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Abstract: Accurate solar irradiance forecasting is critical for managing solar energy systems in equatorial regions, 
where high solar potential is coupled with significant variability. This study investigates the influence of solar peak energy 
and weather classification features on a Bidirectional Long Short-Term Memory (BiLSTM) model for multi-step Global 
Horizontal Irradiance (GHI) prediction. The research method involved four phases: data preprocessing (including cyclical 
time encoding, lag features, and solar peak extraction), weather classification (pseudo-labelling refined by decision 
trees), BiLSTM-based forecasting with Optuna hyperparameter tuning, and model evaluation using standard error 
metrics. Three configurations were compared: (A) solar peak + weather classification, (B) weather classification only, 
and (C) core meteorological and temporal features without additional inputs. The workflow incorporated cyclical time 
encoding, pseudo-labelling with decision tree refinement, lag feature construction, and Optuna-based hyperparameter 
tuning. Model performance was assessed using MAE, RMSE, MAPE, R², and MASE. Scenario A achieved the lowest 
MAPE (28.74%), whereas Scenario C yielded the smallest MAE (103.59 W/m²) and MASE (0.786). Scenario B 
performed worst with a MAPE of 29.85% and MAE of 105.64 W/m², highlighting the limited standalone value of weather 
classification. Across all scenarios, RMSE values remained within 148–150 W/m² and R² around 0.68, reflecting minimal 
differences in variance explanation. These findings suggest that simpler models can perform as well as or even 
outperform more complex configurations, offering efficiency benefits for operational forecasting. The practical implication 
of these results is that reliable irradiance forecasts can be achieved with simpler BiLSTM configurations, reducing 
computational cost and supporting real-time energy management, PV system sizing, and grid stability in equatorial 
regions. Future work should incorporate satellite imagery and real-time cloud tracking to further enhance prediction 
accuracy. 
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1. INTRODUCTION 

The global transition toward renewable energy (RE) 
sources has gained significant momentum in recent 
years due to rising environmental concerns and the 
depletion of fossil fuels. Among various RE options, 
solar energy stands out as a major contributor, 
particularly in countries with high solar exposure. Many 
nations, including those along the equatorial belt, are 
increasingly adopting solar photovoltaic (PV) systems 
as a sustainable energy solution. In Malaysia—located 
near the equator—solar energy holds great potential 
due to year-round sunlight. However, the intermittency 
and variability of solar radiation, particularly Global 
Horizontal Irradiance (GHI), present challenges in 
ensuring consistent energy generation. Fluctuations in 
GHI caused by cloud cover, humidity, and other 
atmospheric conditions make accurate forecasting 
essential for efficient solar energy management and 
system design. To address these challenges, various 
forecasting techniques have been explored, with 
machine learning (ML) and deep learning (DL) models 
emerging as powerful tools for GHI prediction. 

Pazikadin, Rifai [1] conducted a comprehensive 
review of solar irradiance measurement technologies  
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and the application of Artificial Neural Networks (ANNs) 
for forecasting solar power generation, based on an 
analysis of 87 research articles published between 
2014 and 2019. The study focuses on ANN and hybrid 
ANN systems (e.g., ANN-Wavelet, ANN-GA) used for 
forecasting solar power output, highlighting their 
structure, input parameters (weather and irradiance 
data), and performance compared to traditional 
statistical models. The review finds that ANN-based 
methods, especially hybrid systems, outperform 
conventional models in forecast accuracy, with RMSE 
values often below 10%, and show strong adaptability 
to diverse conditions and data inputs. While ANN 
shows high accuracy, the review notes limitations 
including its dependency on high-quality training data, 
lack of use of time-sequence models like LSTM, and 
limited standardization in evaluation metrics across 
studies, making direct comparison difficult. However, 
one notable limitation in many of the reviewed studies 
is the limited incorporation of time-sequence models, 
such as LSTM, which are well-suited for capturing 
temporal dependencies in solar irradiance data. Given 
that solar GHI (Global Horizontal Irradiance) exhibits 
strong time-dependent patterns influenced by factors 
like time of day and weather dynamics, incorporating 
models that account for these temporal trends is 
essential for improving forecast accuracy.  

Khan, Mazhar [2] compared multiple deep neural 
network models (LSTM, BiLSTM, GRU, CNN-LSTM) 
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with traditional methods (Random Forest, SVR, 
ARIMA) to forecast solar and wind power output using 
meteorological and time-based features such as 
irradiance, temperature, time of day, and humidity. 
Models were tuned using Randomized Search CV, with 
CNN layers extracting spatial features and LSTM 
layers modelling temporal patterns. SHAP (SHapley 
Additive exPlanations) analysis was applied for model 
interpretability, confirming solar angle, irradiance, and 
time as the most influential variables. Results showed 
tuned LSTM models outperforming all others, followed 
by CNN-LSTM, GRU, and BiLSTM, while Random 
Forest and SVR lagged behind. Although accuracy was 
high, computational demands of models like 
CNN-LSTM may limit their use in low-resource 
settings. 

Umaeswari, Sonia [3] explored the integration of IoT 
and machine learning to optimise solar energy 
consumption in a duplex residential building using 
lithium-ion batteries and thermal cooling systems over 
a year-long study. Twenty-one machine learning 
algorithms were tested, with particular emphasis on 
Gaussian Probability models and optimisation 
techniques such as Particle Swarm Optimisation (PSO), 
Grey Wolf Optimisation (GWO), and Moth-Flame 
Optimisation (MFO) to analyse energy usage patterns 
and improve system efficiency. The study achieved up 
to 41.6 kW/month in energy savings, reduced electricity 
bills, extended panel lifespan, and enabled effective 
real-time control via IoT, with GWO emerging as the 
most effective optimisation method. Across these 
studies, incorporating meteorological and time-based 
features enhances forecasting performance, with 
LSTM consistently demonstrating the highest accuracy, 
albeit at the cost of greater computational 
requirements. 

Qing and Niu [4] proposed a deep learning 
approach using Long Short-Term Memory (LSTM) 
networks for hourly day-ahead solar irradiance 
forecasting, utilizing only weather forecast data and 
time features, without relying on historical irradiance 
measurements .The authors design an LSTM network 
to model dependencies across consecutive hours in a 
day, treating the task as a structured output prediction 
problem. Inputs include 9 weather/time features, and 
the model is compared against linear regression, 
persistence, and BPNN (backpropagation neural 
network). The proposed LSTM model outperforms all 
baselines in both accuracy and generalization, showing 
18.34% lower RMSE than BPNN on a two-year dataset 
and 42.9% lower RMSE on a large-scale 11-year 
dataset (compared to BPNN). While the LSTM model 
focuses on predictive accuracy, recent studies have 
extended such models to practical energy applications.  

Zhang [5] develops a novel hybrid machine learning 
model (CEEMDAN-SE-GWO-SVR) to improve the 
accuracy of direct normal irradiance (DNI) forecasts 
and demonstrates its real-world application by 
simulating hydrogen production using a 
photoelectrochemical (PEC) device. The model 
combines CEEMDAN (decomposition), Sample 
Entropy (SE) (clustering), Grey Wolf Optimizer (GWO) 
(hyperparameter tuning), and Support Vector 
Regression (SVR) (prediction) to handle complex solar 
data and enhance predictive robustness. The model 
combines CEEMDAN (decomposition), Sample 
Entropy (SE) (clustering), Grey Wolf Optimizer (GWO) 
(hyperparameter tuning), and Support Vector 
Regression (SVR) (prediction) to handle complex solar 
data and enhance predictive robustness. The hybrid 
model outperformed MLP and LSTM across all 
seasons, achieving an R² of 0.97, RMSE of 43.25, and 
enabling a peak hydrogen production rate of 57.5 μg/s, 
validating both prediction accuracy and real-world 
energy application. 

Although LSTM yields strong forecasting results, its 
performance can be challenged by highly variable and 
unpredictable weather patterns. Clustering techniques 
are recommended to categorize weather patterns prior 
to prediction, allowing models to be trained on distinct 
categories and better capture varying weather trends. 
Chen, Lin [6] proposes a hybrid forecasting model 
combining K-means++ clustering with a CNN-LSTM 
neural network to improve 1-hour-ahead global 
horizontal irradiance (GHI) predictions, based on 
multivariate time-series meteorological data. The paper 
addresses the limitation of static weather-type 
classification in prior models by introducing real-time 
input-side clustering, enabling adaptive model 
selection based on current irradiance patterns. 
Machine learning is applied through four 
cluster-specific CNN-LSTM models, each trained on 
data grouped by K-means++ clustering of GHI 
sequences; this allows better learning of both spatial 
patterns (via CNN) and temporal dependencies (via 
LSTM). Dou, Wang [7] propose a hybrid deep learning 
model to correct day-ahead global horizontal irradiance 
(GHI) forecasts from Numerical Weather Prediction 
(NWP) models under varying weather conditions. The 
framework integrates Deep Clustering (DC), Variational 
Mode Decomposition (VMD), and a Convolutional 
LSTM-based Encoder–Decoder Correction model 
(EDC). DC, implemented with a CLSTM encoder, 
clusters input data by weather condition, enabling the 
training of separate correction models for each cluster. 
VMD enhances feature representation by decomposing 
GHI signals to reduce redundancy, while CNN layers 
within the CLSTM-based encoder–decoder extract 
spatial features and model temporal dependencies. 
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The hybrid approach achieves superior performance, 
reducing RMSE to 75.51 W/m² at Solar Plant 1 and 
outperforming baseline models such as LSTM, SVR, 
BPNN, and newer architectures like TFT, with robust 
results across sunny, cloudy, and overcast scenarios. 
However, limitations include high computational cost 
from cluster-specific training, bias under high-GHI 
conditions (>400 W/m²), and occasional clustering 
errors due to noisy NWP data. The absence of 
satellite/cloud imagery and wind-related features also 
constrains performance, suggesting that incorporating 
such data could further improve forecast accuracy. 

Dou, Wang [8] proposes a hybrid forecasting 
framework (MMDC-MMIF) for day-ahead global 
horizontal irradiance (GHI) prediction, combining deep 
clustering and multi-modal fusion of observed GHI, 
NWP GHI, and ground-based cloud images. The paper 
introduces a multi-modal deep clustering (MMDC) 
method using CNN, LSTM, and VGG/Swin 
Transformer to jointly cluster weather patterns and a 
multi-modal forecasting module (MMIF) to perform GHI 
predictions tailored to those clusters. The MMDC-MMIF 
model achieves the lowest RMSE (29.36 W/m²) and 
highest correlation (99.23%), outperforming all 
baseline models and showing strong robustness 
across sunny, cloudy, and overcast conditions. The 
model's performance still drops under overcast 
conditions, and it doesn't include variables like humidity, 
wind, or rainfall; it also assumes static model retraining, 
requiring future updates for evolving weather patterns. 
LSTM requires significant training time, and the input 
data must be preprocessed. Reducing data 
redundancy can help shorten the training duration.  

Rathore, Gupta [9] proposes a hybrid deep learning 
model called N-FFT-AM-LSTM, combining 
Noise-Assisted Multivariate Empirical Mode 
Decomposition (NA-MEMD), Fast Fourier Transform 
(FFT) for dimensionality reduction, and an 
Attention-based LSTM network to predict day-ahead 
hourly Global Horizontal Irradiance (GHI) for four 
different Indian locations. Most existing models either 
don’t handle multistep GHI forecasting well or suffer 
from computational complexity when using raw 
decomposed components. This paper addresses that 
by combining FFT to reduce redundancy and attention 
mechanisms to improve long-term pattern recognition. 
After decomposing time-series data into Intrinsic Mode 
Functions (IMFs) using NA-MEMD and reducing their 
number with FFT, the resulting five frequency-based 
granularities (HIGH1, HIGH2, HIGH3, MEDIUM, LOW) 
are each modeled by AM-LSTM networks that prioritize 
important time-step features. The proposed model 
outperformed benchmark models like Random Forest, 
LSTM, and even NA-MEMD-LSTM, achieving RMSE 

as low as 51.89 W/m² and MAPE below 10% for over 
60% of predictions. It also reduced training time by 
nearly 59% compared to full decomposition models. 
Additionally, outlier data should be identified and 
processed during preprocessing to improve model 
performance.  

Pattnaik, Bisoi [10] introduces a hybrid forecasting 
model named IF-CEEMDAN-LSTM-REDRVFLN, which 
integrates Isolation Forest (IF) for outlier removal, 
CEEMDAN for signal decomposition, and a 
combination of stacked LSTM and REDRVFLN 
(Recurrent Ensemble Deep Random Vector Functional 
Link Network) to predict 30-minute and 1-hour ahead 
solar irradiance (DHI) data. Previous methods often 
lack effective handling of outliers, non-stationary 
signals, and temporal dependencies in solar data. 
Many models either neglect decomposition or apply 
simple neural networks that fail to generalize on 
complex and noisy solar datasets. The model uses a 
four-layer stacked LSTM to capture temporal patterns 
and long-term dependencies, and then replaces the 
dense output layer with a REDRVFLN, which uses 
randomized neurons with local recurrence for faster, 
more generalizable forecasting. It is preceded by IF to 
detect outliers and CEEMDAN to break signals into 
clean components (IMFs). While the model shows 
superior performance, it relies heavily on complex 
preprocessing (IF + CEEMDAN), does not use cloud 
imagery, and its performance may be impacted in 
extremely low irradiance or weather-unstable regions. 
Hyperparameter tuning for LSTM layers is also 
resource-intensive. 

Hyperparameter tuning of LSTM layers is essential 
for improving accuracy, as different input data may 
require distinct parameter settings. Wang, Yan [11] 
proposes a new day-ahead GHI prediction model that 
uses multi-feature perspective clustering (MFPC), 
combining both time-domain and frequency-domain 
features. It clusters historical days by weather type and 
trains weather-specific BiLSTM sub-models, then 
improves prediction further using a Bayesian 
probabilistic reconstruction model (FCM-VAE). 
Previous studies on solar irradiance prediction have 
not extensively explored the inclusion of daily solar 
peak energy. 

Table 1 summarizes the features employed across 
the various machine learning models for solar 
irradiance prediction. The majority of these models 
consistently utilize core meteorological variables such 
as time, Global Horizontal Irradiance (GHI), humidity, 
and temperature. These features are widely recognized 
for their strong correlation with solar radiation and have 
been shown to significantly enhance prediction 
accuracy. Among these, GHI and temperature often 
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serve as primary predictors due to their direct 
relationship with solar energy generation patterns. 
Cloud opacity is included in approximately half of the 
reviewed models, reflecting its moderate importance in 
capturing short-term fluctuations caused by varying 
cloud cover. While cloud data can enhance temporal 
accuracy, its effectiveness is often limited by the 
availability and resolution of the input data. On the 
other hand, features such as rainfall and wind speed 
are less frequently adopted, appearing only in a small 
subset of studies. This may be due to their indirect 
influence on irradiance or the added complexity they 
introduce without a proportional gain in model 
performance. 

Daily peak solar irradiation is often underutilized in 
solar energy prediction models. However, Alizamir, 
Shiri [13] employed daily solar irradiation data to 
estimate solar generation yield, demonstrating that 
accurate prediction of daily solar radiation using 
advanced machine learning models—particularly the 
wavelet long short-term memory (WLSTM) 
method—plays a critical role in optimizing solar energy 
generation and management. In the context of solar 
system design, peak power analysis has been 
effectively applied to estimate the number of solar PV 
modules required. When integrated with daily energy 
consumption data, this approach enables more 
accurate system sizing to meet household energy 
demands [14]. Furthermore, the need to improve the 
estimation of daily peak solar radiation has been 
identified as a promising direction for future research 
aimed at enhancing prediction accuracy [15]. 

Building on these insights, this study aims to 
investigate the impact of incorporating solar peak 
energy and weather classification on forecasting 
accuracy using a Bidirectional Long Short-Term 
Memory (BiLSTM) framework. Additionally, the study 

examines the effect of data clustering on prediction 
performance. To achieve this purpose, the study (1) 
preprocesses and structures solar and meteorological 
data with cyclical time encoding and lag feature 
construction, (2) develops weather classification 
through pseudo-labelling and decision tree refinement, 
(3) implements BiLSTM forecasting models under three 
different feature configurations, and (4) evaluates their 
predictive performance using Mean Absolute Error 
(MAE), Root Mean Square Error (RMSE), Mean 
Absolute Percentage Error (MAPE), coefficient of 
determination (R²), and Mean Absolute Scaled Error 
(MASE). The novelty of this study lies in the 
incorporation of daily solar peak energy and refined 
weather classification as input features for 
BiLSTM-based solar irradiance forecasting, and in 
systematically comparing their contributions across 
different scenarios. Ultimately, the findings aim to 
provide insights for improving the efficiency and 
practicality of solar energy forecasting systems in 
equatorial regions. 

2. METHODOLOGY 

The overall methodology of this study is organized 
into four main phases, namely data processing, 
weather classification, BiLSTM-based forecasting, and 
model evaluation and reporting. Figure 1 shows the 
research flow chart and describes the activities in each 
phase. Each phase is carefully structured to prepare, 
transform, and utilize solar and meteorological data in 
order to achieve accurate predictions of Global 
Horizontal Irradiance (GHI). 

The first phase involves comprehensive data 
preprocessing to improve both the quality and 
relevance of the input data. Only data collected 
between 7:00 a.m. and 7:00 p.m. is retained, 
corresponding to the hours when solar radiation is most 

Table 1: Features of Various Machine Learning Models for Solar Irradiance Prediction 

  Time Irradiance Humidity Temperature Rainfall Cloud 
Opacity 

Solar Peak 
Energy  Wind Speed 

Umaeswari, Sonia [3] ✗ ✔ ✗ ✔ ✗ ✗ ✗ ✗ 

Jeon, Yeon [12] ✗ ✔ ✔ ✔ ✗ ✗ ✗ ✗ 

Chen, Lin [6] ✔ ✔ ✗ ✔ ✗ ✔ ✗ ✗ 

Dou, Wang [8] ✔ ✔ ✗ ✗ ✗ ✔ ✗ ✗ 

Qing and Niu [4] ✔ ✗ ✔ ✔ ✔ ✔ ✗ ✔ 

Zhang [5] ✔ ✔ ✔ ✔ ✔ ✔ ✗ ✔ 

Dou, Wang [7] ✔ ✔ ✔ ✔ ✗ ✔ ✗ ✗ 

Pattnaik, Bisoi [10] ✔ ✔ ✗ ✗ ✗ ✗ ✗ ✗ 

Khan, Mazhar [2] ✔ ✔ ✔ ✔ ✗ ✗ ✗ ✔ 

Wang, Yan [11] ✔ ✔ ✔ ✔ ✗ ✗ ✗ ✗ 
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significant. This selective filtering helps to reduce noise 
and ensures that the model focuses on meaningful 
patterns related to daylight hours. To help the model 
interpret temporal features, time is encoded using sine 
and cosine transformations, which preserve its cyclical 
nature. In addition to time-related processing, solar 
data is analyzed to identify the daily peak energy, an 
important feature in understanding solar performance. 
Weather-related variables such as cloud opacity, 
relative humidity, and GHI are also visualized using 
histograms and other exploratory analysis tools. This 
analysis supports feature selection and model design 
decisions in later phases. 

In the second phase, the focus shifts to weather 
classification, which is conducted through a two-step 
process. The first step involves rule-based 
pseudo-labelling, where daily weather characteristics 
are summarized using key metrics. These include the 
total precipitation rate and the mean values of cloud 
opacity and relative humidity. Based on these 
aggregates, initial weather types are assigned as 
sunny, cloudy, or rainy using predefined classification 
rules. In the second step, a decision tree classifier is 
trained to refine these labels. Selected features such 
as GHI, diffuse horizontal irradiance (DHI), and air 
temperature are used to train the model. The dataset is 
divided into training and testing sets, and the classifier 
is built with a controlled depth to avoid overfitting. The 
predictions from the decision tree model then replace 
the initial pseudo-labels, resulting in a final weather 
type feature that is more consistent and data-driven. 

The third phase involves the construction of a GHI 
forecasting model based on Bidirectional Long 
Short-Term Memory (BiLSTM) networks. The weather 
type labels from the previous phase are encoded using 
a label encoding technique to ensure compatibility with 
the input format of the neural network. Temporal 
dependencies are emphasized by introducing lag 
features, which allow the model to capture the 
sequential relationships across time steps. Feature 
scaling is applied to normalize the input variables, and 
the dataset is organized into several categories 
including general features, solar peak values, GHI, and 
weather type. The forecasting model consists of an 
input layer followed by two stacked Bidirectional LSTM 
layers, which process temporal sequences in both 
forward and backward directions. This structure is 
followed by a dropout layer to reduce overfitting and a 
dense output layer that generates predictions for 
thirteen future GHI values. To further enhance the 
model’s performance, hyperparameter optimization is 
carried out using the Optuna framework. A variety of 
parameters such as the number of LSTM units, dropout 
rate, batch size, and number of training epochs are 
explored. The optimization process includes early 

stopping and pruning techniques to avoid overfitting 
and improve training efficiency. Once the model is 
trained, its architecture and weights are saved to 
support future forecasting tasks. 

The final phase of the methodology focuses on 
evaluating and reporting the model’s performance. A 
set of standard metrics is used to quantify forecasting 
accuracy, including mean absolute percentage error 
(MAPE), mean absolute error (MAE), mean squared 
error (MSE), root mean squared error (RMSE), and the 
coefficient of determination (R-squared). In addition to 
numerical evaluation, visual diagnostics such as 
residual histograms and scatter plots of residuals are 
produced. These plots provide a clearer understanding 
of how prediction errors are distributed and whether 
any systematic bias is present in the model outputs. 
Together, these evaluation tools ensure that the 
forecasting framework is both accurate and robust, and 
they support informed conclusions about model 
reliability. 

 

Figure 1: Research Flowchart. 

2.1. Mathematical Equations 

2.1.1. Cyclical Time Encoding 

Time of day is an important feature in predicting 
solar irradiation, as it strongly influences the amount of 
incoming solar energy. However, time exhibits a 
cyclical nature, making it challenging to represent 
directly in predictive models. To address this, cyclical 
time encoding is employed to capture the periodicity 
inherent in daily solar data. In this approach, h 
represents the hour of the day. Equation 1 and 2 shows 
the cyclical time encoding in mathematical equation. 
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    Eq (1) 

    Eq (2) 

2.1.2. Pseudo-Labelling Rules 

Several rule-based criteria are commonly used to 
classify weather conditions, and they have proven to be 
both effective and widely applicable. These rules can 
serve as an initial step for assigning weather labels 
prior to further refinement using decision tree 
algorithms. Equation (3) shows the condition for 
weather classification. 

 Eq (3) 

2.1.3. Feature Normalization 

Min-max normalization is employed in this study to 
scale the input features to a uniform range prior to 
training the neural network. Equation 4 shows the 
normalization used in this study. This normalization 
facilitates more stable and efficient model learning. 
Importantly, categorical variables such as weather type, 
as well as key target variables like global horizontal 
irradiance (GHI) and solar peak values, are excluded 
from the scaling process to preserve their accuracy and 
validity of data integrity and ensure accurate 
interpretation during prediction. 

  Eq (4) 

2.1.4. Lag Features 

In solar forecasting, capturing the temporal 
dependency between consecutive time steps is 
essential, as global horizontal irradiance (GHI) typically 
changes gradually rather than abruptly. To model this 
temporal continuity, lag features are introduced. These 
features represent previous GHI values and enable the 
model to learn patterns and trends over time. 
Incorporating lag features helps the model better 
understand the sequential relationships in the data. In 
this study, the global horizontal irradiance (GHI) values 
from the two preceding time steps are incorporated as 
lag features to enhance the model's ability to learn 
temporal patterns and improve forecasting 
performance. 

    Eq (4) 

    Eq (5) 

2.1.5. Sequence Construction (Sliding Window)  

Sequence construction is a crucial step in preparing 
time series data for forecasting models. It involves 
creating input-output pairs by slicing the continuous 
time series into fixed-length sequences as shown in 
Equation 6 and 7. In this study, input window size is set 
at 13 while the output steps are set at 91 as shown in 
Equation 8 and 9. Each input sequence contains 
historical data points, while the corresponding output 
sequence represents the future values the model aims 
to predict. This approach enables the BiLSTM model to 
learn temporal dependencies by observing how past 
patterns relate to future trends.  

   Eq (6) 

  Eq (7) 

   Eq (8) 

    Eq (9) 

2.1.6. BiLSTM Model Structure 

The architecture consists of two stacked BiLSTM 
layers, where the first layer returns full sequences to 
feed into the second, enabling deeper temporal feature 
extraction. Equation 10 -13 shows the BiLSTM model 
structure. A dropout layer follows to reduce the risk of 
overfitting by randomly deactivating a fraction of 
neurons during training. Finally, a dense output layer 
predicts 13 future GHI values for each input sequence. 
This design helps the model capture complex temporal 
dynamics and improve multi-step forecasting accuracy. 

        Eq (10) 

        Eq (11) 

 Eq (12) 

       Eq (13) 

2.1.7. Loss Function 

The loss function used in this study is the Mean 
Squared Error (MSE), which calculates the average of 
the squared differences between actual and predicted 
GHI values. Is the true value and is the predicted value. 
Equation 14 shows the loss function. This function 
penalizes larger errors more heavily and guides the 
model during training to minimize prediction deviations. 

         Eq (14) 
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2.1.8. Evaluation Metrics 

In this study, five evaluation metrics are used to 
assess model performance: MAE (Mean Absolute 
Error), RMSE (Root Mean Square Error), MAPE (Mean 
Absolute Percentage Error), R² (Coefficient of 
Determination), and MASE (Mean Absolute Scaled 
Error). MAE (Mean Absolute Error) measures the 
average absolute difference between predicted and 
actual values. Each metrics is given in Equation 15 -19. 
RMSE penalizes larger errors more heavily due to 
squaring, making it useful when large deviations are 
particularly critical. MAPE expresses errors as a 
percentage of actual values, providing a 
scale-independent metric, though it can be sensitive 
when actual values are near zero. R², or the coefficient 
of determination, indicates how well the model explains 
the variability in the data, with values closer to 1 
reflecting better predictive power. Lastly, MASE scales 
the prediction error relative to a naive baseline, 
enabling consistent comparison across different 
datasets or forecasting models. Here are the formulas 
for each metric provided below. 

         Eq (15) 

        Eq (16) 

        Eq (17) 

 

        Eq (18) 

         Eq (19) 

3. INPUT FEATURE 

The forecasting model incorporates thirteen 
features: air temperature, dew point temperature, 
relative humidity, wind speed at ten meters, cloud 
opacity, precipitation rate, sine of the hour, cosine of 
the hour, global horizontal irradiance lagged by one 
time step, global horizontal irradiance lagged by 
two-time steps, solar peak energy, current global 
horizontal irradiance, and weather type. These features 

collectively serve as input variables to support accurate 
forecasting within the model. 

3.1. Case Study 

Scenario A is enriched with both solar peak 
indicators and weather classification, offering the most 
comprehensive contextual input. Scenario B relies 
solely on weather classification, whereas Scenario C 
operates without any contextual enhancements. Table 
2 shows the description for each scenario. 

Table 2: Scenario Analysis for Solar Peak and Weather 
Classification 

 A B C 

Solar Peak Y X X 

Weather 
Classification Y Y X 

 
3.2. Weather Information 

The frequency distributions of three key weather 
variables—Global Horizontal Irradiance (GHI), cloud 
opacity, and relative humidity—were analyzed using 
data collected over four years. Only daytime data, from 
7:00 AM to 7:00 PM, was used in this analysis. This 
time range was chosen because it covers the period 
when solar radiation is present and relevant to solar 
energy studies. Nighttime values were excluded, as 
GHI is zero during those hours and would distort the 
distribution. 

 

Figure 2: Global Horizontal Irradiance Distribution. 

Figure 2 shows the GHI distribution. The distribution 
of GHI is strongly right-skewed. Most values are on the 
lower end, meaning that even during the day, solar 
irradiance is often low. High GHI values, above 800 
W/m², occur less frequently. This shows that intense 
sunlight happens, but not very often. The shape of the 
distribution suggests that many daytime hours still have 
weak solar input, possibly due to weather conditions or 
seasonal changes. 
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Figure 3: Cloud Opacity Distribution. 

Figure 3 shows the distribution of cloud opacity. 
Cloud opacity also shows a skewed distribution, with 
many values close to zero. This means clear skies are 
common during the day. However, there is also a 
noticeable increase in values near 100, which indicates 
that overcast conditions are also frequent. Mid-range 
opacity values are less common. This suggests that 
skies are often either mostly clear or completely cloudy, 
rather than partly cloudy. 

 

Figure 4: Distribution of Relative Humidity. 

Figure 4 shows the distribution of relative humidity. 
Relative humidity has a different pattern. Its distribution 
is close to normal, with most values between 70% and 
85%. This means that daytime humidity is usually high, 
and it does not vary as much as GHI or cloud opacity. 
The results suggest a humid climate, where moisture 
levels stay fairly consistent throughout the day. 

In summary, the daytime weather patterns show 
high humidity, frequent clear or overcast skies, and 
mostly low to moderate levels of solar irradiance. 
These conditions are important to consider when 
planning or evaluating solar energy systems, as they 
directly affect energy generation during sunlight hours. 

4. RESULTS 

4.1. Results Weather Classification 

Figure 5 illustrates the number of days classified 
under different weather types: Sunny, Rainy, and 
Cloudy, based on a four-year dataset. The chart shows 
that Sunny days are the most frequent, with 
approximately 760 days recorded. Rainy days follow, 
totalling around 540 days, while Cloudy days are the 
least common, with about 170 days. This distribution 
suggests that clear weather dominates the local 
climate, which is favourable for solar energy generation. 
However, the relatively high number of rainy days 
indicates significant seasonal or periodic rainfall, which 
may reduce solar irradiance during those times. The 
small number of cloudy days, when skies are overcast 
but without rain, further supports the idea that the 
region tends to experience either clear or rainy 
conditions with fewer intermediate states. Overall, this 
weather pattern aligns with the earlier histogram 
findings and points to a climate where solar energy is 
often available but still subject to seasonal limitations 
due to rain. 

 

Figure 5: Number of Days per Weather Type. 
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4.2. Results of GHI Forecasting 

Table 3 shows the optimal hyperparameters for 
scenarios A, B, and C, determined using Optuna tuning. 
In this context, the "class" refers to the classification of 
initial data based on weather type. Scenario A includes 
both weather-based classification and solar peak 
information, resulting in the highest number of training 
epochs (149) and the largest dropout rate (0.484). This 
suggests that the combined input introduced greater 
complexity, requiring stronger regularisation and 
extended training to prevent over fitting. Scenario B 
includes only the weather-based classification and 
used slightly fewer epochs (140) and the lowest 
dropout rate (0.329), indicating relatively simpler data 
patterns that the model could learn more efficiently. 
Scenario C, which excludes weather classification, 
required only 67 epochs and a moderate dropout rate 
(0.385), suggesting faster convergence due to reduced 
input variability. Both B and C employed a smaller 
batch size (32), while A used a larger batch size (64), 
possibly to stabilise updates over more complex input. 
The number of units remained constant at 256 across 
all scenarios, indicating this parameter was less 
sensitive to the changes in input structure. These 
differences highlight how the inclusion of weather 
classification and solar peak data influences model 
complexity and training dynamics. 

Table 3: Optimal Hyperparameters for Scenarios A, B, 
and C 

 A B C 

Epochs 149 140 67 

Dropout 0.484369 0.329301 0.385006 

Batch Size 64 32 32 

Units 256 256 256 
 

Figure 6 presents the cosine similarity matrix of the 
weight vectors associated with each input feature for 
Scenario A. This visualisation captures the degree to 
which different input features are treated similarly by 
the model in terms of their learned representations. 
High similarity values (closer to 1, shown in lighter 
colours) indicate that the model assigns comparable 
weight patterns to the respective features, suggesting 
that they may convey related or overlapping 
information from the model’s perspective. Conversely, 
lower or near-zero similarity values (darker regions) 
imply that the model processes those features in a 
more distinct manner. 

From Figure 6, we observe that features such as 
GHI, and exhibit strong mutual similarity, which aligns 
with their temporal and physical correlation as 
successive measurements of global horizontal 
irradiance. Similarly, temperature-related features like 
air temperature and dew point temperature also show a 
moderate degree of similarity, likely reflecting their 

 

Figure 6: Cosine Similarity matrix of the weight vectors. 
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meteorological interdependence. In contrast, 
categorical or cyclic time features such as, and weather 
class appear less similar to most continuous weather 
variables, indicating that they contribute uniquely to the 
model’s internal representation. 

Figure 7 presents the residual error distribution for 
Scenario A as a histogram, showing an approximately 
symmetric and bell-shaped pattern centered near zero. 
This indicates that the model does not have a 
significant bias toward over- or under-prediction. Most 
residuals are tightly clustered around the center, 
suggesting consistent accuracy in the majority of 
predictions. However, longer tails on both sides reveal 
the presence of a few large errors, including some 
extreme positive and negative residuals, which may be 
caused by sudden weather changes or rare, complex 
atmospheric conditions that are difficult to capture. The 
sharp peak and gradual tapering of the histogram 
reflect the model’s overall precision and stability, with 
many small residuals indicating good performance. 
Despite this, the occasional large errors highlight room 
for improvement. 

Figure 8 shows a similarly symmetric distribution 
but with a wider spread compared to Figure 7, 
indicating more variability in residuals. Figure 9 also 
exhibits symmetry but with heavier tails, suggesting a 
higher frequency of larger errors. The peak frequencies 
are 11,700 for Scenario A, 11,000 for Scenario B, and 
11,500 for Scenario C. Scenario A’s narrowest spread 
and highest peak reflect better model precision, with 
residuals more tightly clustered near zero, suggesting 
the best overall performance among the three 
scenarios. Scenario B’s broader peak and greater 
number of residuals farther from zero indicate a higher 
error variance and slightly weaker predictive 
performance compared to Scenario A. Scenario C 
performs moderately, with a peak frequency higher 
than Scenario B but lower than Scenario A, indicating 
better performance than Scenario B but still not 
reaching the precision of Scenario A. 

 

Figure 7: Residual Error Distribution Of Scenario A. 

 

Figure 8: Residual Error Distribution of Scenario B. 

 

Figure 9: Residual Error Distribution of Scenario C. 

Table 4 shows the forecasting performance of solar 
irradiation across each scnearios. The forecasting 
performance of solar irradiation was assessed using 
three model configurations with varying levels of input 
complexity: Scenario A incorporated both weather 
classification and solar peak data; Scenario B included 
only weather classification; and Scenario C relied 
solely on core features without any additional inputs. 
As shown in Table 1, Scenario A achieved the lowest 
Mean Absolute Percentage Error (MAPE) at 28.74%, 
indicating a marginal improvement in relative 
forecasting accuracy. However, this improvement was 
slight compared to Scenario C, which recorded a 
MAPE of 29.34%. Notably, Scenario C also achieved 
the lowest values for Mean Absolute Error (MAE) and 
Mean Absolute Scaled Error (MASE), at 103.59 and 
0.786 respectively, suggesting that the simplest model, 
without any auxiliary input variables, can be more 
effective in minimizing absolute and scaled forecast 
errors. Scenario B, which relied solely on weather 
classification, consistently demonstrated the poorest 
performance across all evaluated metrics, with a MAPE 
of 29.85%, MAE of 105.64, and MASE of 0.802. These 
findings imply that weather classification, when used in 
isolation, may not contribute meaningful predictive 
information and could potentially introduce noise or 
irrelevant variability into the model. 
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Table 4: Forecasting Performance of Each Scenarios 

 A B C 

MAPE (%) 28.74123 29.85167 29.34299 

MAE (W/m2) 105.2149 105.6391 103.5868 

RMSE (W/m2) 148.1502 149.7987 148.4406 

R2 0.681467 0.674339 0.680217 

MASE 0.79847 0.801689 0.786115 

 
Further analysis of Root Mean Square Error 

(RMSE) and the coefficient of determination (R²) 
reinforces the observation that the inclusion of 
additional features provides minimal practical benefit. 
All three scenarios yielded nearly identical RMSE 
values, hovering around 148–150 W/m², and R² values 
approximately 0.68, indicating similar levels of 
predictive accuracy and variance explanation. Although 
Scenario A showed the highest R² (0.681), the 
difference was not substantial when compared to 
Scenario C (0.680), while Scenario B again lagged 
slightly (0.674). These results suggest that while the 
inclusion of both weather classification and solar peak 
data in Scenario A may offer a slight edge in certain 
relative accuracy measures, the overall impact on 
forecasting performance is minimal. In contrast, the 
strong performance of Scenario C across multiple error 
metrics highlights the potential sufficiency of a simpler 
model structure without added complexity. Therefore, 
from both a practical and computational perspective, it 
may be more effective to adopt a parsimonious 
modeling approach. The limited gains from additional 
features underscore the need for careful feature 
selection and suggest that further improvements in 
forecasting accuracy may depend more on advanced 
modeling techniques or better-quality data, rather than 
simply increasing input dimensionality. 

Figure 10 presents a comparison between actual 
values and predictions generated by three BiLSTM 
model configurations, each using different 
combinations of input features. Scenario A integrates 
both solar peak information and weather classification 
and shows the closest alignment with the actual data. 
The model accurately tracks the progression of values 
throughout the time series, especially during the peak 
period. This suggests that combining these features 
significantly enhances predictive performance. 
Scenario B uses only weather classification and shows 
moderate accuracy. It captures the overall trend but 
underestimates the peak and responds less effectively 
to rapid changes. In contrast, Scenario C excludes both 
contextual features and produces the lowest accuracy. 
Its output is overly smoothed and fails to reflect the 
dynamic patterns in the actual data, particularly around 
peak hours. These results highlight the importance of 
including both weather-related and solar peak features 
to improve the temporal accuracy and responsiveness 
of deep learning models in solar or energy-related 
time-series forecasting tasks. 

4.3. Discussion 

The results show that adding more features does 
not always make the forecasting model better. 
Although Scenario A had slightly lower percentage 
error, the simple model in Scenario C gave the best 
overall accuracy. This means that using basic 
meteorological and time features, together with good 
preprocessing, can be enough for reliable forecasts. 

Scenario B, which used only weather classification, 
gave the weakest results. This suggests that weather 
classification alone does not provide much useful 
information for prediction in equatorial regions, where 
weather changes quickly. However, when combined 

 

Figure 10: Comparison Between Actual Values and Predictions 
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with solar peak energy, it gave small improvements, 
showing that it may still play a supporting role. 

These outcomes agree with earlier studies that 
highlight how data quality and preparation are often 
more important than adding extra features. In this work, 
methods like lag features and cyclical time encoding 
helped the BiLSTM model capture time patterns more 
effectively. 

From a practical view, the results are useful 
because they show that accurate forecasts can be 
achieved with simpler models that use less computing 
power. This makes them easier to apply in real-time 
systems, such as PV sizing, power scheduling, and 
energy storage planning. For future improvements, 
adding inputs like satellite images, cloud tracking, or 
more advanced clustering could help capture the 
fast-changing conditions typical in equatorial regions. 

5. CONCLUSION 

This study explored the effectiveness of 
incorporating solar peak irradiation and weather This 
study explored the effectiveness of incorporating solar 
peak irradiation and weather classification into machine 
learning models for forecasting global horizontal 
irradiance (GHI), particularly in equatorial regions like 
Malaysia, where solar variability poses significant 
challenges. While the inclusion of solar peak data and 
weather classification (Scenario A) showed slight 
improvements in relative forecasting accuracy, the 
simplest model configuration (Scenario C), relying 
solely on core meteorological and temporal features, 
consistently outperformed others in terms of absolute 
and scaled error metrics. Specifically, Scenario A 
achieved the lowest MAPE (28.74%), whereas 
Scenario C recorded the smallest MAE (103.59 W/m²) 
and MASE (0.786). In contrast, Scenario B performed 
worst with a MAPE of 29.85% and MAE of 105.64 
W/m². Across all scenarios, RMSE values remained 
within 148–150 W/m² and R² around 0.68, indicating 
minimal differences in variance explanation. 

These findings highlight that increased model 
complexity does not necessarily lead to significant 
gains in performance and that simpler models may 
offer more robust, efficient, and computationally 
practical solutions for solar irradiance forecasting. 
Moreover, the limited impact of weather classification 
on prediction accuracy suggests the need for more 
meaningful feature engineering or the integration of 
alternative data sources such as satellite imagery or 
real-time cloud tracking to enhance model input. 
Importantly, the results also emphasize that data 
preprocessing plays a critical role in model 
performance, as properly cleaned, de-noised, and 

structured input data can significantly improve 
accuracy and reduce training complexity. Furthermore, 
shifting the focus toward models with shorter output 
windows may improve responsiveness and accuracy in 
real-world energy management systems, making them 
more suitable for dynamic, high-resolution applications 
such as smart grid optimization and real-time load 
balancing. The practical implication of these findings is 
that reliable solar irradiance forecasts can be achieved 
using simpler BiLSTM configurations, which reduces 
computational cost and makes forecasting more 
accessible for real-time energy management systems. 
In practice, this enables more efficient PV system 
sizing, improved scheduling of solar power generation, 
enhanced grid stability, and better planning for energy 
storage integration in equatorial regions. 
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