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Abstract: Despite significant advances in medical interventions, fatal traumatic hemorrhage remains a leading cause of 
death worldwide. This persistent challenge has driven extensive research and development efforts aimed at creating 
more effective hemostatic agents to control bleeding. While most existing hemostatic agents are organic in nature, 
recent studies have highlighted the promising potential of mineral and synthetic inorganic materials for hemorrhage 
control. These materials demonstrate remarkable properties, such as rapid water adsorption from blood via their porous 
structures, which leads to the local concentration of proteins and cellular elements crucial for clot formation. Additionally, 
their negatively charged surfaces create a favorable environment for the activation of the intrinsic coagulation cascade. 
Although a variety of minerals and synthetic inorganic materials are currently employed as topical hemostatic agents, a 
vast array of emerging classes of inorganic materials remains underexplored. Many of these materials possess untapped 
hemostatic potential, but their properties and mechanisms for controlling bleeding are poorly understood. Moreover, 
synthesizing these materials with the precise characteristics required for effective hemostasis presents significant 
challenges. Recent advances in artificial intelligence (AI) offer a promising avenue to address these hurdles. By 
leveraging the growing availability of large datasets and sophisticated algorithms, AI can identify complex relationships 
within multidimensional systems, such as the synthesis of advanced inorganic materials. This capability is particularly 
critical for materials lacking well-characterized mechanisms or those with implications for hemostasis disorders, such as 
severe bleeding or thrombosis. AI-driven approaches could enable the design of innovative topical hemostatic agents 
capable of rapidly diagnosing and efficiently intervening in life-threatening situations, revolutionizing the field of 
hemorrhage control. 
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1. INTRODUCTION  

1.1. Overview of the Theoretical Principles of the 
Coagulation Process 

The primary objective of this section is to provide 
the reader with a theoretical foundation for the intricate 
coagulation process, primarily drawing upon the 
insights derived from prior works and the expertise 
accumulated by our research group, particularly in the 
application of zeolite materials as hemostatic agents. 
For a more in-depth exploration of these theoretical 
concepts, readers are encouraged to refer to the most 
recent reviews documented in the existing literature [1]. 

Briefly, the basis of the blood coagulation model 
was developed at the beginning of the 20th century, 
describing only the final parts of the coagulation 
process. However, the discovery of the specific 
coagulation components responsible for the generation 
of thrombin occurred only after the 1940s and 1950s 
[2]. It was only in the 1960s that two independent  
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groups introduced a model of blood clotting. This 
consists of a series of steps in which the activation of 
each of the clotting factors leads to the activation of 
another, culminating in an explosion of thrombin 
generation. The cascade model was proposed by 
Macfarlane (1964) [3] and reported in the journal 
Nature, while shortly thereafter, the cascade model 
described by Davie and Ratnoff (1964) [4] was 
published in the journal Science [5]. The coagulation 
cascade involves a sequence of interconnected 
reactions, divided into the extrinsic pathway, in 
response to the contact of blood with extravascular 
tissues, and the intrinsic or accessory pathway, 
involving contact of the blood with a surface other than 
the normal endothelium and blood cells [6]. The 
extrinsic system occurs when the activation of factor 
VII, by tissue factor, produces the activation of factor X. 
Factor III, calcium, and factor VII form a complex that 
acts enzymatically in the presence of phospholipids to 
convert factor X to activated factor X (FXa) [2]. The 
intrinsic system is located within the blood and is 
initiated by the contact activation of factor XII on 
negatively charged surfaces, with subsequent 
activation of other contact components [2]. Kallikrein 
and high molecular weight kininogen (HMWK) can 
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modulate factor XII activation. Kallikrein then 
accelerates the conversion of factor XII to activated 
factor XII (FXIIa). FXIIa acts enzymatically on factor XI 
to activate it, while FXIa operates on factor IX, 
activating it. In turn, FIXa, acting with FVIIIa and 
platelet phospholipids FP3, activates factor X [7]. 
These two pathways converge into a common path, 
which results in the activation of factor X, converting it 
to activated factor X (FXa), forming a small amount of 
thrombin. Thrombin, in turn, acts to convert fibrinogen 
(factor I) into fibrin monomers, which are 
interconnected by activated factor XIII (FXIIIa), forming 
insoluble fibrin polymers. The transformation or 
“stabilization” of soluble fibrin into an insoluble fibrin 
clot is catalyzed by factor XIII, in the presence of 
calcium, where factor XIII, which normally circulates in 
the plasma in the form of an inactive proenzyme, is 
converted to its active form by thrombin [6,8]. The last 
proposed coagulation model is based on cell surfaces, 
with hemostasis requiring activated pro-coagulant 
substances that remain localized at the site of injury, 
for the formation of a platelet and fibrin plug. In this 
new model, the blood clotting process is initiated by the 

exposure of clotting factors located in the bloodstream 
[9]. The Cellular Model of Coagulation was proposed 
by Hoffman and Monroe [10] and suggests that 
coagulation does not occur as a “cascade”, but in three 
overlapping phases: 1) initiation, which occurs in the 
tissue, in the presence of a cellular factor; 2) 
amplification, in which platelets and cofactors are 
activated to set the stage for large-scale thrombin 
generation; and 3) propagation, in which large amounts 
of thrombin are generated on the surfaces of platelets 
[11] (Figure 1). The blood clotting process is initiated by 
exposure of cells that express tissue factor to the 
bloodstream. The tissue factor is present in the 
membranes of cells neighboring the vascular bed but is 
not normally in contact with the blood [9, 12]. 

In the initiation phase, the TF/FVIIa complex (tissue 
factor/activated factor VII) activates FX directly and 
indirectly through FIX, transforming small amounts of 
prothrombin into thrombin, which is still insufficient for a 
sustained thrombin formation process. The interaction 
between TF and FVIIa is a fundamental step for the 
initiation of coagulation [10, 13]. In the amplification 
phase, thrombin, together with blood calcium and 

 

Figure 1: Coagulation cascade. Adapted from Galvez et al. [2, 10, 13]. 
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platelet-derived phospholipid, actively participate in the 
positive feedback process for the activation of factors 
XI, IX, VIII, and V, and especially in accelerating 
platelet activation. Simultaneously, the aforementioned 
factors are attracted by chemotactic mechanisms to the 
platelet surface, where a very important process of 
activation and multiplication rapidly occurs [10]. A small 
amount of thrombin produced by the TF-FVIIa complex 
is essential for amplification but is insufficient for clot 
formation. Thrombin is a very active platelet 
recruitment agent, with positive feedback enabling it to 
also activate factors V, VIII, and XII. Amplification is 
also characterized by the negative feedback system 
involving natural anticoagulants: TFPI (TF inhibitor 
complex), antithrombin, and protein C, which play an 
important role in regulating procoagulation [13]. 

The propagation phase is characterized by the 
recruitment of many platelets to the site of injury, with 
the production of tenase and prothrombinase 
complexes on the surfaces of activated platelets [2,9]. 
FIXa activated during the initiation phase binds to 
FVIIIa on the platelet surface, forming the tenase 
complex. Since FXa is unable to effectively move from 
FT-expressing cells to the activated platelet, more FXa 
must be produced directly on the platelet surface by the 
FIXa/FVIIIa complex [9, 10]. Finally, FXa rapidly 
associates with platelet-bound FVa during the 
amplification phase, resulting in formation of the 
prothrombinase complex, which converts large 
amounts of prothrombin into thrombin. This is 
responsible for the cleavage of fibrinogen into fibrin 
monomers, which polymerize to consolidate the platelet 
plug [9]. The final process, always occurring on the 
surface of the platelet, results in the explosive 
generation of large amounts of thrombin and fibrin [10]. 
Thrombin simultaneously activates FXIII and tissue 
factor pathway inhibitor (TFPI), which positively adds 
stabilizing effects and resistance to plasmin [13]. 
Platelet activation alters membrane permeability, 
allowing the entry of calcium and the release of 
chemotactic substances that attract clotting factors. 
Factor V and phospholipids are released at the same 
time, providing the necessary complement for 
coagulation [13]. 

2. INORGANIC SOLIDS AS HEMOSTATIC AGENTS 

The intrinsic hemostatic mechanism of the human 
body has a limited capacity and may need assistance 
from hemostatic materials or devices for rapid 
hemostasis, particularly in emergency situations, when 

hemorrhage is severe [14]. In general, hemostatic 
materials may be divided into external (local) 
hemostatic materials (including inorganic substances, 
hemostatic peptides/proteins, hemostatic 
polysaccharides, and synthetic polymers) and internal 
(intravenous) hemostatic agents (such as those 
involving fibrin, coagulation factor, and platelets) [15] 
(Figure 2). Hemostatic agents based on inorganic 
materials, including zeolites and clays, have been 
shown to effectively accelerate blood coagulation. 
Compared to organic biomaterials, inorganic 
biomaterials with specific advantages or characteristics 
may be more effective in hemostasis and wound 
healing. Inorganic biomaterials generally exhibit much 
higher surface energy than the organic ones, making 
them hydrophilic or even super-hydrophilic, with good 
biocompatibility, high bioactivity, high absorption of 
blood, promotion of blood coagulation, and release of 
bioactive ions. These features have attracted 
considerable interest, especially because these 
inorganic biomaterials can rapidly absorb water and 
achieve ultra-rapid hemostasis. Furthermore, inorganic 
biomaterials possess various functionalities, such as 
bioactive ion release, photothermal properties, 
magnetothermal properties, photodynamic properties, 
and conductivity, which make them excellent 
candidates for future development [16]. 

Many inorganic biomaterials have been developed 
during the last two decades, including zeolites. A 
zeolite is a crystalline aluminosilicate with a porous 
structure that is highly favorable for the absorption of 
water. This characteristic can assist in increasing the 
local concentrations of platelets and clotting factors. 
The negative surface charge can activate positively 
charged factor XII, triggering an endogenous clotting 
cascade reaction. These special properties resulted in 
the first commercial zeolite hemostatic products being 
introduced as first aid equipment for the U.S. military in 
2002, under the tradename of QuikClot®. In the last two 
decades, other inorganic materials such as 
mesoporous silica materials, graphene oxides (GO), 
graphene/montmorillonite composite sponges (GMCS), 
and graphene-immobilized montmorillonite (MMT) have 
been prepared and their hemostatic properties 
systematically studied [14, 17]. Nevertheless, it is 
important to note that these hemostatic agents based 
on inorganic biomaterials have advantages and 
disadvantages, as widely discussed in the literature. It 
has been pointed out that there are challenges in the 
preparation of active inorganic-based biomaterials with 
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enhanced hemostatic properties, taking into 
consideration both functional and application aspects 
[18]. One possible way forward is to use artificial 
intelligence (AI) in the development of these materials. 

3. ARTIFICIAL INTELLIGENCE (AI) AND MACHINE 
LEARNING (ML) IN MATERIALS SCIENCE  

Artificial intelligence is a branch of computer 
science capable of analyzing complex medical data. Its 
potential to exploit meaningful relationships within a 
data set can be used in diagnosis, treatment, and 
outcome prediction in many clinical scenarios. In the 
pharmaceutical industry, it has facilitated processes of 
drug discovery and development, as well as drug 
repurposing, improvement of pharmaceutical 
productivity, and clinical trials [19-22]. Recent 
advances in artificial intelligence (AI) coupled with 
increased accessibility to large data sets have allowed 
the development of new algorithms and statistical 
methods capable of extracting relationships between 

variables in multidimensional systems [23]. In 
particular, the use of machine learning (ML), a subfield 
of AI that relies on complex mathematical models that 
can effectively “learn” from past data to find complex 
patterns embedded within large data sets, in materials 
science has revolutionized our ability to map intricate 
behavior to process variables, especially in the 
absence of well-understood mechanisms. ML has 
already revolutionized many areas in materials science 
by enhancing our ability to map intricate behavior to 
process variables, especially in the absence of well-
understood mechanisms as is the case with the 
synthesis of molecular sieves [24-27]. Zeolites as 
hemostatic topic agents have been used since the 
beginning of the 21st century. However, the application 
of zeolitic materials in hemostasis was initially limited 
due to the strong exothermic reaction triggered on the 
tissue surface by the adsorption of water molecules 
from the blood, leading to localized burns. To address 
these issues, QuikClot® was replaced by Combat 
Gauze (CG) in 2008, a hemostatic dressing made of 

 

Figure 2: Emerging hemostatic materials. From Li et al. [15]. 
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rayon/polyester gauze embedded with kaolinite 
powder, a layered hydrated aluminosilicate. Combat 
Gauze offered rapid action, high efficacy, and thermal 
safety, becoming the hemostatic dressing of choice for 
the Committee on Tactical Combat Casualty Care 
(CoTCCC). It remains a critical component of 
prehospital first aid as recommended by the American 
Technical Committee on Emergency. Despite its 
advantages, concerns about kaolin detachment and 
potential wound contamination persist, as these could 
increase the risk of distal vascular thrombosis. 

In 2019, advancements in hemostatic technology 
led to the development of a mesoporous zeolite-cotton 
hybrid hemostat, which resolved the exothermic 
reaction issues associated with granular zeolite 
materials and eliminated risks of kaolin powder 
detachment. Building on this innovation, a zeolite-
based hemostatic gauze was FDA- and CFDA-
approved in 2021. This product has been evaluated for 
its effectiveness and safety in a swine model simulating 
gunshot-induced junctional femoral artery hemorrhage. 
Despite the discovery of over ten active components 
capable of promoting coagulation in laboratory 
research, current leading commercial hemostatic 
products are predominantly based on single active 
components, each functioning through specific 
procoagulant mechanisms [28-31]. This limitation 
underscores the need for further innovation in multi-
functional hemostatic technologies and how the 
research and development in AI and ML applied to 
zeolite science [24-27] can advance the development 
of more effective zeolites applied to hemostasis. 
Besides zeolites a plethora of new materials 
discovered by employing AI and ML have been found 
as reported in the work of Cubuk et al. [32], who using 
a state-of-the-art neural network tool called GNoME 
(Graph Networks for Materials Exploration), reported 
the discovery of 2.2 million crystalline structures, with 
around 380,000 of them apparently sufficiently stable 
for the development of next-generation technologies, 
ranging from improved electric car batteries to 
superconductors for ultra-efficient computers as stated 
for the authors of this remarkable study [32].  

Hybrid nanostructures combining biomolecules and 
inorganic nanomaterials represent a rapidly growing 
area of research, with vast potential in bioimaging, 
biosensing, and nanomedicine. Achieving innovative 
applications from these materials requires an in-depth 
understanding of the dynamic interactions at the nano–
bio interface. Building on recent advancements, the 
work published by Pihlajamäki et al. (2024) on the 

GraphBNC framework method introduces a 
computational approach to predict atomic-scale 
interactions between water-soluble gold nanoclusters 
(AuNCs) and critical blood proteins, including albumin, 
apolipoproteins, immunoglobulins, and fibrinogen [33]. 
The methodology integrates graph-based modeling and 
neural networks to estimate interaction strengths at a 
coarse-grained scale. These predictions are refined 
through Monte Carlo structural optimizations and 
subsequently validated with atomic-scale molecular 
dynamics (MD) simulations. By training on extensive 
MD datasets, the framework demonstrates high 
reliability and precision in predicting AuNC–protein 
interactions. Furthermore, this approach is adaptable to 
other biomolecule–nanomaterial systems, provided 
sufficient data is available, and effective coarse-
graining of the nanostructure’s bioactive regions is 
achieved. Combining computational predictions with 
atomistic validation, this methodology lays the 
groundwork for the rational design of hybrid 
nanostructures tailored for biomedical applications. The 
main potential drawbacks of both organic and inorganic 
hemostatic agents include possible blood-borne 
disease, neurotoxicity, and reduction of pH that can 
cause inflammation and hemolysis. Their high swelling 
ability and foreign body reactions may make them less 
effective for patients with thrombocytopenia or 
coagulopathies. Furthermore, they may cause neural 
pain or numbness, cytotoxicity, and exothermic 
reactions [1, 14, 34-37]. The possibility of using the 
remarkable findings of Cubuk et al. [32] and 
Pihlajamäki et al. [33] as a basis for preparation of 
more effective topical hemostatic agents with inorganic 
structures is highly attractive from the perspectives of 
both materials science and medicine. Artificial 
intelligence has already contributed to many advances 
in the pharmaceutical industry, demonstrating its 
potential to address the challenges associated with the 
development of treatments tailored for patients in life-
threatening hemorrhagic situations.  

4. ARTIFICIAL INTELLIGENCE (AI) AND MACHINE 
LEARNING (ML) IN HEMOSTASIS AND 
THROMBOSIS 

The integration of artificial intelligence (AI) and 
machine learning (ML) has profoundly impacted 
various fields of medicine, including hemostasis and 
thrombosis. These technologies excel at processing 
extensive datasets, uncovering intricate patterns, and 
delivering insights that traditional approaches often 
cannot achieve. By utilizing these advanced 
computational tools, researchers and clinicians are 
better equipped to understand the mechanisms of 
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hemostasis and thrombosis, refine diagnostic 
approaches, and improve risk prediction for thrombotic 
and hemorrhagic disorders [38].  

AI has played a pivotal role in advancing our 
understanding of the molecular mechanisms governing 
hemostasis and thrombosis. By analyzing multi-omics 
datasets—such as genomics, transcriptomics, 
proteomics, and metabolomics—AI algorithms have 
identified critical pathways and molecular interactions 
that regulate coagulation and platelet function. For 
example, deep learning models have been applied to 
predict the effects of genetic variants on clotting factor 
activity, shedding light on the genetic basis of bleeding 
and thrombotic disorders [39-42]. Additionally, AI-
driven simulations of the coagulation cascade provide 
insights into the dynamic interactions between 
procoagulant and anticoagulant factors under both 
physiological and pathological conditions, facilitating 
the development of targeted therapies [43-45]. 

In diagnostics, AI has proven transformative, 
particularly in biomarker discovery and the 
interpretation of laboratory tests. By analyzing high-
dimensional data from coagulation assays, flow 
cytometry, and mass spectrometry, AI tools have 
uncovered novel biomarkers with high specificity and 
sensitivity for thrombotic and hemorrhagic risks [46]. 
Machine learning algorithms have optimized laboratory 
protocols, improving the reproducibility and accuracy of 
assays measuring clotting times, platelet activity, and 
fibrinolysis. Furthermore, AI facilitates the integration of 
diverse diagnostic data, including imaging, laboratory 
tests, and electronic health records, to create a holistic 
assessment of a patient’s hemostatic status [47-50]. 

In clinical practice, AI offers powerful tools for 
diagnosing hemostatic disorders and predicting 
outcomes. Machine learning-based risk prediction 
models are widely used to assess the likelihood of 
venous thromboembolism (VTE), disseminated 
intravascular coagulation (DIC), or bleeding events. 
These models incorporate patient-specific data such as 
genetic predispositions, laboratory results, clinical 
history, and comorbidities to generate personalized risk 
scores [38, 51]. Additionally, AI-powered clinical 
decision support systems (CDSS) provide real-time 
recommendations to clinicians, aiding in timely 
diagnoses and optimizing therapeutic strategies. For 
instance, AI has been employed to predict bleeding 
risks in patients receiving direct oral anticoagulants 
(DOACs), enhancing patient safety and outcomes  
[52-56]. 

The profound implications of hemostasis disorders, 
including life-threatening bleeding or clotting, highlight 
the critical need for rapid diagnosis and intervention. 
Artificial intelligence (AI) and machine learning (ML) 
models are emerging as transformative tools in this 
domain, offering the potential to enhance diagnostic 
accuracy, optimize intervention timing, and improve 
overall patient outcomes. In parallel, AI/ML has 
revolutionized materials science, where it has enabled 
the discovery of novel materials by unraveling complex 
relationships between synthesis parameters and 
material properties. The development of next-
generation hemostatic agents presents a challenge that 
could greatly benefit from these tools. Existing 
hemostatic materials, both organic and inorganic, face 
limitations such as cytotoxicity, inflammation, and 
potential inefficacy in patients with coagulopathies. The 
integration of AI/ML into this research can accelerate 
the rational design of hybrid materials with tailored 
properties. By harnessing tools like GNoME and 
GraphBNC, it may be possible to design inorganic 
nanostructures with enhanced biocompatibility, 
stability, and effectiveness in controlling hemorrhagic 
events. These computational strategies could help 
mitigate the drawbacks of current hemostatic agents, 
paving the way for safer and more efficient solutions. 

5. CONCLUSIONS AND PERSPECTIVES 

The development of next-generation topical 
hemostatic agents remains a significant challenge, 
requiring materials that are non-toxic (or minimally 
toxic), free from adverse exothermic reactions, cost-
effective, highly stable, and, most importantly, effective 
for patients with complex conditions such as 
thrombocytopenia or coagulopathies. Existing 
hemostatic agents—both organic and inorganic—face 
critical limitations, including cytotoxicity, inflammation, 
and inefficacy under certain pathological conditions. 
Addressing these limitations necessitates innovative 
approaches to material synthesis and design. Recent 
advancements in machine learning (ML) and artificial 
intelligence (AI), particularly tools like GNoME (Graph 
Networks for Materials Exploration) and GraphBNC, 
provide a transformative opportunity in this field. These 
computational frameworks have already demonstrated 
their ability to revolutionize materials discovery by 
predicting stable and functional nanostructures with 
remarkable accuracy. By leveraging AI-driven 
approaches, it becomes possible to design hybrid 
hemostatic materials with tailored properties, such as 
enhanced biocompatibility, stability, and precision in 
controlling hemorrhagic events. AI/ML integration not 
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only accelerates the rational design and optimization of 
new hemostatic agents but also bridges the gap 
between materials science and clinical application. 
Furthermore, the application of AI in pharmaceutical 
development has already showcased its potential to 
overcome challenges in drug synthesis and 
personalized medicine. Extending this paradigm to the 
synthesis and characterization of novel hemostatic 
materials opens the door to innovative, patient-centric 
solutions for life-threatening bleeding scenarios. By 
harnessing the power of AI/ML, researchers can unlock 
a new generation of hemostatic agents that are safer, 
more efficient, and accessible to both developed and 
underdeveloped regions, ultimately advancing global 
healthcare and improving patient outcomes. 
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