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Particle Filter-Based Robust Visual Servoing for UCF-MANUS-An 
Intelligent Assistive Robotic Manipulator 

N. Paperno, Z. Wang, D. J. Kim and A. Behal* 

Department of EECS, University of Central Florida, Orlando, FL 32826, USA 
Abstract: A particle filter based tracking scheme is proposed to robustify visual servoing of objects in the UCF-MANUS 
camera-in-hand vision setup. Instead of simply fusing global and local information, a concatenation of the two sources of 
information is proposed here which enables the combination of the two independent measurements with a synergistic 
collaboration between them. A novel overlap metric to encode the degree and quality of overlap between two arbitrarily 
shaped Regions of Interest (ROIs) is defined to facilitate the prior and posterior pdfs in the particle filter setup. A sub-ROI 
is defined and utilized in the observation step to facilitate the global target detection. Based on extensive experimental 
results under a variety of scenarios obtained by using the UCF-MANUS assistive robotic testbed, it is seen that the 
proposed particle filter based fusion approach is superior to other non-fused global detection or local tracking 
approaches. The efficacy of the proposed approach has also been verified using standard data sets. Finally, 
robustification of a hybrid visual servoing technique is shown by implementing the proposed particle-filter based tracker 
during closed-loop operation in real-time. 

Keywords: Particle-filter, visual servoing. 

1. INTRODUCTION 

In a visual tracking application, a target is detected 
and tracked over time to perform a given task. There is 
a large number of advanced processing algorithms 
available to track one or multiple targets in different 
problems. Generally, the target can be found using a 
global (or model-based) detector while a small portion 
of the object can be tracked using a local tracker. 
Global matching process can accurately locate a 
pattern which is most similar with a built-in model, 
however, they do not take into account the 
spatiotemporal constraints associated with a target. On 
the other hand, local matching processes can track a 
small set of image features with efficient usage of 
resources but it is impossible to determine whether the 
target (even partially) is correctly found or not. In order 
to overcome these drawbacks, fusion techniques have 
emerged in the last decade. 

Fusion of local and global information has been of 
interest for many robotics-related researchers. Ishiguro 
et al. [1] proposed an incremental build-up process of 
global map using omnidirectional stereo analysis in the 
vicinity of a mobile robot; a Kalman Filter (KF) was 
used to reduce the effect of uncertainty from noisy 
image measurements. In [2], an Extended Kalman 
Filter (EKF) framework was used to estimate the 
position and orientation of the mobile robot using local 
odometry information and global sun position 
information. Compared with local odometry information, 
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global sun position information is relatively infrequent 
but effective to compensate the estimation error using 
EKF framework. Similarly, fusion of Global Positioning 
System (GPS)-driven Genetic Algorithm (GA)-based 
global information and Inertial Navigation System 
(INS)-driven feature-based local information was done 
by [3] using fuzzy logic. Lee et al. [4] proposed a fusion 
of local odometry and global magnetic compass 
information to control an omnidirectional mobile robot. 
Moore et al. [5] proposed a local frame based robotic 
navigation to overcome disadvantages of global frame 
and local body frame representations such as increase 
in uncertainty, multi-modal noise, etc. Stephen et al. [6] 
proposed a vision-based global localization and 
mapping technique using fusion of local submaps and 
globally matched map information; the use of distinctive 
visual Scale-Invariant Feature Transform (SIFT) [7] 
features and backward correction algorithm were 
efficiently used to deal with uncertainty. In [8], 
Rodriguez-Losada et al. proposed a local map fusion 
technique with novel analysis on Simultaneous 
Localization And Mapping (SLAM)-EKF framework in 
consideration of SLAM-EKF inconsistency and shape 
constraints. Recently, Persson et al. [9] noted that rule-
based fusion of global aerial imagery and locally 
generated geographical information using mobile robot 
was effective to build an improved semantic mapping. 
In RoboCup applications, Bayesian fusion [10] and 
Monte Carlo (MC) localization [11] were adopted to 
estimate the ball position and to build a world model 
around player robots. 

The particle filter has become a well-established 
method that has proven to be more effective than its 
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predecessors such as the EKF. Examples of 
comparisons between the particle filter and EKF can be 
found in [12, 13]. During the last decade, particle filter 
methods have proved to be an effective and powerful 
approach for single/multiple target tracking, due to their 
simplicity and flexible treatment of nonlinearity in the 
system dynamics and non-normality in the sources of 
uncertainty. A review of particle filter approach and its 
applications in various fields can be found in [14]. In 
[15], Wang et al. propose a novel tracking method by 
incorporating the efficiency of the mean-shift algorithm 
with the multi-hypothesis characteristics of particle 
filtering in an adaptive manner. In [16], an offline-
boosted detector was used to amend the proposal 
distribution of the particle filters for multi-target tracking. 
In [17], a cascade particle filter was designed for target 
tracking in a low frame rate video, where an integration 
of conventional tracking and detection was used. In 
order to solve the dynamic view planning problem, an 
improved particle filter with the largest effective 
sampling size was applied to accomplish 3-D tracking 
task in [18]. In [19, 20], a novel multi-person tracking 
method was proposed in a particle filter framework, 
where both detectors and classifiers were used. In [21], 
a particle filter approach was extended with depth 
estimation of the target for tracking multiple targets with 
possibility of overlapping. Recently in [22], Wang et al. 
proposed an adaptive appearance modeling technique 
to handle various challenges in the tracking task; a 
third-order tensor was used to represent the target 
while the particle filter technique was used in the target 
state estimation. Similar applications of particle filter in 
3-D human body tracking, position and orientation 
estimation, motion tracking, fuzzy spatial information 
based tracking can be found in [23-27]. 

In this work, the use of the term ‘fusion’ of local and 
global information is different from conventional 
categories of fusion terms including data-level fusion, 
feature-level fusion, and decision-level fusion. Instead 
of merging local and global information at the same 
level, this paper aims to make a systematic chain via a 
synergistic concatenation of global and local sources of 
information. Here, synergistic concatenation means 
that local and global information is used in an 
interconnected sequence wherein the local information 
informs the global measurement and the global 
measurement in turn updates the prior distribution. Via 
this concatenation, a robust Region of Interest (ROI) for 
a tracked object is successfully propagated using a 
particle filter framework. The algorithm proposed in this 
paper is novel in that it merges information extracted 

from disparate sets of features by utilizing a novel 
measure of overlap between minimal enclosing 
polygons - this overlap metric encodes the quality and 
degree of the overlap and is utilized in the definition of 
the observer posterior distribution. Furthermore, the 
measurement itself is robustified via the use of a 
pertinent sub-image defined from underlying particles. 
Specifically, the term synergistic is utilized to denote 
the fact that during complex scenarios (such as target 
tracking problem in a low frame rate video with multiple 
identical targets and large initial offset), both the 
underlying primary measurements fail when used 
exclusively but are synergistically able to support one 
another such that the proposed approach is highly 
successful. 

The remainder of this paper is organized as follows. 
In Section II, the problem is motivated via illustration of 
cases of non-robust tracking gleaned from experiments 
in the Assistive Robotics Laboratory at UCF [28, 29]. 
Next, in Section III, a particle filter based fusion 
framework is presented along with the various steps of 
implementation. Section IV presents experimental 
results and discussion; the first part of this section 
presents tracking results with a camera mounted in an 
eye-in-hand configuration on the UCF-MANUS 
assistive robotic testbed while the second part of this 
section presents the real-time implementation of a 
hybrid visual servoing technique that is shown to be 
robustified by the inclusion of the proposed particle-
filter based tracker. We conclude with some remarks in 
Section V. 

2. PROBLEM MOTIVATION 

Consider the basic problem of tracking a point on a 
target object using images captured by an eye-in-hand 
configured camera as the robot undergoes translational 
and rotational motion at its end-effector. Given the 
special requirements for wheelchair mounted robotic 
arms (WMRAs), namely, that of being lightweight (for 
longer battery life) and having low center of gravity (for 
balance), these robots necessarily include extensive 
transmission and gearing. It is well known that 
transmission and gearing introduce kinematic 
uncertainties in the robot which may be modeled as 
additive noise in the commanded translational and 
rotational velocities at the end-effector. To formulate 
the problem, consider the dynamics of a pixel (or 

feature point) 
  
p = p
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y
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"#
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on the target object 

as captured by the end-effector mounted camera as 
follows [30]; 

   
!p = J

p
V            (1) 
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Where 
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p
 is known as the image Jacobian and defined 

as follows; 
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In the above equation,  Z  enotes the Euclidean 
distance along the z-direction of the camera frame, 

while 
   
V = v

c
!

c
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T

 denotes the composite 

camera velocity vector comprising of its translational 
velocity 

 
v
c

 and rotational velocity 
  
!

c
. It is clear to see 

from the structure of (dyn) and (Jacobian) that any 
additive uncertainty in the composite velocity vector  V  
will manifest itself nonlinearly in the pixel dynamics. 
Thus, the nonlinear image dynamics and the non-
additive (and non-Gaussian as we will show in the 
sequel) nature of the process noise make this system 
not amenable to Kalman-filter type of schemes -- 
therefore, we contend that any estimation problem is 
best dealt with inside a particle filter (PF) type of 
framework. 

The UCF-MANUS (see [28, 29] for more details on 
this assistive robot) is a Wheelchair-Mounted Robotic 
Arm (WMRA) that is capable of utilizing computer 
vision (among other sensing modalities) for target 
tracking and manipulation in unstructured 
environments. Tests in the Assistive Robotics 
laboratory at UCF using the UCF-MANUS setup have 
shown that typically utilized global detection and local 
tracking based algorithms, when used exclusively, fall 
prey to typical problems such as multiple identical 
targets, lack of robustness when dealing with a large 
initial offset, motion discontinuity, etc. Specifically, 
global detectors are robust to low frame-rate video, 
motion discontinuity etc. while local trackers can easily 
handle multiplicity of the target in the same frame. 
However, their weaknesses and strengths are 
complementary to one another. This has motivated us 
to design and implement a fusion-based target-
template matching algorithm in order to obtain robust 
and sustained target tracking under a variety of 
scenarios. By taking advantage of the aforementioned 
redeeming qualities of the global and local methods, 
the algorithm systematically prescribes empirically-
validated choices for sub-image and/or feature points 
to consider at each step. As explained above, the 
system nonlinearity and non-additive nature of the 
process noise hinder us from getting a closed form 
solution; therefore, a probabilistic PF-based framework 

is developed in this paper; specifically, we propose a 
systematic way to improve the performance of a global 
matching function by augmenting it with a local 
matching function. The work presented here is novel as 
this paper does not simply `fuse' global and local 
information in the traditional sense of the word; instead, 
a synergistic concatenation of the two sources of 
information is proposed in a probabilistic setup 
implemented via particle filters to find a better method 
of tracking objects. 

3. PARTICLE FILTER BASED TRACKING 
FRAMEWORK 

3.1. Preliminaries 

Let us assume that a frame of image has been 
grabbed from the camera at time  t . From this image, 
features points denoted as 

  
g

t
 are extracted by a 

global detector. Using a known template model with a 
feature point set 

  
G

d
, one can find another set of 

feature points 
   
g

d
! G

d
 which shows a one-to-one 

correspondence with 
  
g

t
. We can also define a global 

detector Region of Interest (ROI) 
  
y

t
 which is a minimal 

polygon enclosing all feature points in 
  
g

t
. We will use 

this global detector ROI 
  
y

t
 to indicate the identified 

target on the frame grabbed at time  t . Furthermore, 
the local tracker can also track a set of feature points 

  
L

t
 at time  t  matching with the feature point set 

    
L

t!1
 in 

the frame grabbed at time    t !1 . Note that the feature 
points in 

  
g

t
 and 

  
L

t
 are independent and obtained 

through global detector and local tracker, respectively. 
Next, we define the  ith  particle as follows 

     
!

t
i = x

t
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t
i{ } i = 1,…,N

p
         (3) 

Where 
  
x

t

i  denotes the ROI encoded in the  ith  particle, 
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i  is the weight associated with the particle, while 
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denotes the number of particles. Then, given the 
feature point sets 

   
l
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i
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p
, we define a 

particle filter ROI 
  
x

t

i  on the frame grabbed at time  t  as 
a minimally enclosing polygon of the residual image 
features in the set 

  
l
t

i  as 
   
x

t
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t

i( ) . This polygon ROI 
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Where 
    
p

t,i
! l

t
i  and 

 
N

x
 denotes the number of points 

on the boundary of this polygon. Note that 
  
x

t

i  can be 
considered as a polygon representation of the 
associated local feature set 

  
l
t

i  in the image space. 
These particles are used to obtain particle filter output 
ROI 

  
ŷ

t

p  based on particle ROIs 
  
x

t

i  and their associated 

weight 
 
w

t

i . The global detector ROI 
  
y

t
 is used as an 

observation at time  t . Under the particle filter setup, 
our goal is to robustly identify the target from the 
currently grabbed image at time  t  and the 
observations 

   
y

1 : t
 up to time  t . A posterior pdf can be 

described by a set of 
 
N

p
 random samples (i.e., 

particles) as follows [40]. 
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Where 
  
x

t

i , 
 
w

t

i , and 
  
y

t
 have been previously defined. 

Figure 6 shows an example of particles ROIs 
 
x

t

i  and 

output ROI 
  
ŷ

t

p  for a cereal box. 

Remark 1: We note here that the enclosing polygon 
and not the features themselves are utilized as 
particles because in general, global and local tracking 
algorithms may not necessarily obtain similar or even 
overlapping sets of features on an object. 

3.2. Particle Filter Framework 

We begin by defining a novel measure of the 
degree and quality of overlap between two particle 
ROIs  a  and  b  in the form of an overlap ratio    r(a,b)  as 
follows; 

     

r(a,b) !
A

overlap

A
a

!

A
overlap

A
b

! exp "kf ( d )( ).         (5) 

Here, 
 
A

a
 and 

 
A

b
 denote, respectively, the area 

enclosed by the ROIs  a  and  b  while 
  
A

overlap
 denotes 

the area of overlap between the two ROIs. 
Furthermore, the function 

  
f !( )  denotes a 

monotonically increasing function of its argument,  d  
represents the distance between the geometric centers 
of the two ROIs while  k  is an empirical rate constant. 
To motivate the selection of this overlap ratio, we note 
that the first two factors in the definition of 

   r(a,b)  
capture the degree of overlap while the last factor 
encodes the quality of the overlap, e.g., between two 
particles, say 

  
a

1
 and 

  
a

2
 with identical ROI sizes and 

similar overlap area with  b , we deem the one located 
more centrally with respect to  b  as having a better 
overlap than the other whose location is more 
peripheral. Note that by definition, 

     
r(a,b) ! 0,1( !

"
. In this 

paper, the empirical determination of the pdfs was 
obtained using the following choices:    k = 0.02  and 

   
f ( d ) = d .  Details of calculations for the underlying 

polygons considered in the definition of    r(a,b)  can be 
found in the Appendix. As for the measurement 
process which enables the pdf update in the PF 
framework, one can choose from a bevy of available 
global template-based detectors; while SIFT [7] and 
SURF [37] are commonly used detectors, in this paper, 
we turn toward a real-time implementable global 
detection-based tracker known as ferns [32]. 

3.2.1. Initialization Step 

Given an initial specification of a target ROI 
  
R

1
 in 

the first frame as illustrated in the left part of Figure 2, 
one can randomly generate particle ROIs 

   
x

1

i  around 

 
Figure 1: Particles ROIs xi t (left) and output ROI ^yp t (right) in frame 42 of a cereal-box video sequence recorded in the UCF 
Assistive Robotics Laboratory. 
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the specified region as illustrated in the right part of 
Figure 2. This is done by creating a set of offset values 
that have a uniform distribution and applying them to 
the borders of the initially specified ROI. Then, the local 
tracker will select good feature points for future tracking 
and each randomly generated particle ROI 

   
x

1

i  will be 
associated with all feature points located inside it. We 
note that the initially specified target ROI may not 
exactly match with the ideal target ROI. By choosing a 
large number of particles randomly around the initial 
ROI, we can easily increase the probability of including 
the ideal ROI into the union of all particle ROIs. One 
can adjust the parameter of the uniform distribution 
used in the particle initialization step according to the 
quality of the initial selection, i.e., the generated 
particles could be spread in a large region if we expect 
the initial selection to be inaccurate. 

3.2.2. Prediction Step 

As is well known, the standard PF process entails 
two broad steps, viz, a prediction based on the prior 
(pre-measurement) pdf and an update based on the 
posterior (post-measurement) pdf. Specifically, 
assuming that we have a posterior pdf 

    
p(x

t!1 | y1 : t!1)  

of the state at time    t !1 , the first step is to draw 
samples from the importance function as follows 

     
x

t
i
! p(x

t
| x

t!1).           (6) 

Normally, the prior is utilized as the importance 
function from which it is easier to draw samples. 
However, in the proposed method, this is difficult to 
implement using system dynamics. From (1) and (2), 
one can clearly see the difficulty in implementing the 
prediction step without explicit knowledge, assumption, 
or estimation of the depth of the various feature points 
that constitute an object of interest. Furthermore, 
knowledge of the nominal camera motion is required. A 
more practicable model-free (i.e., we do not need to 
know the camera velocity, camera parameters, target 

depth, etc.) predictor can be implemented by utilizing 
the seminal Kanade-Lucas-Tomasi (KLT) feature 
tracker [33, 34] based on optical flow which is based on 
the following relationship holding under small relative 
motion between frames: 

   
p

t
! p

t"1
+ gd            (7) 

Where 
    
p

t
,p

t!1
! R

2  denote a feature point in the image 

at time  t  and   t + dt , respectively, 
    
g ! R

2!2  denotes 

the image gradient, while    d ! R
2  denotes the distance 

vector between the feature at times    t !1  and  t . Here, 
 d  is computed as the distance that minimizes the 
intensity difference between a suitably chosen small 
window of pixels around the feature point in the images 
taken at time    t !1  and  t . By thus utilizing KLT to track 
all image features in set 

    
L

t!1
 at frame #    t !1  into 

  
L

t
 

in the image frame captured at time  t , we can find the 
feature point subset 

   
l
t

i
! L

t
 for 

  
x

t

i  matching with 

    
l
t!1

i
" L

t!1
 associated with  ith  particle ROI 

    
x

t!1

i . The 

sample ROI for 
  
x

t

i  can then be obtained as the 
minimum polygon including all the feature points in the 
set 

  
l
t

i . 

Remark 2: As noted earlier, we use KLT as our model-
free predictor. To make a connection with the standard 
particle filter approach, the approximation inherent in 
the relation expressed by (flow) is the source for the 
process noise. Thus, we do not need to implement an 
explicit definition of an importance function for our 
particle filter unlike in the standard approach which 
requires use of a model and addition of process noise 
to the particles as drawn from the importance function. 

3.2.3. Update Step 

In this step, the predicted prior pdf from the 
prediction step is corrected via observations by using a 

 
Figure 2: Initially specified ROI (left) and initial particle ROIs distribution (right). 
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global detector. In order to robustify and speed up the 
performance of the global detector, the insight here is 
to apply the global detector in a sub-region based on 
the union of particle ROIs 

  
x

t

i  whose corresponding 
weights are larger than an appropriately certain 
threshold - this is in lieu of simply detecting the feature 
points from the entire image frame as is commonly 
done. Specifically, we define a region 

  
X

t
 as follows 

     
X

t
=!x

t
i ,  !w

t
i

> w
th
,  i = 1,...,N

q
.         (8) 

In this predicted sub-region 
  
X

t
, the global detector 

is more likely to locate the intended target without 
showing jumps between identical or similar targets in 
the same image frame. From a probabilistic 
perspective, these sub-regions 

  
x

t

i  which are 

representative of the pdf 
    
p(x

t
| y0 : t!1) , can give us a 

potential region containing the target object with a 
much higher probability than any other region in the 
grabbed frame. During the implementation, one may 
apply the global detector based on a higher 

 
w

th
 at first. 

If the global detector is unable to detect the target, one 
can lower the threshold value and enlarge the 
predicted sub-region for the global detector in order to 
decrease the occurrence of false negatives. 

By applying the global detector on region 
  
X

t
 of the 

current frame and comparing with the template frame, 
one can get the set of feature points 

  
g

t
 (defined 

previously in Section Prelim) which shows one-to-one 
correspondence with a template feature point set 

   
g

d
! G

d
. Then, one can find an observed global 

detector ROI 
  
y

t
 which encloses all feature points in the 

feature point set 
  
g

t
. Based on the measurement 

produced by the global detector inside the 
aforementioned sub-region, the associated weights of 
the particles in the prior distribution are updated based 
on the current observation using 

    
w

t
i
! p(y

t
| x

t
i )w

t"1
i           (9) 

Where 
   
p(y

t
| x

t
i )  is defined as the observer posterior 

that can be approximated based on empirical 
observations as follows 
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Where  r  has been previously defined and    !2
= 0.04 . 

We calculated the empirical distribution of    r(!,!)  by 

comparing a ground truth ROI to the measured ROIs 
given by the ferns detector over multiple image 
captures and then averaging it over multiple objects in 
our laboratory -- this average distribution can be seen 
in the histogram shown in Figure 3. We note here that 
the histogram may be further smoothed out by using 
data from more image captures and objects. While 
many different approximation functions can be utilized 
to capture this posterior distribution, we chose a simple 
1-sided Gaussian distribution acting as an envelope for 
the empirical data. As will be seen in subsequent 
experimental results, even this simple choice leads to 
excellent tracking performance in a variety of 
scenarios. Finally, the associated weights of the 
updated particles computed using (wpdate) are 
normalized using 

   

w
t
i

=
w

t
i

j=1

N
p

! w
t
j
.          (11) 

3.2.4. Output Step 

Finally, the best estimate of the object ROI using 
the particle-filter based approach can be obtained by 
utilizing any of a number of different methods [41]. The 
following three methods are commonly employed: 1) 
utilize the particle with the maximum weight, 2) utilize a 
weighted sum of all particles, and 3) utilize a 
constrained weighted sum of all selected particles with 
weight higher than a user-defined threshold 

   0 < ! < 1 . 
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Figure 3: Posterior pdf for the particle filter overlaid over the 
histogram of the overlaps taken from various objects. This 
histogram was created by taking the overlaps of the ferns 
results to the ground truth of various objects. 
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In the implementation scheme detailed in the 
following section, of the three output methods defined 
above, we have utilized the method of weighted sum 
with threshold. Since the results from the particle-filter 
based approach will be compared with results from the 
exclusive use of local or global methods, it is necessary 
to also define the object ROI estimate for those cases. 
When the local tracking algorithm is used solely (i.e., 
outside the particle filter framework), the estimated 
output ROI 

   
ŷ

t

l  is defined as the minimum polygon 
enclosing all local tracker feature points in the current 
frame tracked from the previous frame. On the other 
hand, the output of the global detector outside the 
particle filter framework is defined as 

    
ŷ

t

g
= y

t
. Here, 

the superscripts 
  
p, l,  and 

 
g , respectively, refer to 

particle-based, local and global approaches. 

3.2.5. Particle Resampling and Feature 
Replacement 

In this proposed particle filter based synergistic 
approach, the particle set will be resampled based on 
the following criterion. In order to overcome the 
depletion of particle population after a few iterations, 
particles with insignificant weights need to be replaced 
(or resampled) according to a resampling policy, i.e., 
the current set of particles 
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t

i = x
t

i
,w

t

i{ },  
    
i = 1,…,N
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needs to be replaced with a new set of particles 

     
!!
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i
, !w

t

i{ },  
    
i = 1,…,N

p
 such that the ones with 

small weights will be eliminated (probabilistically) while 
the ones with higher weights will be duplicated. Note 
that the weights for the newly sampled particle 

   
!x

t

i  will 

be assigned as 
  
1 / N

p
 uniformly. Two different 

quantities have been shown to estimate the number of 
insignificant (near-zero-weight) particles, namely, the 
coefficient of variation 

  
cv

t

2  and the effective sample 

size 
 
ESS

t
 which are defined as follows [Liu01]  

   

cv
t
2

=
var(w

t
i)

E 2(w
t
i)

=
1

N
p i=1

N
p

!(N
p
w

t
i "1)2       (13) 

   

ESS
t

=
N

p

1 + cv
t
2
.         (14) 

In this paper, we chose the second quantity as a 
decision criterion for resampling process. When the 
effective sample size drops below a certain threshold 
(usually below a percentage of the number of particles 

 
N

p
), as follows 

    
ESS

t
< !

1
N

p
,  

then the particle population is resampled according to 
the weights of the particles as previously stated. In this 
paper, among different methods of resampling, we 
have applied the `Sequential Importance Sampling 
(SIS) with Resampling' approach [40]. Further 
implementation details can be found in the proceeding 
section. 

Due to pattern occlusion or computational failures, 
local trackers show a tendency to lose features during 
tracking between two consecutive frames. Since the 
size of the particle ROI depends on the position of 
feature points of the local tracker, one may expect the 
particle ROI to shrink when the associated feature 
points on the ROI boundary are lost. In order to 
maintain the size of the particle ROI against unwanted 
shrinkage due to loss of feature points, we replace lost 
feature points via regeneration when the number of 
valid feature points is lower than a threshold. After 
regenerating local tracker feature points inside the 
union set of the updated particles, each particle 

  
x

t

i  
then associates with the newly generated local feature 
points located inside it. 

3.3. Overall Algorithm 

The overall algorithm proceeds according to the 
steps given below. 

1. Set    t = 1 ; Grab a frame 
  
I
1

; According to the 

given initial ROI 
  
R

1
 located near the ideal target 

ROI, we generate particles 
   
x

1
i ,  

    
i = 1,…,N

p
 

randomly around 
  
R

1
; Generate local features 

  
L

1
; Associate subset 

    
l
1

i
! L

1
 with 

   
x

1

i  and set 

   
w1

i
= 1 / N

p
; Hence, the  i

th  particle can be 
described as follows 

2. 
     
!

t
i = x

t
i ,w

t
i{ } i = 1,…,N

p
.       (15) 

3. Increase    t = t + 1 ; Grab a frame 
  
I
t
; Compute 

the position of feature points by using a local 
tracker which is denoted by the mapping 

    
l
t!1

i
" l

t

i . Then calculate 
  
x

t

i  which is the 
minimal particle ROI enclosing feature points in 
the set 

  
l
t

i . 

4. Define sub-region 
  
y

t
 according to the predicted 

particle ROI 
   
x

t

i
> w

th
 as in (subregion). 

5. Measurement 
  
y

t
 is obtained by global detector 

applied in the sub-region 
  
y

t
, and then update 

weight 
   
w

t!1

i  using 
   
p(y

t
| x

t
i )  as in (wpdate). 
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6. Normalize weight according to (wormalize), and 
then calculate the output 

   
ŷ

t

p  using (r1). 

7. If 
     
ESS

t
< !1Np

,!1 ! (0,1)  or 
    
N

v
> !

2
N

p
, perform 

resampling to generate a new particle set 
  
!!

t

i . 

8. Regenerate lost feature points for local tracker; 
update feature point set 

  
l
t

i  for each particles. 

9. Go to step 2 unless last frame has been 
reached. 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

4.1. Tracking Results 

Here, the global detector, local tracker, and 
proposed particle filter based fusion approach have 
been tested and compared on the 6-DOF assistive 
robotic manipulator UCF-MANUS in the Assistive 
Robotics Laboratory at UCF [28]. The input images are 
grabbed through a Dragonfly 2 firewire camera with 
  640! 480  pixel-sized, 8bit image. In this experiment, a 
ferns based detector/tracker [32] is adopted as the 
global tracker while a Kanade-Lucas-Tomasi (KLT) 
feature tracker [33, 34] is used for local tracking for 
comparison with our proposed particle filter-based 
fusion approach. The target object is laid down on a 
table with a pepper-and-salt-like surface and never 
moved during the motion of the robot. The camera is 
mounted on the robot end-effector which is moved 
arbitrarily and a sequence of frames is captured. Based 
on this setup, three different tracking approaches (i.e., 
local, global, and particle filter based) are tested to 
track the target object in the sequence and compared 
with the ground truth ROI. As previously stated, we 
chose `Sequential Importance Sampling (SIS) with 
Resampling' due to its simple structure and 
effectiveness in many applications [40]. Also, note that 
the number of particles has been chosen as 

   
N

p
= 100  

in all sets of experiments. The maximum number of 
feature points for the local tracker is chosen to be 
between 50 and 200 in the set of experiments shown 
below. The algorithm is implemented in C++ and tested 
on a PC with Intel Core(TM) i7 970 CPU and 8GB 
RAM. Note that  k  and    f (!)  defined in (ovd) have been 
chosen as follows:    k = 0.02  and 

   
f ( d ) = d .  

In order to measure and compare the performance 
between the particle filter and the local/global methods, 
we define the instantaneous matching error 

 
E

t
 

between the ground truth ideal target ROI 
   
!y

t
 and 

estimated ROI 
   
ŷ

t

p , 
   
ŷ

t

l , and 
   
ŷ

t

g  at time  t  as follows 

     
E

t
! 1! r("y

t
, ŷ

t

x )         (16) 

where   r(!, !)  has been previously defined in (ovd) while 

   
ŷ

t

x  stands for the output ROI obtained from the particle 
filter based, local, and global approaches, respectively, 
when  x  is 

  p,l , and 
 
g . In Tables 1, 2, and 3, the 

overall performance of these three methods is 
compared by using RMSE, which is defined as follows 

   

RMSE =
1

N
t t=1

N
t

!E
t

2
.  

Here 
 
N

t
 denotes the number of frames used to 

compute the RMSE in each of the experiments. 

4.1.1. Target Tracking with Multiple Identical 
Objects 

Figure 4 shows snapshots of observed global 
tracker target ROI 

   
ŷ

t

g , local tracker ROI 
   
ŷ

t

l , and 

 

 
Figure 4: Sample results from three different ROI estimators 
during target tracking with multiple identical objects: global 
(top), local (middle), and particle-filter based (bottom) 
estimates. 
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particle filter output ROI 
   
ŷ

t

p  using three different 
approaches in a video containing 119 frames. In the 
experiment setting, there are three identical cereal 
boxes in the same frame initially out of which we 
designate the box in the middle as the target object. 
Note that we did not show any snapshots from the 
experiment result before frame #83 since the global 
detector fails to locate an ROI between frame #1 and 
frame #82. When one of the three cereal boxes (on the 
right) starts to move out of field of view, the global 
tracker can locate an ROI but it is not completely 
located on our designated target. In the global 
matching case, unstable fixation or non-detection of the 
target object is clearly seen (first row of frame 114 in 
Figure 4). The experimental results show that the 
success rate for the global tracker is only 13.5% over 
the 119 frames, i.e., only sixteen frames out of 119 can 
be identified correctly. In this experimental setting, we 
expected the local tracker to have a better performance 
than the global detector because of smooth and 
consistent target movement; this is confirmed by 
comparing the RMSE in Table 1 as well as the first and 
second rows in each of the annotated frames shown in 
Figure 4. As compared with global and local matching 
processes, the synergistic chain of global and local 
matching processes implemented via particle filters 
(third row of each frame in Figure 4 can most 
effectively track the object ROI in a consistent fashion; 
the particle filter based algorithm successfully detects 
the target in 115 out of 119 frames (success rate is 
96.6%). As can be seen in the last row of Table 1, the 
instantaneous matching error of the particle-filter based 

method is consistently lower than the local and global 
tracker. Furthermore, it can be seen in the second to 
last column of Table 1 that the fusion approach exhibits 
better RMSE performance as compared with the other 
two approaches. The variance of the local and global 
trackers is lower than that of the particle filter, but this 
is due to the consistent failure and poor performances 
of those methods. This fact holds true for the rest of the 
experiments given below. 

4.1.2. Target Tracking with Initial Offset in Low 
Frame Rate Video 

In this experiment, we intend to track a single target 
in low frame rate video while the initial user selection of 
the target ROI contains an offset as can be seen from 
the left part of Figure 5. The video is sampled at 5Hz 
from the camera. The average movement of target 
center across two consecutive frames is around 30 
pixels. Since there is only one cereal box (i.e., an 
unambiguous target) in this sequence of frame, it 
implies that the global tracker should work properly in 
this configuration. Figure 6 shows snapshots of 
estimated object ROI using the three different 
approaches. It can be clearly seen in row 2 of frame #7 
and frame #10 that the local tracking algorithm yields a 
severely biased tracking result -- the identified target 
ROI covers nearly the entire cereal box, which is nearly 
five to ten times larger than the ideal target ROI. From 
the problem configuration, we can surmise that 
movement discontinuity and initial offset greatly affect 

Table 1: Mean and Variance of Errors for all Used Estimators 

  
 
E

t
 in #77  

 
E

t
 in #81  

 
E

t
 in #86  

 
E

t
 in #114 RMSE variance of 

 
E

t
 

Global 1.000 1.000 0.977 0.921 0.8916 0.0242 

Local 0.966 0.974 0.889 0.933 0.8288 0.0232 

Particle Filter 0.511 0.436 0.468 0.385 0.6864 0.0547 

 

 
Figure 5: User initial target ROI selection with offset. Left: selection for the experiment in Section IV-A2. Right: selection for the 
experiment in Section IV-A3. 
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the performance of the local tracking algorithm. Due to 
the lack of update and correction mechanism for the 
local tracking algorithm, the falsely enlarged target ROI 
will be restored only when the mismatching feature 
points are lost. We note that this false enlargement due 
to feature mismatching occurs and persists even in the 
presence of the affine consistency check. While the 
global tracker works well in general, we note that it 
does fail in frame #32 where the feature points on the 
drink bottle have been falsely matched and the 
observed ROI is greatly enlarged covering both the 
ideal target and a large part of the drink bottle. The 
success rate for the global detector is 94.5% i.e., only 
five frames out of 91 cannot be identified correctly. 
Finally, as can be seen in the last row of all frames 
shown in Figure 6, the proposed particle filter based 
fusion approach can successfully detect the target. 
Over all frames, the success rate for the proposed 
algorithm was 99%. From the last row in Table 2, it is 
easy to see that the matching error converges to a 
small value in a short period of time as compared with 
the results from the local and global approaches. 

4.1.3. Target Tracking in Complex Environment 

In this experiment, we intend to present the 
performance of the proposed approach for target 
tracking in a low frame rate video with multiple identical 
objects. It is clear to see in this case that this is a more 
challenging problem than the previous two cases since 
both the global and local tracker are expected to face 
stiff hurdles due to the complexity of the environment 
setting. Specifically, we expect that in the low frame 
rate video, the performance of the local tracking 
method will be severely affected due to the lack of 
motion continuity while the global tracker will be 
confused when multiple identical objects are presented 
in one frame at the same time. Note that we also 
consider a large offset in the user selection of the initial 
ROI as shown in the right part of Figure 5. The video is 
sampled 5Hz from the camera and down sampled to 
2.5Hz. The average movement of the target center 
cross two consecutive frames is around 30 pixels. 
Figure 7 shows the target tracking results for each of 

Table 2: Mean and Variance of Errors for all Used Estimators 

  
 
E

t
 in #7 

 
E

t
 in #30  

 
E

t
 in #81 

 
E

t
 in #90 RMSE variance of 

 
E

t
 

Global 0.941 0.784 0.805 0.975 0.9724 0.005214 

Local 0.975 0.980 0.986 0.972 0.9820 0.000271 

Particle Filter 0.492 0.355 0.156 0.108 0.3196 0.03086 

 

 
Figure 6: Sample results from three different ROI estimators 
during target tracking with initially offset ROI: global (top), 
local (middle), and particlefilter based (bottom) estimates. 
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the three techniques over four sample frames. Over the 
155 frames of the video, the global tracker never finds 
the desired target (success rate 0.0%), since the 

dummy cereal box on the left (mimicking the target 
cereal box in the middle of the frame) is closer to the 
camera compared with the desired target - the global 
tracker favors the cereal box on the left of the frame 
because more details are available due to its location in 
the image foreground. On the other hand, due to the 
lack of motion continuity and the initial ROI offset, the 
local tracking algorithm suffers from feature point 
mismatching and the target ROI is falsely enlarged. In 
frame #91 of Figure 7, two objects have been included 
in the estimated target ROI by the local tracker. Later in 
frame #119, another object is seen included in the 
estimated ROI which is nearly 10 times larger than the 
ground truth target ROI. As seen in the first two rows of 
Table 3, both the global and local schemes show close 
to maximal tracking error; obviously, the variance is low 
because of consistent failure to track the target over 
the entire length of the video. In contrast with the local 
and global approaches, the success rate of the 
proposed particle filter approach is 97.4%. As seen 
from the last rows of Table 3 and each of the frames 
shown in Figure 7, the particle filter approach 
outperforms by far the other two cases. 

Remark 3: We note that the proposed algorithm took 
no more than 150 ms  to process a   640! 480  pixel-
sized, 8-bit image on a PC with Intel Core(TM) i7 970 
CPU. In breaking down the total time, it was seen that 
the local tracking algorithm needed 120 ms  on average 
to track corresponding feature points between two 
consecutive frames while the global detector spent 
around 20 ms  to detect the matched feature points 
based on the template information. The computing 
burden for particle related computations was in the 
range of 2 ms . Thus, it is clear to see that the 
computing burden for prediction and update of particles 
was miniscule compared with the time needed for 
visual processing. According to [43], one can expect 
the time consumption on the local tracking algorithm to 
be significantly reduced if the GPU-KLT algorithm can 
be applied by using the parallel computing power of a 
GPU. Thus, the proposed algorithm is available to be 
utilized in real-time (as demonstrated in Section ILE 
below) which is critical to any robotics application. 

 

 
Figure 7: Snapshots of three different ROI estimators during 
the tracking in complex environment: top to bottom - global, 
local, and particle filter based estimates are shown in the 
pictures. 

Table 3: Mean and Variance of Errors for all used Estimators 

  
 
E

t
 in #7  

 
E

t
 in #13 

 
E

t
 in #91  
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 in #119 RMSE variance of 
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Global 1.000 1.000 1.000 1.000 0.9943 0.000506 

Local 0.701 0.768 1.000 0.959 0.9497 0.003964 

Particle Filter 0.292 0.333 0.647 0.331 0.4183 0.04612 
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4.1.4. Qualitative Comparison 

For the qualitative comparison, our proposed 
method was tested against the Incremental Learning 
tracker presented in Ross et al. [36] using the Dudek 
sequence. This sequence provides several challenges 
for the trackers that include several different changes in 
pose, appearance, and lighting. For these tests, the 
sequence was half-sampled keeping only the odd 
numbered frames. From Figure 8, it can be seen that 
both trackers do a good job of tracking the head in the 
sequence. Both trackers handle partial obscurity (frame 
215) and a change in appearance similarly (frame 453). 
As relates to alterations in pose and lighting, there 
seems to be a difference in what kinds of changes 
affect the trackers' performances. Because of the 
probabilistic nature of the underlying global detector, 
there were a few cases in the Dudek sequence where 
the proposed tracker was unable to keep up with the 
person and lost the target object around frame 951. 
Both methods were also compared using two other 
data sets from [36], namely, David_Indoors and 
Sylvester, which produced similar results (see  
Figure 9). While the proposed method worked fairly 
robustly with the Sylvester sequence, the IL method 
consistently failed toward the end of this sequence 
when there was an abrupt change in the direction of 

motion of the target object. Since the proposed method 
is template-based, we note here that the most 
commonly occurring pose from a sequences was 
chosen to be its template. 

Each method has its strengths and weaknesses 
when it comes to tracking an object. The fact that the IL 
tracker is not template-based does give it some extra 
robustness when it comes to dealing with appearance 
and some pose changes. That being said, the template 
component does help the proposed method stick to the 
target throughout the sequences with a few exceptions. 
This was evident in the David_Indoors sequence where 
significant lighting change was also present along with 
pose changes. As seen in the frames in the top row of 
Figure 9, even though the proposed method does not 
fully encompass the face, it is still able to track a 
portion of it and was seen to remain with it throughout 
the sequence. This can also be seen in the Sylvester 
sequence where, due to a significant pose change, the 
IL tracker loses the target while the proposed method 
manages to stick with it and continues tracking the 
target throughout the rest of the sequence. 

The proposed method was also compared to a 
state-of-the-art particle filter based presented in [22], 
which will be referred to as the TOT method (Third-
Order Tensor). Since we were unable to obtain the 
code to test the method, we utilized the data presented 
in their paper and compared it with ours. Both trackers 
were tested using the Dudek Sequence and the 
Sylvester sequence. As seen with the Dudek sequence 
in the top row of Figure 10, the TOT method was able 
to handle partial occlusion better than our proposed 
method. Both trackers performed identically well when 
it came to the Sylvester sequence. However, a small 
limitation of the TOT method is its need for reliable 

 
Figure 8: Sample comparison of results from IL tracker (red) 
to proposed method (green) on the Dudek sequence. 

 

 
Figure 9: Sample comparison o f results from IL tracker 
(red) and proposed method (green) on David_indoors (top 
row) and Sylvester (bottom row) sequences. 

 
Figure 10: Sample comparison of results from TOT method 
(red) to proposed method (green) on the Dudek (top row) and 
Sylvester (bottom row) sequences. 
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initial tracking to collect good samples for accurate 
initialization of the proposed appearance model. 

4.2. In-Loop Implementation 

The previous experiments show that the proposed 
method can perform better than its counterparts and on 
par, or in some situations better, than existing methods 
that exist. While these tests present issues that may 
affect the performance of the vision system based on 
its surroundings, they do not however take into account 
the affects of operating with a control scheme in a real-
time scenario. To demonstrate that our method 
operates effectively in a real situation, we used the two 
similar objects (cereal boxes) experiment from the 
previous section to show that the proposed method 

performs better in conjunction with our control system 
than it does with the ferns method, which is what has 
been used so far on the UCF-MANUS. For this version, 
a Golden Grahams and Cheerios box have been 
placed side by side one another and, using the gross 
and fine motion protocols [28], the robot has been 
asked to align its grippers with the Cheerios box. As 
stated in the previous explanation of this experiment, 
even though the cereal boxes look different to us, they 
are identical when seen by the robot. 

The robot managed to successfully track the 
Cheerios box using the proposed method as opposed 
to using the ferns method. As seen in Figure 11, the 
particle filter was able to maintain its ROI on the 
Cheerios box and successfully line up the grippers of 

 
Figure 11: Comparison of servoing results using Ferns-based (top) and PF-based (bottom) tracking. Frames were taken from 
the start, middle, and end of the sequence. The desired object is highlighted in red and the real-time tracking ROI generated by 
each method is shown in white. 

 

 
Figure 12: Robot end-effector position and orientation error profiles during a closed-loop visual servoing task using global 
detector-based tracking (top) vs the proposed PF-based tracking method (bottom). 
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the robot to the cereal box. The ferns method, 
however, started to track the Cheerios box but 
eventually jumped to the Golden Grahams box and 
tracked those instead. The ferns method also took 
about three times as many iterations to complete the 
task than the proposed method. The fact that ferns 
jumps between the two boxes causes the error used for 
the control system to become erratic as clearly seen in 
the two graphs in the top row of Figure 12. 

Remark 4: It is worth noting in this paper that we have 
tracked a single target in each of the experiments 
described above. This approach can be easily 
extended to solve the multiple target tracking problem 
by applying multiple sets of particles, where each set of 
particles is used to track one single target. In this 
extension, the local tracking algorithm only needs to be 
applied once for each frame while the global detector 
will be utilized multiple times based on the number of 
targets that one intends to track. 

5. CONCLUSIONS 

A particle filter (PF) based fusion framework is 
proposed to incorporate the global and local 
information for a visual tracking application relevant to 
assistive robotics. Iterative updating of particles' 
weights and a resampling process are formulated 
under the PF approach to deploy a fusion of global and 
local information. A novel metric to quantify the degree 
and quality of overlap between two polygonal ROIs is 
defined and used to evaluate the prior and posterior 
pdfs. Experiments with video sequences gathered from 
the UCF-MANUS assistive robotic testbed show that 
the proposed method is effective at tracking a target 
object without fiduciary markers and in a natural 
environment. Even in the presence of perturbations 
such as large initial offset, multiple identical objects, 
and low video frame rate, the proposed approach is 
consistently successful at target tracking compared 
with exclusively local or global approaches that show 
poor performance and are not robust to the 
aforementioned perturbations. The real-time 
implementation of the proposed tracker inside the UCF-
MANUS fine-motion control scheme shows its 
effectiveness at robustifying visual servoing. While this 
method works well enough to be implemented in 
conjunction with a robotic control scheme, it still needs 
to be refined to have wider applications. The testing on 
the Dudek sequence and other sequences from [36] 
show the efficacy of the proposed method in tracking 
more difficult and general objects through extended 
sequences. It does have problems with significant pose 

and lighting changes as well as very fast moving 
targets but those problems are common with other 
trackers available in literature as well. Future research 
will focus on improvements to alleviate these problems. 

APPENDIX 
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