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Abstract: In this paper we conduct an extensive review of the literature toward an autonomous Unmanned Aerial 
Vehicle (UAV) for application in home healthcare. Based on the research findings, a system is proposed towards such a 
UAV for the purpose of patient care in an indoor environment, specifically in triage care for people living with chronic 
conditions. Our system seeks to provide an innovative solution for healthcare at home and to facilitate independent living 
as well as reduce over triaging through personalized robotics. The development of advanced navigation systems for 
UAVs has aroused extensive interest recently because of its enormous potential. In comparison to outdoor flight, GPS-
denied navigation poses several distinct challenges in stability and control for quadcopter operability, including object 
detection and avoidance, real-time wireless client-server communications, stability and safety concerns. Medical 
Decision Support Systems (DSSs), which have been developed largely in the triage component of health assessment, 
care and decision making, also pose separate research challenges in terms of accuracy, consistency, response 
(processing) time and degree of automatic operation. As a single system, a drone-based DSS for chronic illness triage 
assessment poses unique challenges. For this application, the DSS requires voice-based responses, occurring in real-
time and classified according to a dynamic and adaptive decision support engine that operates automatically; that is, with 
no human input and using non-invasive patient analysis. Existing healthcare systems of this nature have not yet been 
produced. Furthermore, patient recognition through real-time image fused with voice data in a noisy, GPS-denied 
environment has yet to be achieved. While path planning, navigation, control and stability concerns have been 
extensively addressed, accuracy for these systems can be improved and the technology as well as applied algorithms 
must be adapted to application-based requirements, in terms of weight, processing and dedicated communication 
requirements. 

Keywords: Unmanned aerial vehicle, navigation, flight control, collision avoidance, assistive technologies in 
healthcare, speech recognition, decision support system. 

1. INTRODUCTION 

Whilst overall global life expectancy has increased, 
healthy life expectancy has not [1]. The complex care 
demands of aging populations, as they live longer, 
require innovative and effective solutions that enable 
self-management and for individuals to remain in their 
own home. Chronic diseases are the leading causes of 
death and disability worldwide, and pose a significant 
burden in terms of quality of life, loss of independence, 
morbidity, mortality and health care costs. In particular, 
Diabetes, congestive heart failure, coronary artery 
disease, chronic obstructive pulmonary disease and 
hypertension are the five chronic conditions that result 
in the greatest number of presentations to hospital and 
health care costs yet respond most favourably to 
effective care coordination and self-management 
support [2]. Self-management in the context of living 
with chronic conditions incorporates a set of skills but 
also support from health care professionals for health 
assessment, health prevention and early intervention in 
deteriorating health. Advances and developments in 
sensor and telecommunication technology offer 
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solutions for achieving effective health care for this 
cohort [3]. We offer a technological approach to 
facilitate healthcare assessment in one’s own home; 
seeking to avoid readmission to hospital and 
associated healthcare and emotional costs. 

The proposed work focuses on the development of 
an effective health assessment process using a custom 
hardware and software solution designed specifically 
for the application. We propose a solution that uses an 
autonomous UAV to provide healthcare, indoors and 
within the person’s home. Once recognized, the 
individual is questioned by the UAV that wirelessly 
communicates responses to a central server and 
retrieves further queries. Health-based queries are 
those that require yes/no responses and Voice 
Recognition (VR) strategies identify and classify the 
speech response. The DSS operating on the server 
provides patient analysis through dynamic classification 
to determine the best course of action for appropriate 
healthcare, such as alerting a primary caregiver in an 
emergency situation. We propose to address the 
following administrative challenges: reduction in 
undiagnosed deterioration thus reducing morbidity and 
hospital presentations and to reduce unnecessary 
hospital visitations by offering customized, 
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personalized and dynamic home healthcare. We 
propose to address the following research challenges: 
designing and developing an autonomous DSS, with 
patient yes/no querying in addition to VR and Image 
Recognition (IR) strategies, by incorporating in the 
dynamic, intelligent, server-side classification engine 
existing health assessment protocols for assessing 
criticality of the individual’s health status using non-
invasive patient assessment techniques. This is to be 
implemented in a GPS-denied environment, in the 
presence of noise (caused by rotor blade motion), with 
no human interaction (fully autonomous), with real-time 
wireless communication between drone and server, 
and real-time processing. We examine several 
strategies for navigation, voice- and facial- recognition, 
and non-invasive DSS’s, within the research literature 
in Section 2, with the algorithm and sensor technology 
most suited for adaptation to our proposed work 
summarized at the end of each sub-section. In Section 
3 we present our proposed work, detailing the 
hardware component connectivity, data flow and 
embedded algorithms for Healthbuddy operability. 

2. LITERATURE REVIEW 

Research strategies applied for autonomous 
navigation, including path planning, control and 
stability, and obstacle avoidance, are examined with 
focus on methods that enable real-time, autonomous 
UAV flight in an indoor environment where objects may 
be in close proximity to the drone, may be repositioned 
or in motion. Methods for VR and IR are examined, 
toward real-time detection and recognition of a patient 
through speech processing and facial recognition 
respectively, in an indoor environment, subject to noise 
and movement. Instead of avoiding a patient, the drone 
must locate and fly within close proximity to the person, 
while ensuring collision avoidance. Ultrasonic and 
image- based strategies are considered for navigation 
and recognition. Once identified, the individual is 
questioned by the drone; non-invasive strategies for a 
real-time DSS that relies on limited speech input based 
on standardized practices for triage assessment, such 
as questionnaires, are considered, with classification 
algorithms from the research assessed for this 
objective. 

2.1. Navigation: Path Planning; Localization and 
Mapping 

Simultaneous Localization and Mapping (SLAM)  
[4-10] with Kalman filter [4]; KNN [11] and cover trees 
[12]; Ant Colony Optimization (ACO) [13]; D* Lite [14]; 

Rapidly-Exploring Random Belief Trees [15]; and MIST 
[16] are applied for path planning in autonomous UAV 
indoor flight. SLAM techniques construct an 
environment map while simultaneously determining the 
location of the UAV within this map. ACO is 
implemented toward path optimization [13]. Both ACO 
and D* Lite utilize grid-based mapping and examine 
possible alternative paths in-flight [13, 14]. Rapidly-
Exploring Random Belief Trees applies trajectory 
vectors to then examine alternative paths [15]. 
Localization and mapping are segregated in a method 
coined MIST, to reduce the computational load on the 
on-board processor [16]. Monocular Image Space 
Tracking (MIST) creates a map of the landmarks for 
pose tracking and occasionally sends the map to a 
ground station for smoothing and mapping [16]. Path 
planning algorithms primarily use camera technologies 
[4-10]. 

SLAM has shown utility for UAV path planning, map 
generation and localization [4-10] in dynamic, intricate 
and large-scale environments, primarily utilizing vision 
sensors. External location markers distributed within 
the environment have been used [6] to orient the drone 
using monocular SLAM. The Kinect device is also used 
to capture RGB-D images for unstructured indoor and 
outdoor environments in 3D which are then converted 
to greyscale, smoothed with a Gaussian kernel and a 
FAST (Features from Accelerated Segment Test) 
detector to extract depth features from the Gaussian 
filter [6]. UAV movement relative to its environment is 
estimated from successive image frames and features 
are matched for consistency [6]. Parallel Tracking and 
Mapping (PTAM) is used for UAV camera-based pose 
tracking and a metric scale estimation scheme to 
transfer up-to-scale position to metric form is 
introduced with a scale estimator that optimizes a cost 
function based on altitude measurements and forward 
facing visual measurements, for navigation and control 
[4, 10]. Kalman filters are used [4, 9, 10, 17] for 
tracking lateral velocity and position [4], and for 
landmark estimation as tree structures [9, 17]. A PID 
controller in [4] uses the results of velocity and position 
for navigation and an on-board attitude controller 
stabilizes roll and pitch angles of the UAV, yet depth 
measurement and scale estimates require off-board 
processing. iSAM [7] features Probabilistic Modelling 
with QR Factorization to reduce calculation complexity 
of other SLAM-based methods. When a new 
measurement arrives, instead of re-calculating the 
matrix factorisation, the square root factor is directly 
updated, enabling real-time processing. iSAM2 [8] 
replaces Probabilistic Modelling with Graphical 
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Modelling, improving algorithm accuracy by using 
Bayes tree data structures to generate 2D environment 
maps. Monocular SLAM with Extended Kalman Filter 
(EKF) [4] offers superiority over other SLAM-based 
methods in producing indoor 3D maps for path 
planning due to comparatively higher levels of 
accuracies and issues such as rapid changes of 
camera FoV are overcome using the Inertial 
Measurement Unit (IMU) data fused with processed 
camera images. 

He et al. [13] develop a modified version of the ACO 
algorithm to provide flight path planning for UAV 
devices, overcoming shortcomings of the ACO 
algorithm. Their algorithm applies the action of 
separate ants (with each ant looking for direction) in a 
colony represented by an array, and then iteratively 
determines the best path [13]. However, major 
drawbacks such as slow rendering speed and lack of 
pheromone guidance cannot be ignored. He et al. [13] 
provided an enhanced version of the ACO algorithm, 
which shows promise for map formation and path 
optimization, yet algorithm efficiency and smoothing 
must be further addressed for it to prove useful in real-
time. Rapidly-Exploring Random Belief Trees (RRBT) 
[15] defines discrete time descriptions of system 
dynamics, the initial state with some uncertainty and 
risk tolerance for possible trajectories. A cost function 
is generated using the Kalman Filter for each path and 
the RRBT then creates a set of vertices and edges of a 
tree graph, where the vertex has a state, the state has 
a belief node and each node has a state estimate 
covariance [15]. Nodes corresponding to unique paths 
are evaluated by the algorithm which returns the best 
path [15]. Research results showed accuracy of 
method, yet complexity and speed were not tested 
performance criteria [15]. The D* Lite algorithm is 
founded on the Life Planning A* (LPA*) algorithm yet it 
uses a heuristic approach for reusing information from 
previous iterations [14]. The LPA* algorithm calculates 
the shortest path on a grid map and adjusts the path 
based on the new input during execution [14]. It relies 
on a similar approach to graph formation, defining 
vertices and edges, as in RRBT. The shortcoming of 
the LPA* algorithm is in its assumptions concerning the 
environment, which relate to edges and costs [14]. D* 
Lite avoids these assumptions and therefore offers 
suitability for unknown environments [14]. Further, it 
begins its search from the goal cell towards the start 
cell, removing restrictions on the graph vertices and 
edges [14]. D* Lite is comparatively more efficient than 
A* and D*, requiring less vertices to calculate the 
shortest route, particularly in larger map  
dimensions [14]. 

Issues such as communication with a central server 
for position estimation [12] and maintenance of 
quadcopter altitude [12] need to be resolved for 
localization, mapping, and navigation, considering the 
high processing requirements of a multi-functional 
drone such as in this application. Localisation and 
Mapping will not be split into two separate components, 
as in MIST [16], but rather computed simultaneously, 
as in PTAM. ACO requires less iterations than RRBT to 
obtain the shortest path, making it a faster option. 
Monocular SLAM [4, 10] coupled with camera-sensing 
technology is best suited for path planning, including 
localization and mapping, to this application as it uses 
the Kalman filter to measure state in real-time, with fast 
processing capabilities and provides accurate results 
irrespective of fast-changing camera FoV. Real-time 
processing combined with high accuracy is a 
requirement for this application, due time-critical yet 
processing-intensive task requirements for the UAV 
including: localization and mapping, navigation and 
flight control, collision avoidance, patient location, 
recognition, querying, health assessment and 
actioning. 

2.2. Navigation: Flight Control and Stability 

Control and stability algorithms are introduced to 
enable flight dexterity in indoor environments, including 
dedicated algorithms for tuning UAV PID controller [18-
20]; Fuzzy Logic Controller (FLC) [21, 22]; and Back 
stepping Controller [23]. Maintenance of stability during 
cases of emergency, such as propeller loss, is 
addressed [24]. The relationship of stability with 
autonomous navigation is considered [25] and 
techniques to achieve this relationship are evaluated 
[22, 26]. For sensor input, vision-based sensors 
including camera technology is mostly used [25-28], for 
pitch and roll estimation [28], height, angular condition, 
velocity and space orientation [25]. Laser and infrared 
are not as widely or effectively utilized, yet ultrasonic 
proves effective with an Inertial Measurement Unit 
(IMU) [27] for position, speed and yaw input to control 
and stability algorithms [29, 30].   

PID controllers are effectively applied to control 
quadcopter rotational motor speed for system stability 
[18-20]. For the tuning of the PID controller, the authors 
use the Pole Placement Method, which is attained by 
identifying the transfer function determined by the input 
and output variables of the UAV system that is to be 
controlled [18]. For a UAV system, four PID controllers 
are proposed to give the best stability results [18]. Each 
angle of attitude will have a specific PID controller 
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(pitch, roll, and yaw), along with the altitude. The PID 
controller associated with the pitch gives an output that 
would adjust the front and back motors (front-increase), 
while the controller’s output for the roll will modify the 
left and right motors (right-increase). The PID controller 
for yaw will then be responsible for rotation, while the 
controller for the altitude adjusts for ascending and 
descending flight control [18]. Research findings reveal 
the stability of an UAV can be demonstrated through 
the use of a customized PID controller, to define the 
pitch and roll movements of the quadrotor [18]. The 
Ziegler-Nichols Method can be applied for PID 
controller tuning, implemented using either: the 
oscillation method or the reaction curve method [20]; 
the former is only applicable for open-loop stable plants 
[20]. The Ziegler-Nichols reaction curve method is 
commonly applied and enables simple, fast and 
accurate PID controller fine tuning for flight control and 
stability compared to the Pole Placement Method [20]. 
The former is considered for PID flight control in this 
work. 

In [24], fundamental principles of dynamics and 
kinematics are applied by the authors to provide viable 
control of a quadrotor, to maintain stable, accurate 
operability when one or more propellers are completely 
damaged. An algorithm for quadcopter trajectory 
generation and flight control, that directly comprises the 
dynamic restrictions of the quadrotor while executing 
real-time route planning, has been developed by Hehn 
and D’Andrea [31]. Feedback control on planned 
trajectories is achieved based on initial conditions of 
the quadcopter’s position, velocity, and acceleration 
[31]. However, a set limitation exists on accelerations 
allowed for each coordinate and as such, the algorithm 
may not be sufficient for acceleration limit variations. 
Problems associated with dominant aerodynamic 
effects are not overcome; notably, the vehicle rises 
when decelerating from high speeds [31]. The dynamic 
model [31] offers a promising methodology yet practical 
performance accuracy issues require further 
improvement.  

A novel Cross- Entropy Optimization (CEO) -based 
FLC for Fail-Safe UAV is implemented [21, 22] with a 
Robot Operating System-based FLC and a FLC 
training framework integrated with CEO in MATLAB 
Simulink. The FLC used has 3 inputs (yaw error, its 
integral, and its derivative) and one output member 
function; using CEO, the scaling factors were optimized 
on Simulink [21, 22]. However, the hardware consists 
of the Parrot. ARDrone with camera and on-board IMU 
in which the software running on the microcontroller is 
not easily modifiable for customized control [21, 22].  

An optimized Backstepping Controller (BC) is 
developed by [23], the paper uses Particle Swarm 
Optimization (PSO) to optimize the parameters which 
are initially chosen arbitrary. The control law is derived 
from tracking error and using the Lyapunov Equations, 
it is optimized using PSO. PSO is a population-based 
search algorithm that assigns each particle in the 
population to a possible solution and looks for the 
overall best solution in the population [23]. Simulation 
results showed accurate trajectory tracking and 
stability, however, the controller relies heavily on the 
quadrotor dynamics and assumptions about the 
quadrotor; the latter including assumptions of rigid body 
dynamics, symmetrical structure, rotor dynamics are 
relatively fast and can be ignore, aerodynamic effects 
can be ignored at low speeds and the center of mass 
and body-fixed origin coincide [23]. 

Flight control through modified PID control [20] with 
ultrasonic sensor input [29, 30, 32, 33] and an IMU [29, 
32] is selected for this application over fuzzy control 
[21, 22] due to advantages in real-time response and 
accuracy of the former approach. While the 
Backstepping Controller offers promising results for 
UAV stabilization [23], underlying UAV assumptions 
and quadrotor dynamics may make it a less accurate, 
and more dangerous, solution when attempting to 
locate the patient for querying, indoors. Accurate 
stability is essential for real-time indoor flight where 
human movement and interactions are apparent. 
Camera input may be merged with ultrasonic sensor 
and IMU data for environment position input to the 
controller for more accurate flight control and stability. 

2.3. Navigation: Obstacle Detection and Avoidance 

UAV operability for collision detection and 
avoidance can be facilitated with algorithms that utilize 
ultrasonic sensor information [29, 30, 32, 33], image 
processing strategies [21, 26, 34], sonar or laser data 
[21, 22]. Results of these are input to avoidance 
algorithms that apply state machines for classification 
of object distance [32] and PID control for maintaining 
distance from an identified object [29, 30, 32, 33]. FLC 
by CEO also enables collision avoidance [21, 22]. 

State Machine Method applies a collision avoidance 
module to divide the environment into multiple zones 
which are user-defined, according to obstacle proximity 
to the drone [29, 32]. Environmental information is first 
ascertained and the state of the quadcopter determined 
[29, 32]. Initially, the quadcopter is at state 0 and if no 
object information is detected through ultrasonic sensor 
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input, within a specified range of the quadcopter, it is in 
a safe zone state of 1 [32]. Any object detected within 
the range will switch the quadcopter to state 2 [29, 32]. 
The corresponding pitch or roll angle towards the 
obstacle is limited depending on the measured 
distance, reducing the speed of approach to a detected 
object [29, 32]. In the dangerous zone, state 3 is 
activated and the distance to the obstacle is controlled 
using a PID controller, preventing a further approach to 
the obstacle [29, 32]. In comparison to collision 
avoidance strategies that use camera image data, the 
method costs less and adds less weight to the 
quadcopter system, further ultrasonic sensors are not 
adversely affected by light or in a diaphanous 
environment. Ultrasonic technology finds difficulty 
sensing low density objects at long range and the 
resolution of detected obstacles may also be low. To 
overcome the issue of low resolution of detected 
obstacles, multiple sensors can be used to increase the 
resolution [33]. 

Fuzzy Logic Control (FLC) may be applied for 
obstacle avoidance [21, 22]. This method can receive 
images from camera technology for processing, to 
detect objects through color recognition; using a 
continuous adaptive mean shift (CamShift) algorithm to 
detect the center of the object [21]. The output of the 
detection module is then passed to the FLC to modify 
the trajectory of the UAV through yaw-driving 
commands [21, 22]. The system is optimized using 
CEO through tests with the ROS-Gazebo simulator and 
compared against the algorithm running in real-time on 
the Parrot AR.Drone; the comparison revealing only a 
small error between the simulator results and those of 
the Parrot AR.Drone [21, 22]. One identified problem 
was that the CamShift occasionally suffered from 
changes in the color distribution over time but this can 
be addressed by dynamically adjusting camera 
sensitivity to the changes in light distribution [21, 22]. 

State machine approach [29, 32] utilizing multiple 
ultrasonic sensors [33] promises better collision 
avoidance in an indoor environment, combined with a 
PID controller [29, 30, 32, 33], compared to FLC with 
image sensing [21, 22]. Within a close-proximity, indoor 
environment with possible human movement, 
ultrasonic-driven algorithms for real-time collision 
avoidance combined with PID control [29, 30, 32, 33] 
and an IMU [29, 32] show greatest promise due to fast, 
accurate ability to quantify distance and direction of 
movement of obstacles relative to the UAV.  

2.4. Patient Recognition: through Voice- and Image- 
Recognition 

2.4.1. Voice Recognition 

Speech Recognition (SR) is applied in a variety of 
applications, within aerial robotics, for voice processing 
in real-time applications related to Air Traffic Control 
(ATC) [35-37], conversion of speech signals into 
control codes [38], and subsequent decision making 
[39-42]. SR hardware solutions [36-39] and novel 
algorithms [35, 38-41, 43, 44] are proposed in the 
research in real-time robotics, such as in the use of 
natural language communication commands to drive 
robotic movement [39]. SR hardware solutions are 
combined with class-based and dynamic language 
models; the former sorts words into classes based on 
their morphological and semantic features [38], while 
the latter considers the degree of recurrence of the 
word in the recorded history of usage to identify input 
keywords [37]. An ATC SR model is proposed for ASR 
and controller event detection, enabling automated 
analysis and interpretation of ATC voice interactions 
[36]. Input recordings are taken by a VoIP recording 
system [36]. ASR is applied for text broadcasting to 
reduce the rates of misunderstandings that occur 
between an aircraft pilot and ATC, such as in 
communication errors associated with non-native 
English speakers and also congested exchange 
channels [37]. ASR systems reveal around 99% 
accuracy when tested in ideal factory environment but 
prove to be of little use when faced with ambient noise 
in real-time [37]. A hardware and software solution is 
implemented for real-time user-robotic interactions via 
SR resulting in robot motion through user initiated 
commands [39]. The required constituents of such a 
system are identified as: a robotics module and active 
SR components, integrated and with the ability to 
initiate and interactively control robotic movement 
through speech-driven commands [39]. Research 
reveals that hardware-based systems enabling 
acceptable speech detection rates for real-time 
applications have variable results [36]; while hardware-
centric systems show high accuracy errors in SR within 
ATC [37], other systems show improvement; in ATC 
voice communication an event detection rate (EDR) of 
around 70% in both flight en-route and approach 
communications is achieved [36]. Results of the 
hardware and software solution in [39] reveal instability 
issues due to noise and/or lack of user clarity of speech 
to the robotic interface.  

Algorithms for Voice Activity Detection (VAD) 
include Long Term Spectral Divergence (LTSD), 
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Multiple Observation Likelihood Ratio Tests (MO-LRTs) 
and Order Statistics Filter (OSFs) [42]. Approaches to 
overcome challenges of SR in noisy environments and 
reduce signal interference include modified versions of 
the Hidden Markov Model (HMM), applied extensively 
in the research [35, 40, 43, 45-47]; Mel Frequency 
Cepstral Coefficient (MFCC) [41]; Dynamic Time 
Warping (DTW) [41]; Neural Networks (NNs) for voice 
signal classification [38, 44, 48]; and Vector 
Quantization (VQ) [49-51]. In addition to problems 
associated with signal interference in a noisy 
environment, three major challenges in VR are word 
recognition within an extensive vocabulary, words with 
similar phonetics [37], imprecise pronouncement of 
consonants, tremor, hesitations and slow articulation 
[52], colloquial language, and age related degeneration 
such as vocal cord atrophy, muscle changes and 
calcification of laryngeal cartilage [53]. HMM is claimed 
to be the leading model in SR, while other strategies 
combine it with NN in a hybrid configuration that works 
on the principal of word-sound correspondence [37], as 
applied in [40] and [38]. Challenges for application of 
current methodologies include noisy input voice signals 
and continuous speech detection [40].  

Strategies to achieve SR in noisy environments are 
examined [35, 42], with VAD applied to obtain high 
speech coding, low bit rate transmission and improved 
speech communication. Algorithms for VAD are 
compared in a survey describing a variety of 
assessment structures that process speech signal 
information, including LTSD, MO–LRT and OSF [42]. 
LTSD utilizes a long-term speech window based on the 
estimation of the Long-Term Spectral Divergence 
(LTSD) to track the spectral envelope of the speech so 
that a decision rule can be formed between the speech 
and noise [42]. MO–LRT aims to improve the decision 
rule through the incorporation of several observations 
to statistical testing [42]. OSF applies Multiband 
Quartile Estimation (MQE) Signal to Noise Ratio (SNR) 
to improve difference in speech caused by fricative 
sound through the complementary information it gives 
[42]. Mohamed et al. [35] examine two models for the 
analysis of SR systems in noisy conditions, aimed at 
stacking the elements of clean and boisterous channels 
to form a new, enlarged space comprising measurable 
models of a SR system. These factual models are 
interpreted for the prediction of the clean speech 
components from the noisy feature set.  

HMM is identified as an effective mathematical tool 
in SR that aids in modelling speech time series [43]. 
HMM operates as a variant-limited state machine, with 

an arrangement of hidden states wherein each state 
provides an output with certain likelihood, transition 
probabilities, initial state probabilities, output 
probabilities of which initial state is not recognizable, 
and an alphabet as output [45]. HMM for SR is applied 
with algorithm improvement through application of the 
Forward Algorithm (to calculate output probability), 
Viterbi Algorithm (to determine best state path) and 
Baum-Welch Algorithm (for determining the 
transmission and emission matrices) [40, 43, 46]. The 
process of SR involves feature extraction and feature 
matching, where each word in the vocabulary has a 
distinct HMM that acts as reference for subsequent 
word matching [40]. HMM can be effectively utilized to 
model units of speech that comprise a sentence, 
phoneme or word [45]. It provides an efficient 
mechanism to model the variation in the statistical 
representation of the speech signal, in the frequency 
and time domains [45, 47]. A major drawback of HMM 
applied in a real-world environment is the conditional 
independence assumption of HMM; self-supporting 
speech frames are independent of their neighbors and 
this may lead to misclassification [46, 47]. However the 
efficiency of the model in processing of speech signals 
and its speed of parameter estimation during voice 
training make it suitable for the real-time application 
[47], and may be improved by modification and 
combination with other strategies. 

In order to match a voice signal with a keyword in a 
database whilst minimizing classification error, speech 
processing using MFCC is deployed [41]. The MFCC 
enables processing of a digitized voice signal through 
pre-processing, Framing, Windowing, DFT, Mel Filter 
Bank, DCT and Delta Energy and Spectrum analysis, 
to extract voice features, which are then sent to a DTW 
algorithm that selects the corresponding pattern from a 
reference signal in the database [41]. However, MFCC 
and DTW methods are applied in an environment that 
lacks noise interference [41].  

ANNs offer a framework of interconnected data 
handling components that prepare and process data as 
a dynamic state response to external, changing inputs 
[48]. ANNs reveal their potential in their ability to ‘learn’ 
in problem solving, similar to the human brain [48], 
however in SR, speech training places demands on 
computational requirements as well as the incapacity to 
take in time sequences of speech signals, hence 
lengthened time sequences representing speech 
cannot be processed [46, 47]. For SR, a multilayer 
Feed Forward (FF) network using a Back Propagation 
Algorithm to minimize the mean square error between 
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input and expected output reveals utility [48]. A filtering 
system for SR based on a Fuzzy NN (one in which 
membership criteria change dynamically with incoming 
data, for data classification) is proposed for background 
noise suppression [44]. The application, G.H.O.S.T, is 
developed for the purpose of providing SR for elderly 
and less able-bodied individuals in a smart home 
environment [44]. Another system designed for 
disabled citizens and also employing NN classifiers for 
voice pattern recognition aims to improve SR by the 
reduction of False Acceptance Rates (FARs) of 
keywords in voice-driven commands [38]. Compared 
with classical HMM and DTW, the NN classifier 
proposed in [38] revealed better accuracy of 
classification and speed. However, Forward, Viterbi 
and Baum-Welch Algorithms [40] may be applied to 
overcome the comparative shortcomings of HMM. An 
Adaptive Neuro-Fuzzy Interference System revealed 
an improvement in error rate for real-time speech 
processing in a noisy environment, in comparison to a 
commonly applied Least Mean Square (LMS) 
algorithm, in a series of tests conducted by the authors 
[44] using wired and wireless microphones to capture 
speech input subject to ambient noise.  

VQ is a centroid model that maps a large number of 
vector space to a limited, discrete number of regions 
(clusters) in that space [49, 51]. The K-Means 
Clustering Algorithm or the Linde, Buzo and Gray 
(LPG) Algorithm can be applied for clustering and 
mapping of the vector space [49]. VQ can be applied in 
speech synthesis, coding and recognition, and may 
also be applied to obtain a semi-continuous SR system 
achieving similar results as HMM [51]. For SR, VQ is a 
text-independent model that analyzes spectral 
information with reduced storage [50] and reduced 
computation when comparing similarities of spectral 
vectors, making it efficient in obtaining discrete speech 
sound representations [50], particularly for real-time 
applications. The major drawback of VQ in SR is the 
loss of speech information due to quantization during 
the processing of the original speech signal irrespective 
of speech signal length [50], which reduces word 
classification accuracy. 

Research findings indicate that HMM is the best 
approach for real-time implementation of VR in a noisy 
environment. For extraction and recognition of human 
speech, HMM is able to execute DTW, which enables 
real-time extraction. HMM reveals superiority in terms 
of speed and accuracy, in noisy environments, in 
comparison to VQ [49-51] and ANNs [38, 44, 48]. VAD 
[42], Gaussian Mixture Models with SSM and SHMM 

[35] will be adapted to decrease word error 
classification rates in the presence of noise (due to 
propeller rotation). HMM approaches do reveal utility 
for word detection and classification [40]; the model 
offers an efficient algorithm for state and parameter 
estimation and performs DTW automatically [43]. 
Algorithm modifications are proposed to overcome 
errors in evaluation, decoding and optimization of 
model parameters for voice signal sequence 
processing [40]. Since HMM faces issues in the 
evaluation of hidden state determination and learning, 
the Forward, Viterbi and Baum-Welch Algorithms [40] 
may be applied to overcome these challenges. Sensor 
technology involves microphone and speaker for VR, 
with wireless communication to an off-board processor 
for health-based DSS. 

2.4.2. Image Recognition 

Image Recognition (IR) algorithms are applied to 
images acquired from camera technologies for a 
variety of applications toward automatic facial 
recognition, such as in biometric identification [54], 
tracking for surveillance [55] and facial shape 
reconstruction [56]. Many of the existing solutions 
assume the convenience of frontal upright faces of 
similar size for processing [57], however in reality this 
is not the case, with varied facial appearances and 
complex, dynamic environmental conditions. Facial 
recognition systems which are dependent on standard 
face images are susceptible to misclassification of 
background areas as features defining the face. To 
counter this problem, a visual front-end processor is 
required to localize and extract the face region from the 
background. Given a still or video image, to detect and 
localize an unknown number of faces, algorithms for 
facial detection, segmentation, extraction, and 
verification are required, and within these possibly 
facial feature extraction from an uncontrolled, unknown 
and complex (comprised of several objects; moving or 
still) background. As a visual front-end processor, a 
face detection system should be able to classify a 
human face regardless of contextual illumination, 
orientation or camera distance. In this application, real-
time requirements are imposed, as well as moving 
image series that may result in image blur. The image-
based face detection methodologies relevant to this 
work are primarily: Linear Subspace Methods [58-60], 
Neural Networks [61], and Statistical Approaches [62]. 

Linear Subspace Methods address the problem of 
modelling faces by geometric formulation; allowing the 
detector to project a tested image onto a pre-existing 
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subspace and determine if it is similar to that subspace 
[58-60]. A manifold is then computed in �n with vector 
space, �, comprising images containing n pixels, from 
the most significant components of the general face. 
Sung et al. [58] developed a method in which the 
detector is primarily focused on discerning between 
faces and anti-faces. A bootstrapping strategy is 
applied for creating an anti-face training set consisting 
of only the most meaningful non-faces [58]. Other 
approaches to separating faces and anti-faces in an 
image space are applied [59, 60], which are based on 
the support vector machine, with a selected manifold 
defining separation criteria, implemented using 
quadratic programming and exploiting properties of the 
models’ kernel functions. Although the scheme offers 
simplicity in implementation, the computation is quite 
burdensome and not suited for real-time facial 
recognition. 

Artificial Neural Networks (ANNs) are implemented 
for facial detection [61] where the NN contains there 
types of hidden units that examines sections of the 
image space: one set of units for quadrants of the 
20×20 image, one set for quadrants of the quadrants, 
and one set for looking at overlapping horizontal stripes 
of the image. Certain hidden units will help detect 
certain facial characteristics [61]. To train the NN on an 
image set, a large number of images containing faces 
must be used. The locations of these feature points are 
averaged over the training set, then warped to coincide 
with predetermined points [61]. Each face training 
image can then be aligned to the mean as the optimal 
solution to an overdetermined system [61]. ANNs are a 
powerful tool to solve facial recognition problems, due 
to their robustness and effectiveness in different 
environment conditions. However, customization of 
design to the application and extraction criteria are 
required as well as parameter fine-tuning and algorithm 
training. 

Statistical Modelling is implemented by representing 
visual attributes with wavelet coeffients [62]. An image 
can be reconstructed from its transform with a wavelet 
coeffient set that has the same size as the image itself, 
and in [62], three filter levels are used which give 10 
image sub-bands. This representation enables joint 
modelling of image data which is localized in space, 
frequency, and orientation, and from this information, a 
histogram-based face detector is constructed using 
Bayes’ decision rule [62]. Adaptive Boost (AdaBoost) is 
a machine learning algorithm for boosting (that is, 
finding a highly accurate hypothesis by combining 
several ‘weak’ hypotheses, each with moderate 

accuracy) used to compute each part’s likelihood of 
belonging to the detected object [62]. The final decision 
regarding facial recognition is made by multiplying the 
likelihood ratios of all the parts together and testing the 
result against a predefined threshold [62]. This method 
[62] is computationally expensive and suffers from the 
usual shortcomings of straightforward correlation-
based approaches, such as sensitivity to face 
orientation, size, variable lighting conditions, 
background clutter, and noise. 

Viola Jones Detector applies the concept of an 
“integral image” combined with the Haar wavelet 
representation, with the classifier trainer performed with 
the AdaBoost method, to detect faces at 15 fps [63]. An 
attentional cascade is used consisting of low-feature-
number detectors based on a natural extension of Haar 
wavelets [63]. For each pixel in the original image, 
there is exactly one pixel in the integral image, whose 
value is the sum of the original image values above 
and to the left [63]. The integral image can be 
calculated swiftly, and significantly cuts down 
computation [63]. Training the attentional cascade is 
similar to other training methods such as in [58], for 
basic bootstrapping, but is geared toward the 
progressive nature of the attentional cascade. This 
represents an improvement in computation time over 
previous implementations of face detection algorithms 
and by far is the most efficient algorithm offering high 
accuracy in results, for face detection. 

The Viola Jones Detector [63] offers straight-
forward implementation promising high accuracy for 
real-time image processing, for patient detection and 
classification, in the proposed work. In comparison to 
other strategies for IR [58-62], it offers a robust, real-
time face detection method for patient recognition and 
classification in aerial navigation. Patient detection and 
recognition is proposed using a hybrid approach, 
combining the Viola Jones Detector [63] for IR, a 
modified HMM [40, 35] and VAD [42] for VR, and in 
conjunction with customized ultrasonic sensor 
strategies for movement detection and classification. 

2.5. Expert System for Patient Health Assessment 

Decision support for mental and/or physical 
disorders with primary focus on artificially intelligent 
server-based engines integrating has been achieved in 
a limited capacity. These include rule-based expert 
systems [64-67], implemented with decision tree 
classifiers [64], heuristics [68], fuzzy logic [69, 70] and 
neural networks [70], with hybrid approaches 
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suggested [70]. While computerized DSS’s have been 
developed for cancer care [65], blood infections [66] 
and differential diagnosis [67], research that is focused 
on the design and deployment for a fully-automatic, 
drone-based client-server decision support using 
querying for health assessment has not yet been 
achieved. 

2.5.1. Rule-based Expert Systems: Decision Tree 
Structures 

Rule-based expert systems using decision tree logic 
have been designed and implemented for dedicated 
clinical care [64-66]. MYCIN applies a rule-based 
expert system to diagnose and recommend treatment 
for blood infections; assisting clinicians in their choice 
of antibiotics for bacteremia or meningitis. The 
clinicians enter information regarding patient history, 
physical findings and laboratory results into the system, 
which then provides patient-specific recommendations 
for antibiotic coverage [66]. INTERNIST-I is a rule-
based expert system that uses observations of patients 
to classify various states of disease [64]. INTERNIST-I 
was initially designed in 1974 and links diseases with 
symptoms using a tree-based structure that performs a 
complex diagnosis for general internal medicine [64]. 
ONCOCIN was one of the first DSS’s which attempted 
to model decisions and sequencing actions over time, 
using a customized flowchart language for the 
implementation of a rule-based medical expert system 
[65]. ONCOCIN was designed to assist physicians with 
the treatment of cancer patients receiving 
chemotherapy [65]. Classification accuracy of these 
systems ranged from 69% [66] to 72% [64] although 
human expert classification of infectious diseases were 
less accurate [66]. Further, processing time was slow; 
with 30-90 minutes on average per consultation [64], 
which is not effective for immediate, real-time triage 
assessment. Improvement in classification accuracy, 
processing time and removal of human interaction (i.e. 
automating the system entirely) is therefore required. 

2.5.2. Rule-based Expert Systems: Heuristics 

A semi-automatic mobile DSS, iTriage, is introduced 
and subjectively validated through testing the system 
on triage nurses and questionnaire evaluation, to 
provide a supplementary IT-based tool for triage care. 
A multicriteria heuristic algorithm is designed, over a 
rule-based expert system [68]. Nurse input is required 
for selection of medical attention category best 
matching patient needs, attribute selection that 
qualifies the identified need and a confidence level for 
their triage decision [68]. For an autonomous drone-

based solution, human intervention for assistance of 
the DSS in classification is not an option. Triage scale 
categories and physiological discriminators, as 
documented in the study [68], provide useful guidelines 
for human-based triage classifications, yet drone-based 
querying will require translation of some indicators and 
addition of others, to enable classification based yes/no 
health status querying. 

2.5.3. Fuzzy Logic Classifiers 

Fuzzy Logic Classifiers (FLCs) have been applied 
for medical applications [69, 70], although these require 
internal imaging for algorithm input, while non-invasive 
methods of assessment are applied in the proposed 
work. In [69] a selection of cancer types including 
breast, lung and colon are classified and compared 
using the Mamdani model and a fuzzy logic model. 
Algorithms are programmed in C# on the Visual Studio. 
Net 2010 platform [69] and techniques compared using 
Receiver Operating Characteristic (ROC) analysis 
showing higher accuracy of specificity and sensitivity 
as well as lower false-negative rates, leading to greater 
overall algorithm accuracy for results achieved from the 
FLC.  

In addition to features extracted through fuzzy logic 
applied directly to the images, other risk factors are 
ascertained for patient classification [69]. In the breast 
cancer model: sex, age, genetic status, menarche age, 
menopause age, first childbirth age, alcohol 
consumption, and nutritional habits are determined as 
factors for cancer risk [69]. In the lung cancer model, 
sex, age, skin tone, smoking, age of starting smoking, 
passive smoking environment, occupational status, 
living environment, genetic status, economic status, 
and nutritional habits are determined as factors for 
cancer risk [69]. In the colon cancer model, age, 
genetic status, cancer history, inflammation status in 
the intestines, physical activity status, weight status, 
smoking, alcohol consumption, and nutritional habits 
are determined as factors for cancer risk [69]. Of 
relevance to this study, risk factors for levels of patient 
assessment in triage care need to be determined, for 
construction of an initial patient profile. 

2.5.4. Fuzzy Cognitive Maps 

A Fuzzy Cognitive Map (FCM), integrating aspects 
of fuzzy logic, neural networks, semantic networks, 
expert systems and other computing strategies, is 
implemented to categorize medical requirements 
determined by triage in the Emergency Department, for 
elderly citizens [70]. Physical concerns for the elderly 
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can be numerous, different from younger patients, and 
may co-exist with cognitive and functional problems 
[70]. As identified by the authors, in addition to medical 
and laboratory examinations, questionnaires as used to 
assess the status of a patient, such as the 
Questionnaire Identification of Seniors at Risk tool that 
enables functional and mental status determination 
[70]. The FCM operates on a structure that uses fuzzy 
signed directed graphs with feedback, enabling 
modeling of complex nonlinear, dynamic systems that 
provide an interconnected network of interrelated 
entities, distinguishing causality between concepts [70]. 
The Competitive Fuzzy Cognitive Map (CFCM) has two 
types of concepts: diagnosis and factor, where the 
latter are inputs such as those from patient data, 
symptoms, experimental tests, and the former are 
outputs where their values are possible patient 
diagnoses [70]. The weights and network connections 
establish the degree to which one concept influences 
the other and interconnections are implemented using 
if-then constructs. Categories of severity are 
established (emergency/urgent to non-urgent) [70]. 
Decision factors are first identified through documented 
methodologies and expert questioning, and then the 
importance weight and specific weight of the decision 
factors are established [70]. The identified factors and 
weightings are then used for membership functions in 
the CFCM for patient classification into one of the 5 ESI 
triage levels [70]. 

Neural Networks [70], rule-based expert systems 
[65-67], fuzzy logic [69, 70], heuristics [68] and decision 
tree classifiers [64], or a combination (hybrid) [70] show 
utility towards an intelligent, server-side medical DSS 
for real-time response. However, for this application, 
VR and IR strategies must be applied for speech 
extraction and patient identification, as input to the 
classifier which must be designed based on clinical 
practice, but limited to yes/no querying for a fully 
automated drone solution. A hybrid approach for 
dynamic rule-based classification, incorporating fuzzy 
NNs and decision tree logic, is best suited to meet the 
objectives and functionality required by this study. 
Existing medical protocols and criteria for triage 
assessment must first be examined to identify 
associated weights for inclusion into a dynamic, 
computerized classification design structure that 
enables yes/no querying. A combined approach, as in 
[70], that utilizes fuzzy decision logic and a decision 
tree structure, but is dynamic and operates in real-time 
with no human input, is desired. Validation in terms of 
accuracy, consistency and effectiveness of decision 
support is then required.  

3. OUR PROPOSED SYSTEM 

3.1. Hardware Solution 

The literature indicates that several commercial 
UAV solutions are available, but these lack the ability to 
program and control the drone using customized 
algorithms. Further, sensor requirements vary 
depending on application. Essential hardware 
requirements for drone assembly for the proposed 
application are identified as: mechanical components, 
comprising motors, the frame, electronic speed 
controllers, propellers, propeller adapters. The 
embedded system is composed of the microcontroller 
(PIXHAWK) to run path planning, control and stability 
functions, as well as process sensor data and feedback 
from the DSS. Sensors for path planning, flight control 
and stabilization include a camera, multiple ultrasonic 
sensors, IMU as well as an accelerometer, 
magnetometer and gyroscope. Power needs include 
battery chargers and power distribution. 
Transmitter/receiver units are required to aid in 
controlling the aerial manoeuvre manually (for testing 
and safety) and to transmit and receive telemetry. 
Communication via WiFi is essential to enable 
client/server data transmission between microcontroller 
and server-based DSS; here, the XBee module is 
identified for installation into the frame base to ensure 
long range communication and so that voice and image 
data from the user can be sent back to the computer 
wirelessly. Since GPS does not work accurately 
indoors, ultrasonic sensors and camera technologies 
are utilized for indoor navigation. Ultrasonic sensors 
are tested to have a wide beam that reflect off 
surfaces, revealing utility for proximity sensing 
(distance determination), autonomous navigation and 
for human movement detection. The Matbotix Sensor is 
a popularly used commercial sensor for this purpose. 
Figure 1 provides an overview showing basic hardware 
components, embedded algorithms and sensor data 
input driving data flow between modules. 

Images collected by the on-board camera are input 
to the path planning function running on the Pixhawk 
microcontroller, as well as the IR function. The data 
output from path planning, in addition to ultrasonic 
sensor input and IMU data, as well as SR and IR 
output, are input to the PID controller enabling in-flight 
control and stability. Sensor values invoke changes in 
values of the Electronic Speed Controllers (ESCs) 
driving motor (hence rotor) speed since sensor 
information is processed by the on-board processor. 
Ultrasonic sensor data is input to the state machine 
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running on the microcontroller for collision avoidance, 
the output of which is also input to the flight controller. 
Microphone pick-up is input to the VR function, which is 
input to the SR function, on the microcontroller. Data 
processed from the SR and IR functions are 
transmitted via the X-Bee Wi-Fi module to a server 
(PC) as input to the DSS, as well as to the 
microcontroller; for the latter, if a patient is recognized 
the UAV will fly toward them. Outputs from the DSS are 
sent back to the microcontroller for processing; 
resulting in speech output (through text-speech 
module) via an on-board speaker and/or UAV 
movement. The system components are assembled 
(see Figure 2) and controlled flight achieved using a 
fine-tuned PID controller. 

3.2. Design of the Algorithms  

The research literature introduces a variety of 
techniques for the attainment of quadrotor navigation, 
path planning, stability and flight control, collision 
avoidance, as well as for medical decision support 
(refer Section 2). While several methods address the 
independent research challenges associated with 
indoor flight and those of a decision support system, for 
the specific application involving patient recognition 
during GPS-denied flight, requiring real-time speech 
extraction, analysis and patient-drone querying through 
a remote server-based DSS, new challenges emerge 
which place requirements not only on hardware design 
(weight restrictions, customizable control) and sensor 
selection (detection of still or mobile objects, human 
recognition and patient identification, and querying), 
algorithm adaptation must consider these new system 
objectives. Autonomous computerized DSS’s for 
chronic care and health assessment do not currently 
exist, and coupled with a mobile, autonomous drone 
indoors and limited to speech-based patient querying, 
challenges compound, causing restrictions and 
creating new criteria for technical considerations and 
research methodology. 

PID control integrated with ultrasonic sensors and 
camera technology enables customized, fine-tuned 
indoor flight control and, combined with IMU data, 
stability. PID control for this application is selected over 
other methods due to its advantages in real-time 
response and ability to combine with collision 
avoidance modules, including state machine logic, as 
well as to detect movement. In a highly constrained 

 
Figure 1: Major hardware components including microcontroller and sensors, driving and running major system functions. 

 
Figure 2: Health buddy UAV hardware system assembled 
and operable. Note four motors and rotors, with 
microcontroller housed in frame. 
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indoor environment, with possible human movement, 
ultrasonic-driven algorithms for real-time collision 
avoidance are best suited to this application, due their 
ability to quantify distance and direction of movement 
of obstacles relative to the UAV accurately and swiftly 
when compared to other methods such as FLC. Patient 
detection is paramount for this application and drone 
flight control is directed toward this goal whilst 
maintaining collision avoidance. PID control also 
enables input from VR/SR and IR functions, for patient 
recognition. Monocular SLAM is selected for path 
planning with the Kalman filter for real-time state 
measurements and generation of 3D environment 
maps, despite fast-changing camera FoV due to drone 
movement. 

For real-time patient recognition VR and IR 
strategies are both proposed. VAD enables VR while 
modified HMM with Forward, Viterbi and Baum-Welch 
algorithms offer real-time SR in a noisy environment. 
The Viola-Jones face detection algorithm offers real-
time IR possibility for patient facial detection, promising 
high accuracy for real-time image processing in 
comparison to other strategies for IR. Once detected 
and identified, SR output is input to a hybrid DSS. This 
hybrid model is to be designed using a combination of 
Neural Networks, fuzzy logic and represented as a 
weighted network, where triage assessment weights 
are constructed both dynamically, based on patient 
querying, but initialized from established standards and 
questionnaires documented in clinical practice. Patients 
are queried in real-time by the drone and the classifier 
must be designed for yes/no responses. 

4. CONCLUSIONS AND FUTURE WORK 

Most UAV applications are not combining human 
detection and recognition strategies, yet the added 
complexity of this not only adds much data for 
processing in real-time, but the control and 
classification algorithms must be redesigned; this 
involves development of new models that contain 
combine and interpret data from image, voice, 
movement and position within a noisy, constrained and 
GPS-denied environment. Further, new hybrid 
classification algorithms within the DSS must be 
developed based on clinical practice, and multi-sensor 
driven input, but restricted to in-flight (mobile), non-
invasive assessment (voice and image –activated). It is 
not a matter of integrating the components to overcome 
the individual challenges, but, upon system integration 
and system objectives, new control and classification 
algorithms must be developed and adapted to meet the 

end goal of autonomous UAV patient healthcare. 
Future work focuses on adaptation and extension of 
most suited algorithms identified as: PID, State 
Machine, SLAM, VAD, HMM, Viola-Jones Detector, 
Hybrid Neural-Network and FLC, and hardware, as 
examined extensively in this study, toward new model 
designs that meet the unique criteria of this work. 
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