (b) compressive 
strength. 
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production of red ceramics, the alkaline oxides in 
granite waste reacts with silica and alumina to form a 
liquid phase, which promotes the densification of the 
ceramic and reduces its porosity [57]. Naga et al. [58] 
reported using granodiorite as a sintering additive. The 
sintered ceramics consist of primary and secondary 
mullites, glass phase and pores. With the addition of 
35% granodiorite, the flexural strength was 41.1 MPa. 
In addition, periclase-forsterite ceramics have been 
sintered from magnesia and granite sludge by a 
temperature-induced forming method [59]. When the 
granite sludge increased from 10 to 40 wt%, the 
forsterite phase increased by up to 78%, and the 
microhardness increased to 7.9 GPa. The forsterite 
was formed by the diffusion of the granite sludge into 
the periclase phase. 

Granite powder has been directly used to prepare 
sintered glass-ceramics. The effects of sintering 
additives on the densification, crystallization and 
flexural strength of glass-ceramics have been 
thoroughly investigated [60]. Boehmite is more suitable 
than silica sol and glass powder for the densification of 
glass-ceramics. At a sintering temperature of 1075°C, 
the bulk density of glass-ceramic is 2.49 g⋅cm–3 and the 
flexural strength is as high as 125 MPa. With 
increasing rate of sintering heating, the densification, 
crystallinity and mechanical properties were all 
completely improved [61]. Figure 4 shows the effect of 
sintering heating rate on flexural strength, Vickers 
hardness and fracture toughness of the sintered glass-
ceramics. When sintered to 1085°C at a heating rate of 
50°C⋅min–1, the main crystalline phase was anorthite 
with a flexural strength of 143 MPa and fracture 
toughness of 2.1 MPa⋅M1/2. 

Pickling asbestos and mullite fiber have been used 
as the reinforcement in the sintering of anorthite glass-

ceramics from granite powder [62]. With increasing 
fiber addition, the bulk density, flexural strength and 
fracture toughness of glass-ceramic first increased and 
then decreased, but the Vickers hardness continued to 
decrease. When 3% pickling asbestos is added, the 
flexural strength reached 144 MPa, with fracture 
toughness of 3.0 MPa·M1/2. In addition, granite powder 
was physically pretreated by magnetic separation to 
remove the iron-containing impurities for the decorative 
aesthetics of sintered glass-ceramics. 

The crystal composition of glazed glass-ceramics 
consists of anorthite, albite and quartz. The surface 
glossiness of glass-ceramics is 82 gloss units (GU), 
and the flexural strength is up to 108.4 MPa [63]. As an 
architectural decorative material, copper-red glass-
ceramics has successfully been prepared from granite 
waste with the incorporation of CuO [64]. The rod-like 
richterite endows excellent mechanical properties to 
glass-ceramics, with a flexural strength of 167.8 MPa 
and Vickers hardness of 7.62 GPa. 

2.4. Recovery of Feldspar Minerals 

Feldspars are important raw materials for the 
ceramic and glass industries, and the non-renewable 
mineral resources are increasingly being consumed. 
Granite waste contains a considerable amount of K-
feldspar and Na-plagioclase, with an average content 
of 28.5% and 39.7%, respectively, making it a potential 
source of feldspar minerals [65, 66]. Beneficiation 
methods recover quartz, albite and potash feldspar 
from granite waste, and remove the colored impurities 
such as mica, iron oxides and ferro-titanium gangue. 
Using a combination of gravity separation and 
magnetic separation to reduce the content of colored 
impurities, the mechanical properties of sintered granite 

 

Figure 4: Effect of heating rate on the mechanical properties of sintered glass-ceramics. (a) flexural strength, (b) Vickers 
hardness and fracture toughness. 
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products are considerably better than natural granite 
[67]. 

Magnetic separation reduces the iron oxide content 
in granites to 0.2%. Froth flotation further removes 
mica and iron-titanium gangue, obtaining a 
feldspar/quartz concentrate with an iron content of 
0.08% and with fewer impurities than magnetic 
separation. The concentrates obtained by both 
methods meet the requirements of the ceramics 
industry [68]. 

Cationic flotation technology has been used to 
separate Na- and K-feldspars from granite, with NaCl 
as the depressing agent to increase the K-feldspar 
grade in the concentrate [69], with recovery rates for 
orthoclase and albite at 70.18% and 28.27%, 
respectively. Figure 5 is a schematic of feldspar 
extraction from granite waste. It is notable that some 
critical raw materials, especially Li-mica and Nb-Ta-Ti 
mineral phases, can be recycled from the 
hydrothermally altered granite using a combination of 
gravity, magnetic and heavy liquid separation [70]. 

2.5. Environmental Protection 

Urbanization leads to extensive changes in the use 
of agricultural land in urban areas, and diazonium 
fertilizers for vegetable plants has accelerated soil 
acidification [71]. The acidic wastewater discharged 
from mining operations is another cause of soil 
acidification [72]. The pH of acidic sandy soil is usually 
less than 4.5, while granite waste is alkaline (pH > 9) 
and can be used as an effective acid soil amendment 
[73]. The acidic environment increases the solubility of 
granite, so that the alkaline cations (Ca, Mg, Na and K) 
on the surface of the silicates are quickly released. It 
can be used as a source of plant nutrients in acidic 
soils. For example, K-feldspar can be used as a high-

efficiency fertilizer following hydrothermal alteration or 
high-temperature calcination [74, 75]. 

Black cotton soil is decomposed black lava, but due 
to its high content of montmorillonite and large soil 
expansion, it cannot be directly used as a construction 
material. The addition of granite waste increases the 
plastic index and maximum dry density of black cotton 
soil; also, the California bearing ratio is increased, 
making it suitable as a road subgrade material [76]. 
Granite waste has also been used as a stabilizer in 
expansive, highly plastic soils. With 70% added granite 
waste, the swelling index of such soils has been found 
to decrease from 58.3% to 11% after curing for seven 
days [77]. 

Granite waste is used in wastewater treatment to 
remove specific pollutants. Adding the fungus 
Aspergillus Niger to granite waste removes phosphate 
ions from wastewater, suggesting a cheap and 
ecofriendly material for phosphate removal [78].  

Iron-rich granite waste in the presence of hydrogen 
peroxide catalytically degrades organic orange dye by 
the solar photo-Fenton process [79]. The dye solution 
is completely decolorized and effectively mineralized, 
achieving 68.7% total organic carbon removal at pH 
3.0. This indicates that granite waste is an efficient 
heterogeneous photo-Fenton catalyst. A mixture of 
granite powder and pine bark compost has a high 
hexavalent chromium (Cr(VI)) adsorption capacity and 
is used in sewage treatment as a permeable reactive 
barrier in groundwater remediation [80]. 

The addition of 15% granite sludge has been found 
to be sufficient to stabilize heavy metals in hazardous 
industrial sludge. The aluminosilicates or silicate matrix 
within the granite sludge transforms heavy metals in 
their insoluble hydroxides or adsorbed in the stabilized 
matrix [81]. 

 

Figure 5: Flowchart of feldspar flotation from granite waste. 
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3. FUTURE OUTLOOK 

Numerous studies have been conducted on the 
reutilization of granite waste. Its reutilization in building 
materials could recycle granite waste in large 
quantities. From the viewpoint of economic value, 
granite wastes are distributed at different processing 
sites, and the transportation cost is not acceptable for 
industrial-scale utilization. Because local governments 
attach much importance to environmental protection 
and mineral sustainability, corresponding policies and 
financial support should be put forward to promote 
cooperation between research institutes and related 
enterprises in exploring novel technologies for the 
scalable and value-added utilization of granite waste. In 
building materials, architectural glass-ceramics is a 
high-grade decorative material that has been 
developed in the past two decades. After colored 
impurities are removed, granite waste can be used to 
produce architectural glass-ceramics in order to 
improve its added value. To explore the utilization 
routes, granite waste can be used as the substitute for 
feldspar minerals, marble processing abrasives  
[82, 83], and soda lime glass raw materials [84]; and so 
on. Such lines of research favor the scalable and 
value-added utilization of granite waste. 
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