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On The Shortest Collision-Free Path Planning for Manipulator 
Based on Circular Obstacle Region 

An Kai* 

Shandong Aerospace Electro-technology Institute, Shandong Yantai, 264670, China 
Abstract: A model of collision-free path planning for manipulator’s end-effectors based on circular obstacle regions and 
its corresponding algorithm to search the shortest collision-free path are presented in this paper. As the shortest one, the 
shortest collision-free path can be found from all the relative shortest collision-free paths whose definition and properties 
are provided as well in this paper. In order to find the relative shortest collision-free path, some algorithms on finding the 
common tangent of two circles and checking whether it lies on a certain relative shortest collision-free path are given. 
The searching algorithm of the shortest collision-free path is formed by integration of the algorithms. The searching 
algorithm does not contain any iterative procedure, and consequently it can effectively establish shortest collision-free 
paths for an acceptable short time. The searching algorithm can also avoid the trap of local minimum, and obtain the 
shortest collision-free path represented by a smooth and continuous curve connecting starting point and target point of 
the manipulator’s end-effectors. In order to deal with the collision-free path planning based on non-circular obstacle 
regions, the concept of expanded circle is introduced, and the above-mentioned collision-free path planning method 
based on circular obstacle regions is generalized to non-circular obstacle regions. To resolve the intersection problem of 
the expanded circles, a method to surround an obstacle region by multi-circles and their common tangent segments is 
given in this paper. 

Keywords: Manipulator, collision-free, path planning, circular obstacle region. 

INTRODUCTION 

Mobile robots are of great importance to 
applications that involve inhospitable or remote 
environments, inaccessible or dangerous to humans. 
Typical examples can be found in manufacturing, 
space exploration, security, medical surgery and the 
assistance of movement for the elder and handicapped 
people etc [1]. Although robots exist that use legs for 
locomotion, the most common terrestrial and space 
exploration robot platforms are wheeled. Tasks that go 
beyond inspection require a manipulator on-board. 

Considering that a manipulator has to accomplish 
tasks by moving its end-effectors in the environment 
with ineluctable obstacles [2-4], it is essential for a 
manipulator to plan a collision-free path automatically. 

 The collision-free path planning problem is an 
optimization problem with the objective of computing an 
appropriate path between two specific locations. A 
feasible path is a path which does not collide with 
obstacles in the environment, regardless of different 
existing constraints that can be applied. 

There are many ways to solve the obstacle 
avoidance problem of a manipulator, the most 
commonly used are the grid-based A* algorithm [5, 6], 
road maps [7], cell decomposition [8, 9] and artificial 
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potential field [10]. However, these methods are not 
perfect that every method has its own advantages and 
inevitable shortcomings. Artificial potential field method 
was proposed in 1986 by Dr. Khatib, and this method is 
first used in collision-free path planning for 
manipulators, and realized the real time obstacle 
avoidance. The main idea of artificial potential field 
method is establish attractive force potential field 
around target point and establish repulsive potential 
field around obstacles. The two potential fields together 
formed a new potential field, called artificial potential 
field. It searches for the falling direction of potential 
function to find a collision-free path which is built from 
the start point to target point. Because it is simple and 
intuitionistic, and uses little computation and small data 
storage space for planning collision-free paths and the 
path is smooth and secure. So the artificial potential 
field has been widely used. Then the artificial potential 
field method is a local planning method, which is 
difficult to plan the global optimal path. Algorithm itself 
also couldn’t solve all local minimum problems. When 
the obstacle is very close to the target point or the 
robot on the straight line between target point and the 
obstacles, the robot will oscillate in front of the obstacle 
or be pushed by repulsion.  

Grid method is more widely used in path planning. It 
divides environment space into several simple areas, 
called grids. Each cell is marked as an obstacle or a 
non-obstacle one based on the actual position of the 
obstacles. By such representation, the path can be 
defined as a consecutive sequence of grids which 
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begins at the start grid and ends at the destination grid. 
In this way, there are many different algorithms 
developed such as: graph search methods [11], A* 
algorithm, ant colony [12] and genetic algorithm  
[13, 14] are some of these approaches. Grid method 
can provide the shortest collision-free path from the 
original starting point to the original target, but it cannot 
automatically give the smoothest path. Moreover, the 
shortest collision-free path provided by the method 
depends on the size of the grids, different sizes of the 
grids will cause different shortest collision-free path. On 
the other hand, the corresponding path searching 
algorithms, such as ant colony and genetic algorithm, 
require an iterative procedure, which can be time-
consuming, and therefore it is difficult to guarantee the 
searching speed and precision. Especially these 
searching algorithms lack hill-climbing [15-17] capacity, 
and can easily fall in a trap of local minimum. 

In computational geometry, the obstacles are 
modeled as polygons with disjoint interiors [18], which 
means that it is impossible for the shortest collision-free 
path to be a smooth curve. In this paper, a model of 
collision-free path planning for manipulator’s end-
effectors based on circular obstacle region and the 
corresponding algorithm to search the shortest 
collision-free path are presented in detail. The 
searching algorithm does not contain any iterative 
procedure, can avoid the trap of local minimum, and 
obtains the shortest collision-free path represented by 
a smooth and continuous curve connecting starting 
point and target point of the manipulator’s  
end-effectors. 

1. THE GEOMETRIC MODEL OF COLLISION- FREE 
PATH 

In this section we introduce some of the basic 
notions and techniques used in collision-free path 
planning. The general collision-free path planning 
problem is quite difficult, and we shall make some 
simple assumptions.  

The most drastic simplification is that we will look at 
a 2-dimensional collision-free path planning problem. 
The environment will be a planar region with circular 
obstacles. We assume that the radius of circles is large 
enough such that the manipulator’s end-effectors can 
move along the circles without colliding with any of the 
obstacles. Considering that the presence of some 
circles region has no influence on the shortest collision-
free path, we also assume that the projection of the 
center of each circle on the straight line connecting 

starting point and target point always lies between the 
two points. 

As shown in Figure 1, we denote the obstacles by 
disjoint circles with centers 

 
O
1
,!,O

n
 and radii 

 
r
1
,!, r

n
 

respectively, and we denote starting point and end 
point of the manipulator’s end-effectors by p

s
 and p

e
. 

 
Figure 1: An obstacle avoidance path model of manipulator 
based on circular obstacle regions. 

For two fixed points p
s
 and p

e
, there are many 

collision-free path connecting them, which lie outside 
the obstacle regions, the projection of the obstacle on 
the planning plane. Therefore a collision-free path can 
partition the n  disjoint circles into two groups, called a 
partition of the n  disjoint circles generated by the 
collision-free path. Conversely, for each partition of the 
n  disjoint circles, there are infinite collision-free path 
which can generate such a partition, one of them is the 
shortest collision-free path with respect to the partition, 
called relative shortest collision-free path with respect 
to the partition, or relative shortest collision-free path 
simply when no confusion is possible. Apparently the 
shortest collision-free path is the shortest one of all the 
relative shortest collision-free paths. 

For any partition of the n  disjoint circles, we will 
study the properties of relative shortest path. We can 
visualize what the relative shortest path looks like by a 
thought experiment. Imagine that the n  disjoint circles 
are columns sticking out of the plane, take an elastic 
rubber band whose two endpoints are fixed at points 
p
s
 and p

e
 respectively, hold it around the columns, 

and let it go. It will snap around the columns, 
minimizing its length. The path shown by the elastic 
rubber band is the relative shortest collision-free path 
with respect to the partition. This discloses an 
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important property of a relative shortest collision-free 
path: it is a curve formed by the straight line segments 
and arc segments being connected alternately, whose 
first and last segments are all straight line segment. In 
particular, if the straight line segment p

s
p
e
 does not 

intersect each of the n  circles, then the straight line 
segment p

s
p
e
 is the shortest collision-free path.  

In this paper, the direction of a path or its sub-path 
connecting two points on the path is defined as the one 
from starting point and end point. 

2. SOME PROPERTIES OF RELATIVE SHORTEST 
COLLISION-FREE PATH  

In order to find a relative shortest collision-free path, 
it is useful to be aware of some properties of the 
relative shortest collision-free path. These properties 
include: 

Property 2.1. For any relative shortest collision-free 
path, the straight line segment is tangent to the arc 
segment at their join point. 

 
Figure 2: Connection of straight line and arc. 

Proof: Actually, as shown in Figure 2, suppose for a 
contradiction that path st ' tp  is a sub-path of a relative 
shortest collision-free path L , and straight line 
segment st '  is not tangent to arc segment t ' p  at their 
join point t ' . Then there is another straight line 
segment st  that is tangent to the arc segment t ' p  at 
their join point t . Since the total number of circles is 
finite, if point s  is close to the circle adequately, 
straight line segment st  will not intersect the other 
circles, and yet path stp  is shorter than st ' tp . This 
contradicts the optimality of L , since any shortest path 
must be locally shortest, that is, any sub-path 
connecting points s  and p  on the path must be the 
shortest path from s  to p . 

However, property 1 gives only a necessary 
condition for a path to be a relative shortest collision-
free path. Actually, as shown in Figure 3, for the sub-
path t

1
t
2
pt
3
t
4

, straight line segment t
1
t
2

 is tangent to 
arc segment t

3
pt
3
 at their join point 

2
t , and straight line 

segment t
3
t
4

 is tangent to arc segment t
3
pt
3
 at their 

join point t
3
. But directed straight line segment t

1
t
2

 
points to the counterclockwise direction of circle O , 
and directed straight line segment t

3
t
4

 points to the 
clockwise direction of circle O . Before state other 
properties, we give the following definition firstly: 

2.1. Definition  

As shown in Figure 3, two directed tangent 
segments of the circle (or arc) O are called consistent 
with respect to circle(or arc) O , if they point to the 
same direction of circle(or arc) O . 

By definition 2.1, two directed tangent segments of 
the arc t

2
t
3
, or directed straight line segments t

1
t
2

 and 
t
3
t
4

 are not consistent with respect arc t
2
t
3
. So we 

have: 

Property 2.2. For any relative shortest collision-free 
path, if two straight line segments are tangent to an arc 
segment C  at their join point, then the two straight line 
segments are consistent with respect the arc  
segment C . 

Proof: As shown in Figure 3, suppose for a 
contradiction that path t

1
t
2
pt
3
t
4

 is a sub-path of a 
relative shortest collision-free path L , p '  is a point in 
straight line segment t

3
t
4

. Since the total number of 
circles is finite, if two points p  and p '  are close to 
point t

3
 adequately, straight line segment pp '  will not 

intersect the other circles, and the path t
1
t
2
pp ' t

4
 will be 

shorter than path t
1
t
2
pt
3
t
4

. This contradicts the 
optimality of L , since any shortest path must be locally 
shortest, that is, any sub-path connecting points t

1
 and 

t
4
 on the path must be the shortest path from t

1
 to t

4
. 

 
Figure 3: Connection of the arc and its two tangents (1). 

If two straight line segments are tangent to an arc 
segment C  at their join point, in order to test whether 
they are consistent, we first have to know whether the 
two straight line segments point to the same direction 
of arc C . 

Then the direction vector of the directed straight line 
segment 

21
tt  can be expressed as; 
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But for the directed straight line segment t
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,its 
direction vector can be expressed as 
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In fact, inequality (1) means that directed straight line 
segment t

1
t
2

 points to the counterclockwise direction of 
circle O , but inequality (2) means that directed straight 
line segment t

3
t
4

 points to the clockwise direction of 
circle O . Using the above determinant-based 
inequalities we can conclude that the two directed 
straight line segments point to the different direction of 
circle O . 

Property 2.3. For any relative shortest collision-free 
path, each of its arc segments must be an inferior arc. 

Proof: As shown in Figure 4, the arc t
2
p ' t

3
 is a 

superior arc, and the arc t
2
pt
3
 is an inferior arc. It is 

impossible for the path t
1
t
2
p '' t

3
t
4

 to be a sub-path of a 
relative shortest collision-free path L , since path 
t
1
t
2
pt
3
t
4

 is a shorter path from t
1
 to t

4
. 

 
Figure 4: Connection of the arc and its two tangents (2). 

Apparently, path t
1
t
2
pt
3
t
4

 is not a sub-path of any 
relative shortest collision-free path according to the 
proof of property 2.2. 

Property 2.4. A relative shortest collision-free path 
intersects each of the circles at most once. 

Proof: Suppose for a contradiction that a relative 
shortest collision-free path L  intersects the circle O  
twice. As shown in Figure 5, suppose the path 
intersects the circle O  in arc t

2
t
3
 for the first time, 

since it can not contain any ring, it has to intersect the 
rest part of the circle O  at a point p , for example. The 
dashed in Figure 5 denotes an arbitrary sub-path from 
t
4
 to p . However the path t

1
t
2
t
3
p  is shorter than path 

t
1
t
2
t
3
t
4
p . This contradicts the definition of optimality  

of L . 

 
Figure 5: A path intersecting the circle twice. 

3. SOME ALGORITHM ON FINDING THE COMMON 
TANGENT 

From property 2.1 we know that in a relative 
shortest collision-free path, the straight line segment is 
tangent to arc segment at their join point, thereby two 
arc segments have to be connected by their common 
tangent. Finding all the common tangents in a relative 
shortest collision-free path is equivalent to finding 
relative shortest collision-free path. Therefore some 
algorithm on finding the common tangent of circles will 
be given in this section.  

3.1. Circle’s tangents passing through a point 
outside the circle 

As shown in Figure 6, p(x, y)  is a point outside of 
the circle with center O

1
 and radii r

1
, pp '  is a tangent 

of circle O
1
 passing through p(x, y) , it makes !  

degree angles with the positive x-axis. Then the 
coordinates of tangent point p '  can be expressed as 
(r
1
cos!, r

1
sin! ) . For the purpose of finding the tangents 

passing through p(x, y) , it is sufficient to find the two 
tangent segments. 

Since the vector (r
1
cos!, r

1
sin! )  is perpendicular to 

the vector 
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and then for the circle center O
1
 and radii r

1
, its two 

tangent points passing through p(x, y) can be 
expressed as 
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1
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1
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3.2. Exterior Common Tangents of Two Circles 

As shown in Figure 7, O  is the intersection point of 
the two inner common tangents of the two circles with 
centers O

1
, O

2
 and radii 

1
r , 

2
r . For the purpose of 

finding the exterior common tangents of two circles, it is 
sufficient to find the intersection points of each exterior 
common tangent and two circles. 

 
Figure 7: Exterior common tangents of two circles. 

The coordinates of intersection point can be 
expressed as 
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Combining the last equation with equation (1), we 
conclude that the intersection point coordinates of the 
two inner common tangents of the two circles can 

 

Figure 6: Tangents passing through a point in outside of the 
circle. 
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always be expressed equation (1), whether 
1
r  is bigger 

than 
2
r  or not. 

After finding the intersection point of the two exterior 
common tangents, we can find the intersection points 
of each exterior common tangent and two circles using 
the method in sub-section 3.1.  

3.3. Inner common tangents of two circles 

As shown in Figure 7, ),( yxO  is the intersection 
point of the two inner common tangents of the two 
circles,  

),,,,(),(),,( 11112121111 ryxyxTPyxyx !  

and 

),,,,(),(),,( 22222222121 ryxyxTPyxyx !  

denote two tangent points of inner common tangents is 
circles 

1
O  and 

2
O  respectively, then 
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where !  is a constant need to be determined. Now 
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After finding the intersection point of the two inner 
common tangents, we can find the four intersection 
points of two inner common tangents and two circles 
using the method in sub-section 3.1, that is ),,( 1111 yx  

),( 1212 yx , ),( 2121 yx  and ),( 2222 yx . 

We can conclude that ),( 1111 yx  and ),( 2121 yx  are 
two points on same inner common tangent if vectors 

),(),( 111111 yxyx !  is parallel to vector ),(),( 212111 yxyx ! . 

Using the above algorithms we can find all common 
tangents of any two circles. 

4. SHORTEST COLLISION-FREE PATH 
ALGORITHM  

For the problem of shortest collision-free path 
planning presented in section 1, we will give an 
algorithm to find the shortest collision-free path 
automatically in this section. In order to make it 
convenient to depict the algorithm, we first give the 
following definition. 

4.1. Definition 

A common tangent segment of two circles is called 
a collision-free common tangent segment, if it does not 
intersect any other circle.  

By regarding the point as a circle with radii zero, the 
definition is the same with tangent of a circle and a 
point. Therefore, a relative shortest collision- free path 
is acyclic curve, whose any two adjacent collision-free 
common tangent segments are consistent with respect 
the arc between them. If the endpoints of collision-free 
common tangent segments once are provided orderly, 
a relative shortest collision-free path will be 
determined, and so a relative shortest collision-free 
path can be represented by a sequence of points. For 
example, the relative shortest collision-free path 
passing through sp , circles k

OO ,,1 !  and ep  orderly 
can be represented as, 

{ }ekks pttttpL ,,,,,, 21221 !
= !  

where points 
12 !i

t  and 
i
t
2

 are intersection points of the 
circle

i
O  and two collision-free common tangent 

segments 
1222 !! ii

tt  and 
122 +ii

tt ( ki ,,2,1 != ), they are 
connected by an arc segment with center 

i
O  and  

radii 
i
r . 

4.2. Definition  

In a relative shortest collision-free path L , the sub-
path from a collision-free common tangent segment to 
end point ep  is called a remainder path, and the 
number of straight line segments contained in path L is 
called the index of the path L . 

Actually, for any relative shortest collision-free path 
and ki ,,2,1 != , if we regard the point 

12 !i
t  as a node, 

and the length of path 
12212 +! iii

ttt  as the weight of the 
path, Dijkstra shortest path algorithm [19, 20] and its 
improved algorithm [21] can be used to find the 
shortest collision-free path. Let l  denote a variable 
upper bound of the shortest collision-free path length 
with a large enough initial value. We first connect 
points sp  and ep , and obtain a directed straight line 
segment es pp . If the straight line segment es pp  does 
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not intersect the n  circles, we take the value of l equal 
to the length of the straight line segment es pp . Then 
we have found the shortest collision-free path from sp  
to ep  with length l . Otherwise, we need to find all the 
remainder paths with index 1 and length less than l .  

For each of the n  circles, we can find its collision-
free common tangents passing through the end point 
ep  using the approach produced in sub- section 3.1. 

Denote the remainder paths with index 1 and length 
less than l  by 

 
t
1k , pe k = 1, 2,!, i1{ }           (1) 
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arc, then path { }ekiks pttp ,,'', 1  is a relative shortest 
collision-free path. Furthermore, if its length is smaller 
than l , we take the value of l  equal to the length of 
the path. Apparently, if the value of l  once is changed, 
it will represent the length of the shortest collision-free 
path has been found. 

By property 2.4, a relative shortest collision-free 
path intersects each of the circles at most once, so the 
starting points of the remainder path with index 2 and 
sub-path ek pt1  lie on circle with centers in set 
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index 2 and length less than l . 

For 2,,1 ii != , considering the collision-free 
common tangent segments '

2sstp  of circle 
i

O
2

 and 
starting point sp , where '

2s
t  lies on the circle 

i
O
2

. If 
'
2sstp  and '

12 ii
tt  are consistent, and the arc 

is
tt
22
'  is an 

inferior arc, then path { }ekiiss pttttp ,,',,', 1122  is a relative 
shortest collision-free path. If its length is smaller than 
l , we take the value of l  equal to length of the path. 

By property 2.4, the starting points of the remainder 
path with index 3 lie on circle with centers in set 

 
O
i
i = 1,!,n{ } ! O

1k
,O

2i{ } . For  

 
O
31
! O

i
i = 1,!,n{ } " O

1k
,O

2i{ }  

let '
2131
tt  be a collision-free common tangent segment 

of circles 
31
O  and 

i
O
2

, where 
31
t  and '

21
t  lie on the 

circles 
31
O  and 

i
O
2

 respectively. If the tangent 
segment '

2131
tt  may be connected to many sub-paths 

given in expression (2) to form the remainder paths 
with index 3, we delete other sub-paths except the 
shortest one, such that starting from the tangent 
segment '

2131
tt , there is only a remainder path with 

index 3. Denote the remainder paths with index 3 and 
length less than l  by 

 
t
3 j
, t
2 j
', t

j (2)
, t

j (1)
', t

j (1)
, p

e
j = 1, 2,!, i

3{ }         (3) 

where 
3
i  represents the number of remainder paths 

with index 3 and length less than l . 

We need to repeat this process until we obtain a 
positive integer N , such that 0,,0 11 >>

!N
ii ! , 0=

N
i . 

Since equation 0=
N
i  means that except the path 

found with length l , the remainder path with index N  
does not exist or its length is bigger than l . Then the 
path with length l  is the shortest collision - free path. 
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5. ALGORITHM DESCRIPTION IN A STYLE OF 
PSEUDO-CODE  

Denote the shortest one of the index v remainder 
paths starting from the straight line segment ')1( ivvi

tt
!

 to 

end point ep  by )(v
i
s . Using the algorithms given in 

Section 3, we can obtain )1( +v

i
s ),,1( 1+=

v
ii !  from )(v

i
s  

),,1(
v
ii != , as shown in Section 4. The process can 

be expressed as the following operator: 

),(ExtendPath),( )()(
1

)1()1(
1

1

v

i

vv

i

v

vv

ssss !! =
++

+

 

For example in Section 4, 

{ }11
)1()1(

1 ,,2,1,),(
1

ikptss eki
!! ==  

!"

!
#
$

!%

!
&
'

+== ((
=

)

=

k

r

r

k

r

rekii jjiikpttt

1

1

1

1112 ,,1,,,2,1,,', !!  

{ }11 ,,2,1,ExtendPath ikpt ek !==  

Using the above operator, the pseudo-code for the 
shortest collision-free path algorithm is as follows. 

Input. n  circles with centers
n
OO ,,1 ! and radii 

n
rr ,,1 !  respectively, the starting point sp  and the end 

point ep of the manipulator’s effectors. 

Output. The shortest collision-free path s  from 
starting point sp  to end point ep . 

1. Initialize l  as a constant bigger than the length 
of some a path from sp  to ep . 

2. If the straight line segment es pp  does not 
intersect the n  circles, let l  be equal to the 
length of the straight line segment es pp . Then 
let { }es pps ,= , go to step 7. 

3. Find all the remainder paths with index 1 and 
length less than l , denote them by 

)1(
i
s  ),,1( 1ii != . 

Let 1=v , ei pt ='
0

),,1( 1ii != . 

4. If 0=
v
i , go to step 10. 

5. For 
v
ii ,,1!= , if ''vistp  and ')1( ivvi

tt
!

 are 

consistent, and the arc 
vivi
tt ''  is an inferior arc, 

Then let  

s = p
s
, t
vi
'', s

i

(v){ } , 

and let l  be equal to the length of path s . 

6. Compute 

),(ExtendPath),( )()(
1

)1()1(
1

1

v

i

vv

i

v

vv

ssss !! =
++

+

. 

Set 1+! vv , go to step 4. 

7. Input s . 

 

Figure 8: Inner common tangents of two circles. 

6. SIMULATION 

The shortest collision-free path problem is shown in 
Figure 7. In Figure 7, different line types represent the 
starting tangent segment of a remainder path with 
different index. Some of these tangent points have 
been lined out in Figure 7. According to index order, 
the centers of the circles on which the starting points of 
remainder paths lie are given as follows 

51211
OOO ==  

61413
OOO ==  

{ } { }43222 ,,,,2,1 OOOikO
k

== !  

{ } { }43233 ,,,,2,1 OOOikO
k

== !  

{ } { }144 ,,2,1 OikO
k

== !  

After all starting points of remainder paths index 2 are 
obtained, we take the value of l  equal to the length of 
path { }ess pttttp ,,',,', 1416262 . After all starting points of 
remainder paths index 4 are obtained, we take the 
value of l  equal to the length of path 

{ }es pttttttttp ,,',,',,',,', 1314242131314141  
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Figure 9: An algorithm sketch map of shortest collision-free 
path. 

After this, the lengths of all remainder paths with 
index 5 are bigger than l , which means 0

5
=i . So the 

shortest collision-free path is 

{ }es pttttttttp ,,',,',,',,', 1314242131314141  

7. THE GENERALIZATION TO THE SLENDER 
OBSTACLE REGION 

In the previous sections, we assume that the 
obstacle regions are n  disjoint circles. But not all of the 
obstacle regions are circular in general. Expanding 
each of the non-circular obstacle regions into a circle 
and replacing the original obstacle regions by the 
circles, we can still obtain n  circles. As long as the n  
circles are disjoint, a shortest collision-free path based 
on the n  disjoint circles can be found using the method 
given in previous sections. However, if the original 
obstacle region is slender, its expanded circle will be 
possible to intersect the other circles as shown in 
Figure 10, where two obstacle regions are expanded 
into two intersectant circles 

1
O  and 

2
O . In order to 

ensure that all the circles will not intersect, we will 
expand the obstacle region A  in Figure 10 into the 
region surrounded by two circles 

3
O , 

3
O  and their two 

exterior common tangent segments 
1
L  and 

2
L . The 

circles 
1
O , 

3
O  and 

3
O  will be called expanded circles. 

However, it should be pointed out that the “slender” 
obstacle region is a relative concept relevant to the 
distribution of its neighbouring obstacle regions. After 
an obstacle region is expanded into a circle, if the circle 
does not intersect any expanded circle, it is not 
necessary to consider it as a slender obstacle region. 

In the path planning process, the obstacle region A  
can be replaced by the two circles 

3
O  and 

4
O , but 

then, an additional restriction needs to be appended to 
the common tangent segments in path, that is, except 
for the complete coincidence cases they do not 
intersect the two tangent segments 

1
L  and 

2
L . In fact, 

if each common tangent segments in path do not 
intersect 

1
L  and 

2
L , the path will not traverse the 

obstacle region A  in Figure 10. 

For each slender obstacle region we can find two 
circles and their two common tangent segments, such 
that the slender obstacle region is surrounded by the 
two circles and their two exterior common tangent 
segments. For the other obstacle regions we can 
expand them into some circles with different centers 
and radii. In this way, we can obtain some circles and 
exterior common tangent segments called obstacle 
common tangent segments. 

Let 
m
AAA ,,, 21 !  be m  obstacle regions, where 

1
,,, 21 m
AAA !  are 

1
m ( m< ) slender obstacle regions. 

Suppose that obstacle region ),,2,1( 1miA
i

!=  is 
expanded into the region surrounded by the two circles 

12 !i
O ,

i
O
2

 and their two exterior common tangent 
segments 

12 !i
L ,

i
L
2

, and that obstacle region 
),,1,( 11 mmmiA

i
!+=  is expanded into the circular 

region 
im

O
+
1

2
. In this way, we can obtain n  expand 

circles and N  obstacle common tangent segments, 
where 

1
mmn += , 

1
2mN = . 

Under the restriction that each common tangent 
segment in path does not intersect the N  obstacle 
common tangent segments, we can find a shortest 
collision-free path based on the n  expanded circles by 
the method developed in the previous sections. The 
path is also a feasible collision-free path for the m  
obstacle regions 

m
AAA ,,, 21 ! , despite the fact it is not 

 
Figure 10: The intersection of two expanded circular 
obstacle region. 
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the shortest path. However, for any obstacle region, we 
can choose more circles and common tangent 
segments to surround it, as shown in Figure 11, and 
that with the increase of the numbers of the circles and 
the common tangent segment and the reduction of the 
radii of the circles, the region surrounded by the circles 
and the common tangent segments can be made to 
approach the obstacle region more closely. Thus it can 
be seen that under the restriction that each common 
tangent segment in path does not intersect these 
obstacle common tangent segments, the shortest 
collision-free path based on these expanded circles, 
obtained using the method developed in the previous 
sections, will approach the shortest collision-free path 
based on the obstacle regions. 

8. CONCLUSIONS 

This paper presents a method for planning collision-
free paths based on circular obstacle region. A series 
of simulations demonstrated that the proposed 
methods might effectively establish shortest collision- 
free paths in two dimensions for an acceptable short 
time for the generation of paths. Despite the fact that 
an obstacle region can be surrounded by a circle with 
big-enough radii, a circle cannot surround an obstacle 
region as closely as an ellipse, especially in the case of 
the slender obstacle region. However, it is a very 
difficult to find the shortest collision-free paths based 
on ellipse obstacle regions, which includes computing 
arc length of an ellipse and the common tangent of two 
ellipses. These issues will be addressed in future. 
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