Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 1 (2025)

Photocatalytic MOF Membranes for Advanced Seawater Purification: From Material Design to Sustainable Water Treatment

Submitted
December 30, 2025
Published
2025-12-30

Abstract

Seawater pollution remains a pressing global challenge, intensified by industrial discharges, agricultural runoff, and maritime activities. Conventional water treatment methods are often limited by high energy costs, insufficient selectivity, and the risk of secondary pollution. Metal-organic frameworks (MOFs), recognized for their tunable porosity and high surface areas, are emerging as promising materials for advanced water purification. The integration of photocatalytic properties into MOF membranes offers a significant advantage: the addition of self-cleaning functionality to the inherent separation process, paving the way for more energy-efficient purification. This review explores recent progress in photocatalytic MOF membranes for treating seawater, addressing the critical issues of water scarcity and marine pollution. It examines how these materials can be enhanced through strategies like ligand functionalization, heterostructure engineering, and metal ion doping to boost their performance against organic pollutants, heavy metals, and pathogens. The synthesis of MOFs is discussed, alongside the critical need to optimize their stability, light absorption, and charge separation efficiency. Key challenges such as membrane fouling, salt scaling, and long-term durability are analyzed, along with potential solutions through material design and process engineering. Recent advances confirm the potential of these membranes for revolutionary improvements in water technology, especially when combined with renewable energy sources, highlighting their role in promoting sustainable water management and providing innovative directions for the field.

References

  1. Wondimu M, Girma G. Fresh water resource, scarcity, water salinity challenges and possible remedies: A review[J]. Heliyon, 2023, 9(8): e18685-e18685. https://doi.org/10.1016/j.heliyon.2023.e18685
  2. Ghanimeh S, Dalloul M, Naimi M A, et al. Seawater Pollution in the Arabian Gulf: Unveiling Risks and the Urgent Need for Local Standards[J]. Earth Systems and Environment, 2025, (prepublish): 1-15. https://doi.org/10.1007/s41748-025-00697-w
  3. Angelakis A N, Snyder S A. Wastewater Treatment and Reuse: Past, Present, and Future[J]. Water, 2015, 7(9): 4887-4895. https://doi.org/10.3390/w7094887
  4. Yue B, Pang Z, Yu Y, et al. Difunctional MOF-EDTA modified wood membrane for efficient water purification[J]. Chemical Engineering Journal, 2025, 504: 158896-158896. https://doi.org/10.1016/j.cej.2024.158896
  5. Lu W, Jingzhe H, Zonghao L, et al. Review of Synthesis and Separation Application of Metal-Organic Framework-Based Mixed-Matrix Membranes[J]. Polymers, 2023, 15(8): 1950. https://doi.org/10.3390/polym15081950
  6. Khan M S, Li Y, Li D S, et al. A review of metal–organic framework (MOF) materials as an effective photocatalyst for degradation of organic pollutants[J]. Nanoscale Advances, 2023, 5(23): 6318-6348.
  7. https://doi.org/10.1039/D3NA00627A
  8. Kenari S L D, Barbeau B. Understanding ultrafiltration fouling of ceramic and polymeric membranes caused by oxidized iron and manganese in water treatment[J]. Journal of Membrane Science, 2016, 516: 1-12. https://doi.org/10.1016/j.memsci.2016.06.003
  9. Zhang C, Yuan R, Chen H, et al. Advancements in Inorganic Membrane Filtration Coupled with Advanced Oxidation Processes for Wastewater Treatment[J]. Molecules, 2024, 29(17): 4267-4267. https://doi.org/10.3390/molecules29174267
  10. Viktor K, Jinzhe L, Oleg S, et al. Prospects of hybrid materials composed of MOFs and hydride-forming metal nanoparticles for light-duty vehicle hydrogen storage[J]. Applied Materials Today, 2021, 25. https://doi.org/10.1016/j.apmt.2021.101208
  11. Feng T, Wang B, Li J, et al. Metal–organic framework based photocatalytic membrane for organic wastewater treatment: Preparation, optimization, and applications[J]. Separation and Purification Technology, 2025, 355: 129540. https://doi.org/10.1016/j.seppur.2024.129540
  12. Li H, Fu M, Wang S Q, et al. Stable Zr-based metal–organic framework nanoporous membrane for efficient desalination of hypersaline water[J]. Environmental Science & Technology, 2021, 55(21): 14917-14927. https://doi.org/10.1021/acs.est.1c06105
  13. Wu F, Yuan D, Niu Q, et al. Metal-organic framework (MOF) materials and functionalization for targeted adsorption of pb and cd in wastewater: Mechanisms, challenges, and future development prospects[J]. Advances in colloid and interface science, 2025, 344: 103597. https://doi.org/10.1016/j.cis.2025.103597
  14. Jian G, Ziming L, Ziqi D, et al. Rapid Removal of Mercury from Water by Novel MOF/PP Hybrid Membrane[J]. Nanomaterials, 2021, 11(10): 2488-2488. https://doi.org/10.3390/nano11102488
  15. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. nature, 1972, 238(5358): 37-38. https://doi.org/10.1038/238037a0
  16. Pelizzetti E, Minero C. Mechanism of the photo-oxidative degradation of organic pollutants over TiO2 particles[J]. Electrochimica acta, 1993, 38(1): 47-55. https://doi.org/10.1016/0013-4686(93)80009-O
  17. Salman Nasir M, Zhao Y, Ye H, et al. Efficient Hole Extraction and* OH Alleviation by Pd Nanoparticles on GaN Nanowires in Seawater for Solar‐Driven H2 and H2O2 Generation[J]. Angewandte Chemie International Edition, 2025, 64(10): e202420796. https://doi.org/10.1002/anie.202420796
  18. Schneider J, Matsuoka M, Takeuchi M, et al. Understanding TiO2 photocatalysis: mechanisms and materials[J]. Chemical reviews, 2014, 114(19): 9919-9986. https://doi.org/10.1021/cr5001892
  19. Xu C, Cui A, Xu Y, et al. Graphene oxide–TiO2 composite filtration membranes and their potential application for water purification[J]. Carbon, 2013, 62: 465-471. https://doi.org/10.1016/j.carbon.2013.06.035
  20. Liu Z. Solar light driven photocatalytic degradation of refractory organic compounds using tungsten-doped TiO2 particles[D].
  21. Wang Y, Shi R, Lin J, et al. Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C 3 N 4[J]. Energy & Environmental Science, 2011, 4(8): 2922-2929.
  22. https://doi.org/10.1039/c0ee00825gKarakaş A , Topçu E , Erçarıkcı E , et al. MOF-containing graphene sponge for efficient solar desalination and water purification[J]. Separation and Purification Technology, 2025, 363(P1): 132058-132058. https://doi.org/10.1016/j.seppur.2025.132058
  23. Ma C , Wang W , Chen Q , et al. Repurposing facial tissue waste to construct flexible hierarchical MOF-based photothermal material with lower evaporation enthalpy for high efficient solar-driven seawater desalination and wastewater purification[J]. Desalination, 2025, 600118472-118472. https://doi.org/10.2139/ssrn.4972542
  24. Wang B , Shen L , Xu J , et al. Graphene oxide-assisted dispersion and assembly of photocatalytic self-cleaning MOF membrane for enhanced water purification[J]. Separation and Purification Technology, 2025, 356(PA): 129928-129928. https://doi.org/10.1016/j.seppur.2024.129928
  25. Gan W , Zheng Z , Yan J , et al. Vertical MOF film supported on an organic–inorganic mixed substrate for complex wastewater purification[J]. Applied Surface Science, 2024, 652159253.https://doi.org/10.1016/j.apsusc.2023.159253
  26. Dai Xiu, Shi Xiaowei, Huo Changan, et al. Study on the poly(lactic acid)/nano MOFs composites: Insights into the MOFs-induced crystallization mechanism and the effects of MOFs on the properties of the composites[J]. Thermochimica Acta, 2017, 657: 39-46. https://doi.org/10.1016/j.tca.2017.09.015
  27. BaoY, RuH, WangY, et al. Hetero MOF‐On‐MOF of Ni‐BDC/NH2‐MIL‐88B(Fe) Enables Efficient Electrochemical Seawater Oxidation[J]. Advanced Functional Materials, 2024, 34(22): https://doi.org/10.1002/adfm.202314611
  28. Yuan K , Tao K , Song T , et al. Large-Area Conductive MOF Ultrathin Film Controllably Integrating Dinuclear-Metal Sites and Photosensitizers to Boost Photocatalytic COsub2/sub Reduction with Hsub2/subO as an Electron Donor. [J]. Journal of the American Chemical Society, 2024,
  29. Zhou Y , Li P , Wang Y , et al. Progress in the Separation and Purification of Carbon Hydrocarbon Compounds Using MOFs and Molecular Sieves[J]. Separations, 2023, 10(10): https://doi.org/10.3390/separations10100543
  30. Chen X , Boffa V , Ma X , et al. Zeolite Imidazolate Frameworks-8@SiOsub2/sub-ZrOsub2/sub Crystal-Amorphous Hybrid Core-Shell Structure as a Building Block for Water Purification Membranes. [J]. ACS applied materials & interfaces, 2024. https://doi.org/10.1021/acsami.3c19559
  31. Jinhong L , Beibei Z , Ziyue H , et al. MOF-Derived Insub2/subOsub3/sub Microrod-Decorated MgInsub2/subSsub4/sub Nanosheets: Z-Scheme Heterojunction for Efficient Photocatalytic Degradation of Tetracycline. [J]. Langmuir : the ACS journal of surfaces and colloids, 2023,
  32. Ma Q, Li Y, Tan Y, et al. Recent advances in metal-organic framework (MOF)-based photocatalysts: design strategies and applications in heavy metal control[J]. Molecules, 2023, 28(18): 6681. https://doi.org/10.3390/molecules28186681
  33. Yin Y H, Li Q, Liu H T, et al. Multifunctional In-MOF and Its S-Scheme Heterojunction toward Pollutant Decontamination via Fluorescence Detection, Physical Adsorption, and Photocatalytic REDOX. [J]. Inorganic chemistry, 2024, 63(4): https://doi.org/10.1021/acs.inorgchem.3c03268
  34. Xu P , Zhang R , Gong J , et al. S-Scheme WO 3 /SnIn 4 S 8Heterojunction for Water Purification: Enhanced Photocatalytic Performance and Mechanism[J]. Catalysts, 2023, 13(11): 1450. https://doi.org/10.3390/catal13111450
  35. Abounahia N, Shahab A A, Khan M M, et al. A Comprehensive Review of Performance of Polyacrylonitrile-Based Membranes for Forward Osmosis Water Separation and Purification Process [J]. Membranes, 2023, 13(11): 872. https://doi.org/10.3390/membranes13110872
  36. Mu X, Jiang J, Chao F, et al. Ligand modification of UiO-66 with an unusual visible light photocatalytic behavior for RhB degradation [J]. Dalton Transactio
  37. Chen T F, Wang L Y, Wang Y F, et al. Facile strategy for efficient charge separation and high photoactivity of mixed-linker MOFs[J]. ACS Applied Materials & Interfaces, 2021, 13(17): 20897-20905. https://doi.org/10.1021/acsami.1c04130
  38. Zhang Y, Yang X, Zhou H C. Synthesis of MOFs for heterogeneous catalysis via linker design[J]. Polyhedron, 2018, 154: 189-201. https://doi.org/10.1016/j.poly.2018.07.021
  39. Fan W, Zhang X, Kang Z, et al. Isoreticular chemistry within metal–organic frameworks for gas storage and separation[J]. Coordination chemistry reviews, 2021, 443: 213968. https://doi.org/10.1016/j.ccr.2021.213968
  40. Wang Q, Gao Q, Al-Enizi A M, et al. Recent advances in MOF-based photocatalysis: environmental remediation under visible light[J]. Inorganic Chemistry Frontiers, 2020, 7(2): 300-339. https://doi.org/10.1039/C9QI01120J
  41. Tong Y Y, Li Y F, Sun L, et al. The prominent photocatalytic activity with the charge transfer in the organic ligand for [Zn4O (BDC) 3] MOF-5 decorated Ag3PO4 hybrids[J]. Separation and Purification Technology, 2020, 250: 117142. https://doi.org/10.1016/j.seppur.2020.117142
  42. Mao S, Shi J W, Sun G, et al. Cu (II) decorated thiol-functionalized MOF as an efficient transfer medium of charge carriers promoting photocatalytic hydrogen evolution[J]. Chemical Engineering Journal, 2021, 404: 126533. https://doi.org/10.1016/j.cej.2020.126533
  43. Cohen S M. Postsynthetic methods for the functionalization of metal–organic frameworks[J]. Chemical reviews, 2012, 112(2): 970-1000. https://doi.org/10.1021/cr200179u
  44. Yin Z, Wan S, Yang J, et al. Recent advances in post-synthetic modification of metal–organic frameworks: New types and tandem reactions[J]. Coordination Chemistry Reviews, 2019, 378: 500-512. https://doi.org/10.1016/j.ccr.2017.11.015
  45. Zeama M, Morsy M, Abdel-Azeim S, et al. Photophysical and photocatalytic properties of structurally modified UiO-66[J]. Inorganica Chimica Acta, 2020, 501: 119287. https://doi.org/10.1016/j.ica.2019.119287
  46. Fu Y, Zhang K, Zhang Y, et al. Fabrication of visible-light-active MR/NH2-MIL-125 (Ti) homojunction with boosted photocatalytic performance[J]. Chemical Engineering Journal, 2021, 412: 128722. https://doi.org/10.1016/j.cej.2021.128722
  47. Hu C, Huang Y C, Chang A L, et al. Amine functionalized ZIF-8 as a visible-light-driven photocatalyst for Cr (VI) reduction[J]. Journal of colloid and interface science, 2019, 553: 372-381. https://doi.org/10.1016/j.jcis.2019.06.040
  48. Nordin N A, Mohamed M A, Salehmin M N I, et al. Photocatalytic active metal–organic framework and its derivatives for solar-driven environmental remediation and renewable energy[J]. Coordination Chemistry Reviews, 2022, 468: 214639. https://doi.org/10.1016/j.ccr.2022.214639
  49. Tasleem S, Tahir M, Khalifa W A. Current trends in structural development and modification strategies for metal-organic frameworks (MOFs) towards photocatalytic H2 production: a review[J]. International Journal of Hydrogen Energy, 2021, 46(27): 14148-14189. https://doi.org/10.1016/j.ijhydene.2021.01.162
  50. Kuc A, Enyashin A, Seifert G. Metal− organic frameworks: structural, energetic, electronic, and mechanical properties[J]. The Journal of Physical Chemistry B, 2007, 111(28): 8179-8186. https://doi.org/10.1021/jp072085x
  51. Wu L, Luo Y, Wang C, et al. Self-driven electron transfer biomimetic enzymatic catalysis of bismuth-doped PCN-222 MOF for rapid therapy of bacteria-infected wounds[J]. ACS nano, 2023, 17(2): 1448-1463. https://doi.org/10.1021/acsnano.2c10203
  52. Cao J, Zhang J, Guo W, et al. A type-I heterojunction by anchoring ultrafine Cu2O on defective TiO2 framework for efficient photocatalytic H2 production[J]. Industrial & Engineering Chemistry Research, 2023, 62(3): 1310-1321. https://doi.org/10.1021/acs.iecr.2c03875
  53. Yang J, Liu T, Zhou H, et al. In situ conversion of typical type-I MIL-125 (Ti)/BiOBr into type-II heterostructure photocatalyst via MOF self-sacrifice: photocatalytic mechanism and theoretical study[J]. Journal of Alloys and Compounds, 2022, 900: 163440. https://doi.org/10.1016/j.jallcom.2021.163440
  54. Schukraft G E M, Moss B, Kafizas A G, et al. Effect of band bending in photoactive MOF-based heterojunctions[J]. ACS Applied Materials & Interfaces, 2022, 14(17): 19342-19352. https://doi.org/10.1021/acsami.2c00335
  55. Tan M, Yu C, Zeng H, et al. In situ fabrication of MIL-68 (In)@ ZnIn 2 S 4 heterojunction for enhanced photocatalytic hydrogen production[J]. Nanoscale, 2023, 15(5): 2425-2434.
  56. https://doi.org/10.1039/D2NR07017K
  57. Zhang Y, Zhou J, Feng Q, et al. Visible light photocatalytic degradation of MB using UiO-66/g-C3N4 heterojunction nanocatalyst[J]. Chemosphere, 2018, 212: 523-532. https://doi.org/10.1016/j.chemosphere.2018.08.117
  58. Wang L, Zheng P, Zhou X, et al. Facile fabrication of CdS/UiO-66-NH2 heterojunction photocatalysts for efficient and stable photodegradation of pollution[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 376: 80-87. https://doi.org/10.1016/j.jphotochem.2019.03.001
  59. Crake A, Christoforidis K C, Kafizas A, et al. CO2 capture and photocatalytic reduction using bifunctional TiO2/MOF nanocomposites under UV–vis irradiation[J]. Applied Catalysis B: Environmental, 2017, 210: 131-140. https://doi.org/10.1016/j.apcatb.2017.03.039
  60. Li L, Yu X, Xu L, et al. Fabrication of a novel type visible-light-driven heterojunction photocatalyst: Metal-porphyrinic metal organic framework coupled with PW12/TiO2[J]. Chemical Engineering Journal, 2020, 386: 123955. https://doi.org/10.1016/j.cej.2019.123955
  61. Wu Y, Li X, Zhao H, et al. Core-shell structured Cu2O@ HKUST-1 heterojunction photocatalyst with robust stability for highly efficient tetracycline hydrochloride degradation under visible light[J]. Chemical Engineering Journal, 2021, 426: 131255. https://doi.org/10.1016/j.cej.2021.131255
  62. Liang Q, Cui S, Jin J, et al. Fabrication of BiOI@ UIO-66 (NH2)@ g-C3N4 ternary Z-scheme heterojunction with enhanced visible-light photocatalytic activity[J]. Applied Surface Science, 2018, 456: 899-907. https://doi.org/10.1016/j.apsusc.2018.06.173
  63. Sepehrmansourie H, Alamgholiloo H, Pesyan N N, et al. A MOF-on-MOF strategy to construct double Z-scheme heterojunction for high-performance photocatalytic degradation[J]. Applied Catalysis B: Environmental, 2023, 321: 122082. https://doi.org/10.1016/j.apcatb.2022.122082
  64. Cui Y, Nengzi L, Gou J, et al. Fabrication of dual Z-scheme MIL-53 (Fe)/α-Bi2O3/g-C3N4 ternary composite with enhanced visible light photocatalytic performance[J]. Separation and Purification Technology, 2020, 232: 115959. https://doi.org/10.1016/j.seppur.2019.115959
  65. Cai G, Jiang H L. A modulator‐induced defect‐formation strategy to hierarchically porous metal–organic frameworks with high stability[J]. Angewandte Chemie International Edition, 2017, 56(2): 563-567. https://doi.org/10.1002/anie.201610914
  66. Zhao C, Wang Z, Li X, et al. Facile fabrication of BUC-21/Bi24O31Br10 composites for enhanced photocatalytic Cr (VI) reduction under white light[J]. Chemical Engineering Journal, 2020, 389: 123431. https://doi.org/10.1016/j.cej.2019.123431
  67. El-Fawal E M, Younis S A, Zaki T. Designing AgFeO2-graphene/Cu2 (BTC) 3 MOF heterojunction photocatalysts for enhanced treatment of pharmaceutical wastewater under sunlight[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 401: 112746. https://doi.org/10.1016/j.jphotochem.2020.112746
  68. Kuila A, Saravanan P, Routu S, et al. Improved charge carrier dynamics through a type II staggered Ce MOF/mc BiVO4 nn heterojunction for enhanced visible light utilisation[J]. Applied Surface Science, 2021, 553: 149556. https://doi.org/10.1016/j.apsusc.2021.149556
  69. Lv S W, Cong Y, Chen X, et al. Developing fine-tuned metal–organic frameworks for photocatalytic treatment of wastewater: A review[J]. Chemical Engineering Journal, 2022, 433: 133605. https://doi.org/10.1016/j.cej.2021.133605
  70. Huang S, Chen R, Zhao S, et al. Diverse metal ions-doped titanium-based metal-organic frameworks as novel bioplatforms for sensitively detecting bisphenol A[J]. Electrochimica Acta, 2021, 384: 138403. https://doi.org/10.1016/j.electacta.2021.138403
  71. Yi B, Zhao H, Cao L, et al. A direct mechanochemical conversion of Pt-doped metal-organic framework-74 from doped metal oxides for CO oxidation[J]. Materials Today Nano, 2022, 17: 100158. https://doi.org/10.1016/j.mtnano.2021.100158
  72. One-pot synthesis of oxygen-vacancy-rich Cu-doped UiO-66 for collaborative adsorption and photocatalytic degradation of ciprofloxacin
  73. Bhattacharyya A, Gutierrez M, Cohen B, et al. How does the metal doping in mixed metal MOFs influence their photodynamics? A direct evidence for improved photocatalysts[J]. Materials Today Energy, 2022, 29: 101125. https://doi.org/10.1016/j.mtener.2022.101125
  74. Li G, Zhao S, Zhang Y, et al. Metal–organic frameworks encapsulating active nanoparticles as emerging composites for catalysis: recent progress and perspectives[J]. Advanced materials, 2018, 30(51): 1800702. https://doi.org/10.1002/adma.201800702
  75. Chen L, Luque R, Li Y. Controllable design of tunable nanostructures inside metal–organic frameworks[J]. Chemical Society Reviews, 2017, 46(15): 4614-4630. https://doi.org/10.1039/C6CS00537C
  76. Liang R, Luo S, Jing F, et al. A simple strategy for fabrication of Pd@ MIL-100 (Fe) nanocomposite as a visible-light-driven photocatalyst for the treatment of pharmaceuticals and personal care products (PPCPs)[J]. Applied Catalysis B: Environmental, 2015, 176: 240-248. https://doi.org/10.1016/j.apcatb.2015.04.009
  77. Luo S, Liu X, Wei X, et al. Noble-metal-free cobaloxime coupled with metal-organic frameworks NH2-MIL-125: a novel bifunctional photocatalyst for photocatalytic NO removal and H2 evolution under visible light irradiation[J]. Journal of Hazardous Materials, 2020, 399: 122824. https://doi.org/10.1016/j.jhazmat.2020.122824
  78. Wu L Y, Mu Y F, Guo X X, et al. Encapsulating perovskite quantum dots in iron‐based metal–organic frameworks (MOFs) for efficient photocatalytic CO2 reduction[J]. Angewandte Chemie International Edition, 2019, 58(28): 9491-9495. https://doi.org/10.1002/anie.201904537
  79. Dutta S, Patel B G M, Singh Y, et al. Photocatalytic driven ‘self-cleaning’IPN membranes infused with a ‘host-guest’pair consisting of metal-organic framework encapsulated anionic ‘nano-clusters’ for water remediation[J]. Journal of Membrane Science, 2024, 694: 122422. https://doi.org/10.1016/j.memsci.2024.122422
  80. Qin X, Qiang T, Chen L, et al. Construction of 3D N-CQD/MOF-5 photocatalyst to improve the photocatalytic performance of MOF-5 by changing the electron transfer path[J]. Microporous and Mesoporous Materials, 2021, 315: 110889. https://doi.org/10.1016/j.micromeso.2021.110889
  81. Liu X, Fan P, Xiao L, et al. Reduced Ti-MOFs encapsulated black phosphorus with high stability and enhanced photocatalytic activity[J]. Journal of Energy Chemistry, 2021, 53: 185-191. https://doi.org/10.1016/j.jechem.2020.05.010
  82. Zhu W, Zhang C, Li Q, et al. Selective reduction of CO2 by conductive MOF nanosheets as an efficient co-catalyst under visible light illumination[J]. Applied Catalysis B: Environmental, 2018, 238: 339-345. https://doi.org/10.1016/j.apcatb.2018.07.024
  83. Cao L M, Zhang J, Zhang X F, et al. Confinement synthesis in porous molecule-based materials: a new opportunity for ultrafine nanostructures[J]. Chemical Science, 2022, 13(6): 1569-1593. https://doi.org/10.1039/D1SC05983A
  84. Yang Q, Xu Q, Jiang H L. Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis[J]. Chemical Society Reviews, 2017, 46(15): 4774-4808. https://doi.org/10.1039/C6CS00724D
  85. Li X, Zhang Z, Xiao W, et al. Mechanochemistry-assisted encapsulation of metal nanoparticles in MOF matrices via a sacrificial strategy[J]. Journal of Materials Chemistry A, 2019, 7(24): 14504-14509. https://doi.org/10.1039/C9TA03578H
  86. Sun D, Li Z. Double-solvent method to Pd nanoclusters encapsulated inside the cavity of NH2–Uio-66 (Zr) for efficient visible-light-promoted Suzuki coupling reaction[J]. The Journal of Physical Chemistry C, 2016, 120(35): 19744-19750. https://doi.org/10.1021/acs.jpcc.6b06710
  87. Shen L, Wu W, Liang R, et al. Highly dispersed palladium nanoparticles anchored on UiO-66 (NH 2) metal-organic framework as a reusable and dual functional visible-light-driven photocatalyst[J]. Nanoscale, 2013, 5(19): 9374-9382. https://doi.org/10.1039/c3nr03153e
  88. Yang Q, Xu Q, Jiang H L. Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis[J]. Chemical Society Reviews, 2017, 46(15): 4774-4808. https://doi.org/10.1039/C6CS00724D
  89. Miao S, Zhang H, Cui S, et al. Improved photocatalytic degradation of ketoprofen by Pt/MIL-125 (Ti)/Ag with synergetic effect of Pt-MOF and MOF-Ag double interfaces: mechanism and degradation pathway[J]. Chemosphere, 2020, 257: 127123. https://doi.org/10.1016/j.chemosphere.2020.127123
  90. Gu D, Liu Y, Li X, et al. Porphyrin-based metal–organic frameworks loaded with Ag nanoparticles and their nanofibrous filters for the photocatalytic reduction of Cr (VI)[J]. Applied Surface Science, 2023, 614: 156192. https://doi.org/10.1016/j.apsusc.2022.156192
  91. Choe J N, Ji J M, Kim M B, et al. Prepare of sunlight response NH2-MIL-125/PES composites ultrafiltration membrane for flux incrementation and fouling alleviation[J]. Journal of Water Process Engineering, 2022, 47: 102804. https://doi.org/10.1016/j.jwpe.2022.102804
  92. Ejaz F A , Abdullah K , Nidal H . Emerging desalination technologies: Current status, challenges and future trends[J]. Desalination, 2021, 517. https://doi.org/10.1016/j.desal.2021.115183
  93. Science and Technology - Membrane Research; New Membrane Research Study Results from Egypt-Japan University of Science and Technology Described (Metal Organic Framework Based Polymer Mixed Matrix Membranes: Review on Applications in Water Purification)[J]. Science Letter, 2019,
  94. Nanotechnology - Photocatalytics; Autonomous University of Madrid Details Findings in Photocatalytics (A Review On the Synthesis and Characterization of Metal Organic Frameworks for Photocatalytic Water Purification)[J]. Nanotechnology Weekly, 2019,
  95. Bin X , Jingling G , Yuqing S , et al. Robust PVA/GO@MOF membrane with fast photothermal self-cleaning property for oily wastewater purification. [J]. Journal of hazardous materials, 2023, 462132803-132803.
  96. Wang Z, Qi J, Han B, et al. Heterostructure engineered membranes based on two-dimensional bimetallic MOF for enhanced remediation of dye contaminated wastewater[J]. Journal of Membrane Science, 2024, 700: 122720. https://doi.org/10.1016/j.memsci.2024.122720
  97. Wang Z, He M, Jiang H, et al. Photocatalytic MOF membranes with two-dimensional heterostructure for the enhanced removal of agricultural pollutants in water[J]. Chemical Engineering Journal, 2022, 435: 133870. https://doi.org/10.1016/j.cej.2021.133870
  98. Xiao Y, Liu J, Leng J, et al. Long-lived internal charge-separated state in two-dimensional metal–organic frameworks improving photocatalytic performance[J]. ACS Energy Letters, 2022, 7(7): 2323-2330.
  99. https://doi.org/10.1021/acsenergylett.2c00970
  100. Zhang Z, Wang Y, Niu B, et al. Ultra-stable two-dimensional metal–organic frameworks for photocatalytic H 2 production[J]. Nanoscale, 2022, 14(19): 7146-7150. https://doi.org/10.1039/D2NR01827F
  101. Zuo Q, Cui R, Wang L, et al. High-loading single cobalt atoms on ultrathin MOF nanosheets for efficient photocatalytic CO2 reduction[J]. Science China Chemistry, 2023, 66(2): 570-577. https://doi.org/10.1007/s11426-022-1498-y
  102. Lu J, Wang S, Zhao Y, et al. Photocatalytic reduction of CO2 by two-dimensional Zn-MOF-NH2/Cu heterojunctions[J]. Catalysis Communications, 2023, 175: 106613. https://doi.org/10.1016/j.catcom.2023.106613
  103. Ding X, Liu H, Chen J, et al. In situ growth of well-aligned Ni-MOF nanosheets on nickel foam for enhanced photocatalytic degradation of typical volatile organic compounds[J]. Nanoscale, 2020, 12(17): 9462-9470. https://doi.org/10.1039/D0NR01027H
  104. Ding Y, Chen Y P, Zhang X, et al. Controlled intercalation and chemical exfoliation of layered metal–organic frameworks using a chemically labile intercalating agent[J]. Journal of the American Chemical Society, 2017, 139(27): 9136-9139. https://doi.org/10.1021/jacs.7b04829
  105. Li F L, Wang P, Huang X, et al. Large‐scale, bottom‐up synthesis of binary metal–organic framework nanosheets for efficient water oxidation[J]. Angewandte Chemie, 2019, 131(21): 7125-7130. https://doi.org/10.1002/ange.201902588
  106. Du B, Yan F, Lin X, et al. A bottom-up sonication-assisted synthesis of Zn-BTC MOF nanosheets and the ppb-level acetone detection of their derived ZnO nanosheets[J]. Sensors and Actuators B: Chemical, 2023, 375: 132854. https://doi.org/10.1016/j.snb.2022.132854
  107. Zuo Q, Liu T, Chen C, et al. Ultrathin metal–organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible‐light‐driven photocatalytic H2 evolution[J]. Angewandte Chemie International Edition, 2019, 58(30): 10198-10203. https://doi.org/10.1002/anie.201904058
  108. Ren X, Liao G, Li Z, et al. Two-dimensional MOF and COF nanosheets for next-generation optoelectronic applications[J]. Coordination Chemistry Reviews, 2021, 435: 213781. https://doi.org/10.1016/j.ccr.2021.213781
  109. Kundu S, Karak N. Polymeric photocatalytic membrane: An emerging solution for environmental remediation[J]. Chemical Engineering Journal, 2022, 438: 135575.
  110. https://doi.org/10.1016/j.cej.2022.135575
  111. Zhou S, Gao J, Zhu J, et al. Self-cleaning, antibacterial mixed matrix membranes enabled by photocatalyst Ti-MOFs for efficient dye removal[J]. Journal of Membrane Science, 2020, 610: 118219. https://doi.org/10.1016/j.memsci.2020.118219
  112. Wu C J, Maggay I V, Chiang C H, et al. Removal of tetracycline by a photocatalytic membrane reactor with MIL-53 (Fe)/PVDF mixed-matrix membrane[J]. Chemical Engineering Journal, 2023, 451: 138990. https://doi.org/10.1016/j.cej.2022.138990
  113. Bedia J, Muelas-Ramos V, Peñas-Garzón M, et al. A review on the synthesis and characterization of metal organic frameworks for photocatalytic water purification[J]. Catalysts, 2019, 9(1): 52. https://doi.org/10.3390/catal9010052
  114. Hermes S, Schröder F, Chelmowski R, et al. Selective nucleation and growth of metal− organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au (111)[J]. Journal of the American Chemical Society, 2005, 127(40): 13744-13745. https://doi.org/10.1021/ja053523l
  115. Li Zong-Qun, Zhang Min, Liu Bin, et al. Rapid fabrication of metal–organic framework thin films using in situ microwave irradiation and its photocatalytic property[J]. Inorganic Chemistry Communications, 2013, 36: 241-244. https://doi.org/10.1016/j.inoche.2013.09.009
  116. Zhao J, Wang Y, Zhou J, et al. A copper (II)-based MOF film for highly efficient visible-light-driven hydrogen production[J]. Journal of Materials Chemistry A, 2016, 4(19): 7174-7177. https://doi.org/10.1039/C6TA00431H
  117. Du X D, Yi X H, Wang P, et al. Robust photocatalytic reduction of Cr (VI) on UiO-66-NH2 (Zr/Hf) metal-organic framework membrane under sunlight irradiation[J]. Chemical Engineering Journal, 2019, 356: 393-399. https://doi.org/10.1016/j.cej.2018.09.084
  118. Chin S S, Chiang K, Fane A G. The stability of polymeric membranes in a TiO2 photocatalysis process[J]. Journal of Membrane Science, 2006, 275(1-2): 202-211. https://doi.org/10.1016/j.memsci.2005.09.033
  119. Raota C S, Lotfi S, Lyubimenko R, et al. Accelerated ageing method for the determination of photostability of polymer-based photocatalytic membranes[J]. Journal of Membrane Science, 2023, 686: 121944. https://doi.org/10.1016/j.memsci.2023.121944
  120. Lohmann R, Letcher R J. The universe of fluorinated polymers and polymeric substances and potential environmental impacts and concerns[J]. Current opinion in green and sustainable chemistry, 2023, 41: 100795. https://doi.org/10.1016/j.cogsc.2023.100795
  121. Ha J H, Bukhari S Z A, Lee J, et al. Preparation processes and characterizations of alumina-coated alumina support layers and alumina-coated natural material-based support layers for microfiltration[J]. Ceramics International, 2016, 42(12): 13796-13804. https://doi.org/10.1016/j.ceramint.2016.05.181
  122. Asif M B, Zhang Z. Ceramic membrane technology for water and wastewater treatment: A critical review of performance, full-scale applications, membrane fouling and prospects[J]. Chemical Engineering Journal, 2021, 418: 129481. https://doi.org/10.1016/j.cej.2021.129481
  123. Pei W, Zhang J, Tong H, et al. Removal and reutilization of metal ions on ZIF-67/GO membrane via synergistic photocatalytic-photothermal route[J]. Applied Catalysis B: Environmental, 2021, 282: 119575. https://doi.org/10.1016/j.apcatb.2020.119575
  124. Qian T, Zhang Y, Cai J, et al. Decoration of amine functionalized zirconium metal organic framework/silver iodide heterojunction on carbon fiber cloth as a filter-membrane-shaped photocatalyst for degrading antibiotics[J]. Journal of Colloid and Interface Science, 2021, 603: 582-593. https://doi.org/10.1016/j.jcis.2021.06.112
  125. Li N, Chen G, Zhao J, et al. Self-cleaning PDA/ZIF-67@ PP membrane for dye wastewater remediation with peroxymonosulfate and visible light activation[J]. Journal of Membrane Science, 2019, 591: 117341. https://doi.org/10.1016/j.memsci.2019.117341
  126. Deng Y, Wu Y, Chen G, et al. Metal-organic framework membranes: Recent development in the synthesis strategies and their application in oil-water separation[J]. Chemical Engineering Journal, 2021, 405: 127004. https://doi.org/10.1016/j.cej.2020.127004
  127. Wang Z, Qi J, Lu X, et al. Epitaxially grown MOF membranes with photocatalytic bactericidal activity for biofouling mitigation in desalination[J]. Journal of Membrane Science, 2021, 630: 119327.
  128. https://doi.org/10.1016/j.memsci.2021.119327
  129. Zhu M, Liu Y, Chen M, et al. Robust superhydrophilic and underwater superoleophobic membrane optimized by Cu doping modified metal-organic frameworks for oil-water separation and water purification[J]. Journal of Membrane Science, 2021, 640: 119755. https://doi.org/10.1016/j.memsci.2021.119755
  130. Lee H, Lee H, Ahn S, et al. MIL-100 (Fe)-hybridized nanofibers for adsorption and visible light photocatalytic degradation of water pollutants: Experimental and DFT approach[J]. ACS omega, 2022, 7(24): 21145-21155. https://doi.org/10.1021/acsomega.2c01953
  131. Cao W, Zhang Y, Shi Z, et al. Boosting the adsorption and photocatalytic activity of carbon fiber/MoS2-based weavable photocatalyst by decorating UiO-66-NH2 nanoparticles[J]. Chemical Engineering Journal, 2021, 417: 128112. https://doi.org/10.1016/j.cej.2020.128112
  132. Ji W, Wang X, Ding T, et al. Electrospinning preparation of nylon-6@ UiO-66-NH2 fiber membrane for selective adsorption enhanced photocatalysis reduction of Cr (VI) in water[J]. Chemical Engineering Journal, 2023, 451: 138973. https://doi.org/10.1016/j.cej.2022.138973
  133. Lu W, Duan C, Liu C, et al. A self-cleaning and photocatalytic cellulose-fiber-supported “Ag@ AgCl@ MOF-cloth’’membrane for complex wastewater remediation[J]. Carbohydrate Polymers, 2020, 247: 116691. https://doi.org/10.1016/j.carbpol.2020.116691
  134. Li W J, Tu M, Cao R, et al. Metal–organic framework thin films: electrochemical fabrication techniques and corresponding applications & perspectives[J]. Journal of Materials Chemistry A, 2016, 4(32): 12356-12369. https://doi.org/10.1039/C6TA02118B
  135. Zhang X, Wan K, Subramanian P, et al. Electrochemical deposition of metal–organic framework films and their applications[J]. Journal of materials chemistry A, 2020, 8(16): 7569-7587. https://doi.org/10.1039/D0TA00406E
  136. Li W J, Liu J, Sun Z H, et al. Integration of metal-organic frameworks into an electrochemical dielectric thin film for electronic applications[J]. Nature communications, 2016, 7(1): 11830. https://doi.org/10.1038/ncomms11830
  137. Campagnol N, Van Assche T, Boudewijns T, et al. High pressure, high temperature electrochemical synthesis of metal–organic frameworks: films of MIL-100 (Fe) and HKUST-1 in different morphologies[J]. Journal of Materials Chemistry A, 2013, 1(19): 5827-5830.
  138. https://doi.org/10.1039/c3ta10419b
  139. Xie S, Monnens W, Wan K, et al. Cathodic electrodeposition of MOF films using hydrogen peroxide[J]. Angewandte Chemie International Edition, 2021, 60(47): 24950-24957. https://doi.org/10.1002/anie.202108485
  140. Wei R, Chi H Y, Li X, et al. Aqueously cathodic deposition of ZIF‐8 membranes for superior propylene/propane separation[J]. Advanced Functional Materials, 2020, 30(7): 1907089. https://doi.org/10.1002/adfm.201907089
  141. Jia Z, Hao S, Wen J, et al. Electrochemical fabrication of metal–organic frameworks membranes and films: A review[J]. Microporous and Mesoporous Materials, 2020, 305: 110322. https://doi.org/10.1016/j.micromeso.2020.110322
  142. e Silva B C, Irikura K, Frem R C G, et al. Effect of Cu (BDC-NH2) MOF deposited on Cu/Cu2O electrode and its better performance in photoelectrocatalytic reduction of CO2[J]. Journal of Electroanalytical Chemistry, 2021, 880: 114856. https://doi.org/10.1016/j.jelechem.2020.114856
  143. Cai Z, Deng L, Song Y, et al. Facile synthesis of hierarchically self-assembled dandelion-like microstructures of bimetallic-MOF as a novel electrode material for high-rate supercapacitors[J]. Materials Letters, 2020, 281: 128616. https://doi.org/10.1016/j.matlet.2020.128616
  144. Zhou S, Feng X, Zhu J, et al. Self-cleaning loose nanofiltration membranes enabled by photocatalytic Cu-triazolate MOFs for dye/salt separation[J]. Journal of Membrane Science, 2021, 623: 119058. https://doi.org/10.1016/j.memsci.2021.119058
  145. Wang Z, He M, Jiang H, et al. Photocatalytic MOF membranes with two-dimensional heterostructure for the enhanced removal of agricultural pollutants in water[J]. Chemical Engineering Journal, 2022, 435: 133870. https://doi.org/10.1016/j.cej.2021.133870
  146. Zhu X, Yu Z, Liu Y, et al. NH2-MIL-125@ PAA composite membrane for separation of oil/water emulsions and dyes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630: 127542. https://doi.org/10.1016/j.colsurfa.2021.127542
  147. Gao Y, Yan S, He Y, et al. A photo-Fenton self-cleaning membrane based on NH2-MIL-88B (Fe) and graphene oxide to improve dye removal performance[J]. Journal of Membrane Science, 2021, 626: 119192. https://doi.org/10.1016/j.memsci.2021.119192
  148. Zhao P, Wang J, Han X, et al. Zr-porphyrin metal–organic framework-based photocatalytic self-cleaning membranes for efficient dye removal[J]. Industrial & Engineering Chemistry Research, 2021, 60(4): 1850-1858. https://doi.org/10.1021/acs.iecr.0c05583
  149. Xu M, Feng X, Han X, et al. MOF laminates functionalized polyamide self-cleaning membrane for advanced loose nanofiltration[J]. Separation and Purification Technology, 2021, 275: 119150.
  150. https://doi.org/10.1016/j.seppur.2021.119150
  151. Li R, Li W, Jin C, et al. Fabrication of ZIF-8@ TiO2 micron composite via hydrothermal method with enhanced absorption and photocatalytic activities in tetracycline degradation[J]. Journal of Alloys and Compounds, 2020, 825: 154008. https://doi.org/10.1016/j.jallcom.2020.154008
  152. Jhung S H, Chang J S, Hwang J S, et al. Selective formation of SAPO-5 and SAPO-34 molecular sieves with microwave irradiation and hydrothermal heating[J]. Microporous and Mesoporous Materials, 2003, 64(1-3): 33-39. https://doi.org/10.1016/S1387-1811(03)00501-8
  153. Jhung S H, Chang J S, Hwang Y K, et al. Crystal morphology control of AFI type molecular sieves with microwave irradiation[J]. Journal of Materials Chemistry, 2004, 14(2): 280-285.
  154. https://doi.org/10.1039/b309142b
  155. Hwang Y K, Chang J S, Park S E, et al. Microwave fabrication of MFI zeolite crystals with a fibrous morphology and their applications[J]. Angewandte Chemie International Edition, 2005, 44(4): 556-560. https://doi.org/10.1002/anie.200461403
  156. Jhung S H, Lee J H, Chang J S. Microwave synthesis of a nanoporous hybrid material, chromium trimesate[J]. Bulletin of the Korean Chemical Society, 2005, 26. https://doi.org/10.5012/bkcs.2005.26.6.880
  157. Lu C M, Liu J, Xiao K, et al. Microwave enhanced synthesis of MOF-5 and its CO2 capture ability at moderate temperatures across multiple capture and release cycles[J]. Chemical Engineering Journal, 2010, 156(2): 465-470. https://doi.org/10.1016/j.cej.2009.10.067
  158. Schlesinger M, Schulze S, Hietschold M, et al. Evaluation of synthetic methods for microporous metal–organic frameworks exemplified by the competitive formation of [Cu2 (btc) 3 (H2O) 3] and [Cu2 (btc)(OH)(H2O)][J]. Microporous and Mesoporous Materials, 2010, 132(1-2): 121-127. https://doi.org/10.1016/j.micromeso.2010.02.008
  159. Vakili R, Xu S, Al-Janabi N, et al. Microwave-assisted synthesis of zirconium-based metal organic frameworks (MOFs): Optimization and gas adsorption[J]. Microporous and Mesoporous Materials, 2018, 260: 45-53. https://doi.org/10.1016/j.micromeso.2017.10.028
  160. Suslick K S, Choe S B, Cichowlas A A, et al. Sonochemical synthesis of amorphous iron[J]. nature, 1991, 353(6343): 414-416. https://doi.org/10.1038/353414a0
  161. Qiu L G, Li Z Q, Wu Y, et al. Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines[J]. Chemical communications, 2008 (31): 3642-3644. https://doi.org/10.1039/b804126a
  162. Guo X, Kong L, Ruan Y, et al. Green and facile synthesis of cobalt-based metal–organic frameworks for the efficient removal of Congo red from aqueous solution[J]. Journal of Colloid and Interface Science, 2020, 578: 500-509. https://doi.org/10.1016/j.jcis.2020.05.126
  163. Li Z Q, Qiu L G, Xu T, et al. Ultrasonic synthesis of the microporous metal–organic framework Cu3 (BTC) 2 at ambient temperature and pressure: an efficient and environmentally friendly method[J]. Materials Letters, 2009, 63(1): 78-80. https://doi.org/10.1016/j.matlet.2008.09.010
  164. Sud D, Kaur G. A comprehensive review on synthetic approaches for metal-organic frameworks: From traditional solvothermal to greener protocols[J]. Polyhedron, 2021, 193: 114897. https://doi.org/10.1016/j.poly.2020.114897
  165. Garay A L, Pichon A, James S L. Solvent-free synthesis of metal complexes[J]. Chemical Society Reviews, 2007, 36(6): 846-855. https://doi.org/10.1039/b600363j
  166. Chen Y, Wu H, Yuan Y, et al. Highly rapid mechanochemical synthesis of a pillar-layer metal-organic framework for efficient CH4/N2 separation[J]. Chemical Engineering Journal, 2020, 385: 123836. https://doi.org/10.1016/j.cej.2019.123836
  167. Sakamoto H, Matsuda R, Kitagawa S. Systematic mechanochemical preparation of a series of coordination pillared layer frameworks[J]. Dalton transactions, 2012, 41(14): 3956-3961. https://doi.org/10.1039/c2dt12012g
  168. Friščić T, Reid D G, Halasz I, et al. Ion-and liquid-assisted grinding: improved mechanochemical synthesis of metal–organic frameworks reveals salt inclusion and anion templating[J]. Angewandte Chemie. International edition, 2010, 49(4): 712-715. https://doi.org/10.1002/anie.200906583
  169. Beldon P J, Fábián L, Stein R S, et al. Rapid room-temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry[J]. Angewandte Chemie-International Edition, 2010, 49(50): 9640-9643. https://doi.org/10.1002/anie.201005547
  170. Mingyuan F , Martin D , Didier C , et al. A Straightforward Method to Prepare MOF-Based Membranes via Direct Seeding of MOF-Polymer Hybrid Nanoparticles[J]. Membranes, 2023, 13(1): 65-65.
  171. https://doi.org/10.3390/membranes13010065
  172. Cheng C , Lingya F , Boya W , et al. MOF-Based Photocatalytic Membrane for Water Purification: A Review. [J]. Small (Weinheim an der Bergstrasse, Germany), 2023, 20(1): e2305066-e2305066. https://doi.org/10.1002/smll.202305066
  173. Carmen B , Aranza V , Izumi K , et al. Performance of TiOsub2/sub-Based Tubular Membranes in the Photocatalytic Degradation of Organic Compounds. [J]. Membranes, 2023, 13(4): 448. https://doi.org/10.3390/membranes13040448
  174. Yue J , Song L , Fan Y , et al. Thiophene‐Containing Covalent Organic Frameworks for Overall Photocatalytic H2O2 Synthesis in Water and Seawater[J]. Angewandte Chemie, 2023, 135(38): https://doi.org/10.1002/ange.202309624
  175. Jigar E S , Ferenc Á F , Tamás G , et al. Investigation of Photocatalytic PVDF Membranes Containing Inorganic Nanoparticles for Model Dairy Wastewater Treatment. [J]. Membranes, 2023, 13(7): https://doi.org/10.3390/membranes13070656
  176. Lee Y R, Kim J, Ahn W S. Synthesis of metal-organic frameworks: A mini review[J]. Korean Journal of Chemical Engineering, 2013, 30(9): 1667-1680. https://doi.org/10.1007/s11814-013-0140-6
  177. Xia T, Lin Y, Li W, et al. Photocatalytic degradation of organic pollutants by MOFs based materials: A review[J]. Chinese Chemical Letters, 2021, 32(10): 2975-2984. https://doi.org/10.1016/j.cclet.2021.02.058
  178. Pichon A, James S L. An array-based study of reactivity under solvent-free mechanochemical conditions—insights and trends[J]. CrystEngComm, 2008, 10(12): 1839-1847. https://doi.org/10.1039/b810857a
  179. Lopez Y C, Viltres H, Gupta N K, et al. Transition metal-based metal–organic frameworks for environmental applications: a review[J]. Environmental Chemistry Letters, 2021, 19(2): 1295-1334. https://doi.org/10.1007/s10311-020-01119-1
  180. Wang C C, Li J R, Lv X L, et al. Photocatalytic organic pollutants degradation in metal–organic frameworks[J]. Energy & Environmental Science, 2014, 7(9): 2831-2867. https://doi.org/10.1039/C4EE01299B
  181. Xu M, Huang H, Li N, et al. Occurrence and ecological risk of pharmaceuticals and personal care products (PPCPs) and pesticides in typical surface watersheds, China[J]. Ecotoxicology and environmental safety, 2019, 175: 289-298. https://doi.org/10.1016/j.ecoenv.2019.01.131
  182. N. Askari, M. Beheshti, D. Mowla, M. Farhadian, Chemosphere 251 (2020) 126453. https://doi.org/10.1016/j.chemosphere.2020.126453
  183. Lv S W, Liu J M, Zhao N, et al. Benzothiadiazole functionalized Co-doped MIL-53-NH2 with electron deficient units for enhanced photocatalytic degradation of bisphenol A and ofloxacin under visible light[J]. Journal of Hazardous Materials, 2020, 387: 122011. https://doi.org/10.1016/j.jhazmat.2019.122011
  184. Tang Y, Yin X, Mu M, et al. Anatase TiO2@ MIL-101 (Cr) nanocomposite for photocatalytic degradation of bisphenol A[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 596: 124745. https://doi.org/10.1016/j.colsurfa.2020.124745
  185. Cai C, Fan G, Du B, et al. Metal–organic-framework-based photocatalysts for microorganism inactivation: a review[J]. Catalysis Science & Technology, 2022, 12(12): 3767-3777. https://doi.org/10.1039/D2CY00393G
  186. Li R, Chen T, Pan X. Metal–organic-framework-based materials for antimicrobial applications[J]. ACS nano, 2021, 15(3): 3808-3848. https://doi.org/10.1021/acsnano.0c09617
  187. Xia P, Cao S, Zhu B, et al. Designing a 0D/2D S‐scheme heterojunction over polymeric carbon nitride for visible‐light photocatalytic inactivation of bacteria[J]. Angewandte Chemie International Edition, 2020, 59(13): 5218-5225. https://doi.org/10.1002/anie.201916012
  188. Liang Z, Wang H, Zhang K, et al. Oxygen-defective MnO2/ZIF-8 nanorods with enhanced antibacterial activity under solar light[J]. Chemical Engineering Journal, 2022, 428: 131349. https://doi.org/10.1016/j.cej.2021.131349
  189. Lv S W, Liu J M, Yang F E, et al. A novel photocatalytic platform based on the newly-constructed ternary composites with a double pn heterojunction for contaminants degradation and bacteria inactivation[J]. Chemical Engineering Journal, 2021, 409: 128269. https://doi.org/10.1016/j.cej.2020.128269
  190. Liu Y Y, Chen L J, Zhao X, et al. Effect of Topology on Photodynamic Sterilization of Porphyrinic Metal‐Organic Frameworks[J]. Chemistry–A European Journal, 2021, 27(39): 10151-10159. https://doi.org/10.1002/chem.202100920
  191. Gerba C P, Pepper I L. Municipal wastewater treatment[M]//Environmental and pollution science. Academic Press, 2019: 393-418. https://doi.org/10.1016/B978-0-12-814719-1.00022-7
  192. Sacco O, Vaiano V, Rizzo L, et al. Photocatalytic activity of a visible light active structured photocatalyst developed for municipal wastewater treatment[J]. Journal of Cleaner Production, 2018, 175: 38-49. https://doi.org/10.1016/j.jclepro.2017.11.088
  193. Lydakis-Simantiris N, Riga D, Katsivela E, et al. Disinfection of spring water and secondary treated municipal wastewater by TiO2 photocatalysis[J]. Desalination, 2010, 250(1): 351-355. https://doi.org/10.1016/j.desal.2009.09.055
  194. Szymański K, Morawski A W, Mozia S. Effectiveness of treatment of secondary effluent from a municipal wastewater treatment plant in a photocatalytic membrane reactor and hybrid UV/H2O2–ultrafiltration system[J]. Chemical Engineering and Processing-Process Intensification, 2018, 125: 318-324. https://doi.org/10.1016/j.cep.2017.11.015
  195. Pidou M, Parsons S A, Raymond G, et al. Fouling control of a membrane coupled photocatalytic process treating greywater[J]. Water Research, 2009, 43(16): 3932-3939. https://doi.org/10.1016/j.watres.2009.05.030
  196. Li P, Li J, Feng X, et al. Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning[J]. Nature communications, 2019, 10(1): 2177. https://doi.org/10.1038/s41467-019-10218-9
  197. Li Z, Wang L, Qin L, et al. Recent advances in the application of water-stable metal-organic frameworks: Adsorption and photocatalytic reduction of heavy metal in water[J]. Chemosphere, 2021, 285: 131432. https://doi.org/10.1016/j.chemosphere.2021.131432
  198. Costa M, Klein C B. Toxicity and carcinogenicity of chromium compounds in humans[J]. Critical reviews in toxicology, 2006, 36(2): 155-163. https://doi.org/10.1080/10408440500534032
  199. Kumar V, Singh V, Kim K H, et al. Metal-organic frameworks for photocatalytic detoxification of chromium and uranium in water[J]. Coordination Chemistry Reviews, 2021, 447: 214148. https://doi.org/10.1016/j.ccr.2021.214148
  200. Zhou Y C, Xu X Y, Wang P, et al. Facile fabrication and enhanced photocatalytic performance of visible light responsive UiO-66-NH2/Ag2CO3 composite[J]. Chinese Journal of Catalysis, 2019, 40(12): 1912-1923. https://doi.org/10.1016/S1872-2067(19)63433-9
  201. Zhao H, Xia Q, Xing H, et al. Construction of pillared-layer MOF as efficient visible-light photocatalysts for aqueous Cr (VI) reduction and dye degradation[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(5): 4449-4456. https://doi.org/10.1021/acssuschemeng.7b00641
  202. Wu Z, Huang X, Zheng H, et al. Aromatic heterocycle-grafted NH2-MIL-125 (Ti) via conjugated linker with enhanced photocatalytic activity for selective oxidation of alcohols under visible light[J]. Applied Catalysis B: Environmental, 2018, 224: 479-487. https://doi.org/10.1016/j.apcatb.2017.10.034
  203. Liang R, Shen L, Jing F, et al. Preparation of MIL-53 (Fe)-reduced graphene oxide nanocomposites by a simple self-assembly strategy for increasing interfacial contact: efficient visible-light photocatalysts[J]. ACS applied materials & interfaces, 2015, 7(18): 9507-9515. https://doi.org/10.1021/acsami.5b00682
  204. Gómez-Avilés A, Peñas-Garzón M, Bedia J, et al. Mixed Ti-Zr metal-organic-frameworks for the photodegradation of acetaminophen under solar irradiation[J]. Applied Catalysis B: Environmental, 2019, 253: 253-262. https://doi.org/10.1016/j.apcatb.2019.04.040
  205. Du X D, Yi X H, Wang P, et al. Robust photocatalytic reduction of Cr (VI) on UiO-66-NH2 (Zr/Hf) metal-organic framework membrane under sunlight irradiation[J]. Chemical Engineering Journal, 2019, 356: 393-399. https://doi.org/10.1016/j.cej.2018.09.084
  206. Guo W, Ngo H H, Li J. A mini-review on membrane fouling[J]. Bioresource technology, 2012, 122: 27-34. https://doi.org/10.1016/j.biortech.2012.04.089
  207. Zhang H, Wan Y, Luo J, et al. Drawing on membrane photocatalysis for fouling mitigation[J]. ACS Applied Materials & Interfaces, 2021, 13(13): 14844-14865. https://doi.org/10.1021/acsami.1c01131
  208. Mingjie C, Pengfei Y, Xiaoli Z, et al. Porphyrin-based Bi-MOFs with Enriched Surface Bi Active Sites for Boosting Photocatalytic CO2 Reduction. [J]. Chemistry (Weinheim an der Bergstrasse, Germany), 2023, 29(68): e202302395-e202302395. https://doi.org/10.1002/chem.202302395
  209. Moaness M , Sayed E M A S , Beherei H H , et al. Enhancing the Antifouling Properties of Alumina Nanoporous Membranes by GO/MOF Impregnated Polymer Coatings: In vitro Studies[J]. Journal of Functional Biomaterials, 2024, 15(3): https://doi.org/10.3390/jfb15030050
  210. Veetil A K, Husna A, Kabir H M, et al. Developing Mixed Matrix Membranes with Good CO 2Separation Performance Based on PEG-Modified UiO-66 MOF and 6FDA-Durene Polyimide[J]. Polymers, 2023, 15(22): 4442. https://doi.org/10.3390/polym15224442
  211. Tursi A , Beneduci A , Nicotera I , et al. MWCNTs Decorated with TiO 2as Highly Performing Filler in the Preparation of Nanocomposite Membranes for Scalable Photocatalytic Degradation of Bisphenol A in Water[J]. Nanomaterials, 2023, 13(16): https://doi.org/10.3390/nano13162325
  212. Yutian D, Lei L, Zhiqiang S, et al. Engineering Metal-Organic-Framework (MOF)-Based Membranes for Gas and Liquid Separation. [J]. Membranes, 2023, 13(5): https://doi.org/10.3390/membranes13050480
  213. Carmen B , Aranza V , Izumi K , et al. Performance of TiOsub2/sub-Based Tubular Membranes in the Photocatalytic Degradation of Organic Compounds. [J]. Membranes, 2023, 13(4): 448-. https://doi.org/10.3390/membranes13040448
  214. Mingyuan F, Martin D , Didier C , et al. A Straightforward Method to Prepare MOF-Based Membranes via Direct Seeding of MOF-Polymer Hybrid Nanoparticles[J]. Membranes, 2023, 13(1): 65-65. https://doi.org/10.3390/membranes13010065
  215. Yue J , Song L , Fan Y , et al. Thiophene‐Containing Covalent Organic Frameworks for Overall Photocatalytic H2O2 Synthesis in Water and Seawater[J]. Angewandte Chemie, 2023, 135(38): https://doi.org/10.1002/ange.202309624
  216. Cheng C , Lingya F , Boya W , et al. MOF-Based Photocatalytic Membrane for Water Purification: A Review. [J]. Small (Weinheim an der Bergstrasse, Germany), 2023, 20(1): e2305066-e2305066. https://doi.org/10.1002/smll.202305066
  217. Jigar E S , Ferenc Á F , Tamás G , et al. Investigation of Photocatalytic PVDF Membranes Containing Inorganic Nanoparticles for Model Dairy Wastewater Treatment. [J]. Membranes, 2023, 13(7): https://doi.org/10.3390/membranes13070656
  218. Assadi A A . Efficient Photocatalytic Luminous Textile for Simulated Real Water Purification: Advancing Economical and Compact Reactors[J]. Materials, 2024, 17(2): https://doi.org/10.3390/ma17020296
  219. Jie L , Ruilong Z , Lulu W , et al. Tannic Acid-Mediated Layered Double Hydroxide Hybridizing PVDF Superwetting Catalytic Membranes Constructed via Ion Diffusion-Induced Interfacial Self-Assembly for Boosting Water Purification[J]. Separation and Purification Technology, 2023, 319. https://doi.org/10.1016/j.seppur.2023.124051
  220. Song D , Zheng D , Li Z , et al. Research Advances in Wood Composites in Applications of Industrial Wastewater Purification and Solar-Driven Seawater Desalination[J]. Polymers, 2023, 15(24): 4712-. https://doi.org/10.3390/polym15244712
  221. Muhammad T , Amani O A , Ahmad K , et al. High Temperature Studies of Graphene Nanoplatelets-MOFs Membranes for PEM Fuel Cells Applications[J]. Key Engineering Materials, 2023, 695793-98.
  222. Jie L , Shuang W , Yi Z , et al. Photocatalytic reduction of CO2 by two-dimensional Zn-MOF-NH2/Cu heterojunctions[J]. Catalysis Communications, 2023, 175. https://doi.org/10.1016/j.catcom.2023.106613
  223. He W , Wang X , Guan J , et al. Membranes with Molecular Gatekeepers for Efficient COsub2/sub Capture and Hsub2/sub Purification. [J]. ACS applied materials & interfaces, 2024, https://doi.org/10.1021/acsami.4c03088
  224. Guo N S , Wang D , Wang X J . ZIF-8@CsPbBrsub3/sub Nanocrystals Formed by Conversion of Pb to CsPbBrsub3/sub in Bimetallic MOFs for Enhanced Photocatalytic COsub2/sub Reduction. [J]. Small methods, 2024, e2301508-e2301508. https://doi.org/10.1002/smtd.202301508
  225. YongLi D , Yu J , Shuang N , et al. Ligand Defect-Induced Active Sites in Ni-MOF-74 for Efficient Photocatalytic COsub2/sub Reduction to CO. [J]. Small (Weinheim an der Bergstrasse, Germany), 2023, 20(23): e2308005-e2308005. https://doi.org/10.1002/smll.202308005
  226. Badiaa B , Slimane H , Seddik B B , et al. MOF-5/Graphene Oxide Composite Photocatalyst for Enhanced Photocatalytic Activity of Methylene Blue Degradation Under Solar Light[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2023, 33(12): 4001-4011. https://doi.org/10.1007/s10904-023-02668-y
  227. Jianguo B , Jun W , Hao Z , et al. Modulating Photoinduced Electron Transfer between Photosensitive MOF and Co(II) Proton Reduction Sites for Boosting Photocatalytic Hydrogen Production. [J]. Small (Weinheim an der Bergstrasse, Germany), 2023, 19(48): e2305024-e2305024. https://doi.org/10.1002/smll.202305024
  228. Siddique A , Nawaz H , Razzaque S , et al. PVDF-Based Piezo-Catalytic Membranes—A Net-Zero Emission Approach towards Textile Wastewater Purification[J]. Polymers, 2024, 16(5): 699. https://doi.org/10.3390/polym16050699
  229. R. S G, A. S S , R. G C, et al. Exploration of aqueous electrolyte on the interconnected petal-like structure of Co-MOFs for high-performance paper-soaked supercapacitors[J]. Electrochimica Acta, 2023, 467. https://doi.org/10.1016/j.electacta.2023.143027
  230. DemirH, KeskinS . A New Era of Modeling MOF‐Based Membranes: Cooperation of Theory and Data Science[J]. Macromolecular Materials and Engineering, 2023, 309(1). https://doi.org/10.1002/mame.202300225
  231. Huang Y N, Li B , Wu D , et al. Crystal Engineering of MOF-Derived Bimetallic Oxide Solid Solution Anchored with Au Nanoparticles for Photocatalytic CO2 Reduction to Syngas and C2 Hydrocarbons. [J]. Angewandte Chemie (International ed. in English), 2024, 63(21): e202319177-e202319177. https://doi.org/10.1002/anie.202319177
  232. Hirschle P, Preiß T, Auras F, et al. Exploration of MOF nanoparticle sizes using various physical characterization methods–is what you measure what you get?[J]. CrystEngComm, 2016, 18(23): 4359-4368. https://doi.org/10.1039/C6CE00198J
  233. Sumei M, Xiaoxia X, Qianqian S, et al. Heterogeneous junction Ni-MOF@BiOBr composites: Photocatalytic degradation of methylene blue and ciprofloxacin[J]. Solid State Sciences, 2023, 138. https://doi.org/10.1016/j.solidstatesciences.2023.107135
  234. Yingzhang S, Taikang W, Zhiwen W , et al. Photocatalytic precise hydrogenation of furfural over ultrathin Pt/NiMg-MOF-74 nanosheets: Synergistic effect of surface optimized NiII sites and Pt clusters[J]. Applied Surface Science, 2023, 616. https://doi.org/10.1016/j.apsusc.2023.156553
  235. Kuate N J L, Chen Z, Lu J, et al. Photothermal-Assisted Photocatalytic Degradation of Tetracycline in Seawater Based on the Black g-C 3 N 4Nanosheets with Cyano Group Defects[J]. Catalysts, 2023, 13(7): 1147. https://doi.org/10.3390/catal13071147
  236. Xuesong L, Linyan Y, Jaume T, et al. Engineering Ultra-Permeable and Antifouling Water Channel-based Biomimetic Membranes toward Sustainable Water Purification[J]. Journal of Membrane Science Letters, 2023, 3(2): https://doi.org/10.1016/j.memlet.2023.100049
  237. Xianqi C, Zihao W, Yaqiong L, et al. Modulating the Conduction Band of MOFs by Introducing Tiny TiOsub2/sub Nanoparticles for Enhanced Photocatalytic Performance: Importance of the Loading Position. [J]. Inorganic chemistry, 2023, 62(27): Angela S, CorneliaIoana I, Georgiana D, et al. The Development of Alginate/Ag NPs/Caffeic Acid Composite Membranes as Adsorbents for Water Purification. [J]. Membranes, 2023, 13(6): 591. https://doi.org/10.3390/membranes13060591
  238. Leila T, Rahmatollah R, Reza A A . Enhanced Photocatalytic COsub2/sub Reduction by Novel Designed Porphyrin-Based MOFs: From Accurate QSPR Model to Experimental Exploration. [J]. ACS omega, 2022, 7(45): 40869-40881. https://doi.org/10.1021/acsomega.2c03724
  239. Lan D, Yongping D, Fenghua B, et al. In Situ Growth of Cssub3/subBisub2/subBrsub9/sub Quantum Dots on Bi-MOF Nanosheets via Cosharing Bismuth Atoms for COsub2/sub Capture and Photocatalytic Reduction. [J]. Inorganic chemistry, 2023, 62(5): https://doi.org/10.1021/acs.inorgchem.2c04041
  240. Lin W, Hongyan Z, Zhoujie Z, et al. Highly Efficient and Selective Visible-light Photocatalytic CO2 Reduction to CO Using a 2D Co(II)-Imidazole MOF as Cocatalyst and Ru(bpy)3Cl2 as Photosensitizer. [J]. Chemistry, an Asian journal, 2023, 18(15): e202300297-e202300297. https://doi.org/10.1002/asia.202300297
  241. Zhu G, Yi J, Song Y, et al. Interfacial Ti-S Bond Modulated S-scheme MOF/CTF Nanosheet Heterojunctions for Photocatalytic C-H Functionalization. [J]. Angewandte Chemie (International ed. in English), 2023, 62(27): e202304173-e202304173. https://doi.org/10.1002/anie.202304173
  242. Zhang S, Han D, Wang Z, et al. Bi-Doped and Bi Nanoparticles Loaded CeOsub2/sub Derived from Ce-MOF for Photocatalytic Degradation of Formaldehyde Gas and Tetracycline Hydrochloride. [J]. Small (Weinheim an der Bergstrasse, Germany), 2024, e2309656-e2309656. https://doi.org/10.1002/smll.202309656
  243. Faheeda S, Hussain F M, Ali M K , et al. Ultrathin Graphene Oxide-Based Nanocomposite Membranes for Water Purification [J]. Membranes, 2023, 13(1): 64-64. https://doi.org/10.3390/membranes13010064
  244. Hanhua C, Ren M, Yifan Z, et al. A Stable Triphenylamine-Based Zn(II)-MOF for Photocatalytic Hsub2/sub Evolution and Photooxidative Carbon-Carbon Coupling Reaction. [J]. Inorganic chemistry, 2023, 62(20):
  245. https://doi.org/10.1021/acs.inorgchem.3c00763
  246. Vevers R , Kulkarni A , Seifert A , et al. Photocatalytic Zinc Oxide Nanoparticles in Antibacterial Ultrafiltration Membranes for Biofouling Control[J]. Molecules, 2024, 29(6): https://doi.org/10.3390/molecules29061274
  247. Valverde A , Luis F R , Salazar H , et al. On The Multiscale Structure and Morphology of PVDF‐HFP@MOF Membranes in The Scope of Water Remediation Applications [J]. Advanced Materials Interfaces, 2023, 10(31): https://doi.org/10.1002/admi.202300424
  248. Marida B, Catia A, Sudip C, et al. Application of Turbiscan Stability Index for the Preparation of Alumina Photocatalytic Membranes for Dye Removal. [J]. Membranes, 2023, 13(4): https://doi.org/10.3390/membranes13040400
  249. Xiao Yu Z, Peng W, Ya Z, et al. Facet-Dependent Photocatalytic Behavior of Fe-soc-MOF for Carbon Dioxide Reduction. [J]. ACS applied materials & interfaces, 2023, Ou R, Zhang H, Truong V X, et al. A sunlight-responsive metal–organic framework system for sustainable water desalination[J]. Nature Sustainability, 2020, 3(12): 1052-1058. https://doi.org/10.1038/s41893-020-0590-x
  250. Zhao X, Jiang Y, Wang T, et al. Photothermal-photocatalytic route of MOF-based membrane with nanosheet array structures for solar-driven water purification[J]. Chemical Engineering Journal, 2023, 475: 146268. https://doi.org/10.1016/j.cej.2023.146268
  251. Wei D, Ouyang B, Dong H, et al. Engineered 3D ordered porous carbon anchored with ultrafine Ag nanoparticles via facile galvanic replacement for advanced electrochemical deionization[J]. Journal of Energy Chemistry, 2025. https://doi.org/10.1016/j.jechem.2025.05.003
  252. Abdullah N, Yusof N, Ismail A F, et al. Insights into metal-organic frameworks-integrated membranes for desalination process: A review[J]. Desalination, 2021, 500: 114867. https://doi.org/10.1016/j.desal.2020.114867
  253. Zhao X, Jiang Y, Wang T, et al. Photothermal-photocatalytic route of MOF-based membrane with nanosheet array structures for solar-driven water purification[J]. Chemical Engineering Journal, 2023, 475: 146268. https://doi.org/10.1016/j.cej.2023.146268
  254. HongBin L, Fang Ru L, Zhi Yuan L, et al. MOF-Polymer Mixed Matrix Membranes as Chemical Protective Layers for Solid-Phase Detoxification of Toxic Organophosphates. [J]. ACS applied materials & interfaces, 2023, 15(2): https://doi.org/10.1021/acsami.2c18691