
 International Journal of Robotics and Automation Technology, 2016, 3, 7-15 7

 E-ISSN: 2409-9694/16 © 2016 Avanti Publishers

An Evolutionary Approach to Tuning a Multi-Agent System for
Autonomous Adaptive Control of a Flapping-Wing Micro Air
Vehicle

Michal Podhradsky* and Garrison Greenwood

Dept of Electrical and Computer Engineering, Portland State University, Portland, OR 97207, US
Abstract: Biomimetic flapping wing vehicles have attracted recent interest because of their numerous potential military
and civilian applications. In this paper, we describe an evolutionary approach to tuning a Multi-Agent System for
autonomous adaptive control of a Flapping-Wing Micro Air Vehicle. The wings of the vehicle are controlled by a split
cycle oscillator, which combined with non-linearities and differences between each vehicle, brings significant challenge
for selecting the proper parameters for the control system. Adopting a Neo-Darwinistic evolutionary approach, where
solutions are evolved in a similar manner as in nature, allows us to precisely learn control parameters for each vehicle.
After describing the evolution algorithm and evolving the control parameters, we utilize these values for autonomous
waypoint following by the micro air vehicle.

Keywords: Multi-agent control, evolutionary algorithm, flapping-wing micro aerial vehicle.

1. INTRODUCTION

Biomimetic flapping-wing vehicles have been the
focus of much recent research due to their potential for
both civilian and military application. In either possible
application area, adaptive, fault-tolerant, control is
paramount. This paper de- scribes a multiagent system
for adaptive control of a model biomimetic flapping-
wing vehicle.

The flapping-wing vehicles were thoroughly studied
– the properties of flapping-wings are both theoretically
and experimentally measured [1], various systems
were designed, built and tested [2, 3], and different
wing configurations were analysed [4, 5]. Even a wing
design and optimization tool is available [6] for the
researchers. Different control approaches were used
for control of the vehicles - ranging from simple open
loop control [7], through classical control [8, 9], modern
control [10], and adaptive control [11], to vision based
control systems [12].

The vehicle employed in this research is a hardware
analogue of a minimally-actuated flapping-wing vehicle
introduced by Wood [13, 14] with core control laws
introduced and subsequently refined by Doman et al.
[15, 16]. The analogue vehicle [17-19] operates
similarly to the minimally actuated vehicles considered
by Wood and Doman et al. in that all propulsion and
control are provided by two minimally actuated wings,
each of which possesses a single active and a single
passive degree of freedom. It differs in that the

*Address correspondence to this author at the Dept of Elec and Comp Engr,
Portland State University Portland, OR 97207, US; Tel: 503-725-3806;
E-mail: podhrad@pdx.edu, michal.podhradsky@pdx.edu

analogue vehicles active degrees of freedom are driven
by a DC motor through a four-bar linkage instead of a
piezoelectric transducer and in that the analogue
vehicle is mounted vertically on a circular puck and
supported from below by either air or fluid cushion.
These changes allow us to experiment with the control
of translation and roll without the need to address the
practical difficulties of balancing lift and vehicle weight.

2. VEHICLE DESCRIPTION

2.1. Vehicle Configuration

A conceptual vehicle closely related to those
described by Wood and Doman et al. is presented in
[20]. The physical analogue descendant from it is
described in [17-19]. Both vehicles operate in a
qualitatively similar manner with two minimally actuated
wings providing all propulsion and control forces. They
differ only in scale and in that the physical vehicle is
supported from below by a fluid or air cushion. The
physical vehicle, with its externally provided lift support,
approximates a passively upright-stable version of the
vehicle in [20] operating near its hover wing flapping
frequency. Both vehicle types (hereafter referred to as
”the vehicle”) have two wings mounted in the Xb –Yb

body plane (see Figure 1). These wings are actively
actuated within the range of ± φ. As the spars rotate,
dynamic air pressure lifts the triangular wing platforms
(membranes) up to an angle of α radians under a base
vector embedded in the Yb –Zb plane. Individual wing
flaps produce independent lift and drag forces at each
of the two wing roots (points of attachment of the wings
to the body). These can be resolved into body frame
forces and torques and cause changes in the whole

8 International Journal of Robotics and Automation Technology, 2016, Vol. 3, No. 1 Michal Podhradsky

vehicles position and pose in three space. The wings
are controlled by Cycle Averaged/Split Cycle oscillator
as described below.

Figure 1: Orthographic view of flapping wing vehicle [20].
Both wing spars are restricted to rotational motion about their
joints with the body and in the Yb –Zb plane. The range of
those rotations is [−1...1] radians, α is between π/6 and π/2
radians. Note that the dimensions are for orientation
purposes only, and differ on the actual vehicle.

2.2. Cycle Averaged / Split Cycle Control

The instantaneous wing angle φ can be described
by a cosine function φ = cos(ωt), where ω is the wing
beat frequency. During a regular wingbeat, the
upstroke and down- stroke are symmetrical, and the
only force produced is the lift perpendicular to the wing
plane.

In a split cycle control, the wing motion consists of
two cosine waves, φU for upstroke and φD for
downstroke. Ad- vancing the upstroke (and
consequently impeding the down- stroke) produces a
lateral force while keeping the wing beat frequency
constant. Formally, φU = cos((ω − δ)t) where δ is the
frequency modifier, and φD = cos((ω + σ)t) where σ is
dependent on δ.

From [16] we know that δ ∈ [−∞ . . . ω/2] although
certain value ranges are particularly important. If δ = 0
the upstroke is symmetrical to the downstroke and a
regular wingbeat occurs. However, if δ > 0 the upstroke
is impeded and the downstroke is advanced, as shown
in Figure 2. As a result, a force is generated in the
direction of the downstroke. Conversely, if δ < 0 then
the downstroke is impeded and the upstroke is
advanced, as shown in Figure 3, resulting in force in

the direction of the upstroke. These lateral forces act
on the vehicle’s body via a moment arm producing an
angular momentum. Put simply, by applying the split
cycle the vehicle can turn. See [16] for a derivation and
proof of split-cycle operation.

Figure 2: Split-cycle results for δ > 0.

Figure 3: Split-cycle results for δ < 0.

2.3. Hardware Realization

Our vehicle uses stepper motors and mechanical
linkages to translate rotational movement of the motor
shaft to flapping movement of wings. The stepper
motor is able to realise split cycle control – e.g., making
an upstroke faster than a down- stroke while keeping
the wing beating frequency constant. A model of the
wing assembly is shown in Figure 4.

An Evolutionary Approach to Tuning a Multi-Agent System International Journal of Robotics and Automation Technology, 2016, Vol. 3, No. 1 9

Figure 4: 3D model of wings with linkages and motors
(http://cps.wright.edu/).

The details about the hardware and software
needed for control can be found in [20]. It is important
to emphasise wing control (i.e. translation of ω and δ
values into stepper motor commands) is taken care of
by an inner control loop and the outer loop control
(navigation) cannot directly interfere with it. This outer
control loop is implemented by the Multi-Agent System
(MAS), described below.

2.4. Multi-Agent Control System

The MAS consists of five agents. A collection agent
receives pose information x, y, ψ from the camera (or
simulator), and runs smoothing and averaging
algorithms to compute the estimated pose x, y, ψ. A
monitor agent observes vehicle behaviour and requests
vehicle diagnostics if the behaviour has deteriorated
too much. The strategy agent keeps a list of desired
waypoints, and provides them upon request to a
controller agent. The controller agent determines the
split- cycle oscillator control inputs (a δ and ω for each

wing) based on the vehicle pose. Finally, a diagnostic
agent runs vehicle diagnostics and determines if a fault
occurred and ultimately Randomly generate the initial
population; 2. Ev decides whether the controller agent’s
rule base has to be adapted. The MAS diagram is
shown in Figure 5, for more details about the MAS refer
to [21].

3. BASIC MOVEMENTS EVOLUTION

To follow waypoints using the multi-agent system
described in the previous section, we first need to find
the appropriate combination of δ and ω values for the
basic vehicle movements. These basic movements
(Move forward, Left turn, Right turn) are summarized in
Table 1. Every vehicle is slightly different due to
inherent non-linearities such as slip between linkages.
Thus, the same δ and ω values cannot be used for
every vehicle; they must be learned.

The δ and ω values will be determined during this
initial learning phase using a combination of extrinsic
and intrinsic evolution [22]. The idea is that the new
solutions are evolved from existing solutions by
emulating Neo-Darwinistic evolution found in nature. In
other words, the search for good δ, ω values is
conducted by evolving them. Highly fit solutions result
in good micro air vehicle behavior. The difference
between intrinsic and extrinsic evolution is in how the
fitness is determined. In extrinsic evolution computer
models evaluate a given δ, ω value set. In intrinsic
evolution the δ, ω values are downloaded to hardware
and physical tests are conducted.

Both forms of evolution use a form of an
evolutionary algorithm (EA) to conduct the search. An
EA consists of a population of individuals, where each

Figure 5: Diagram of Agent-based control architecture. More information about each agent is provided in Section II-D.

10 International Journal of Robotics and Automation Technology, 2016, Vol. 3, No. 1 Michal Podhradsky

individual represents a particular solution to a given
problem. New individuals are created from existing
individuals via random mutation, but only the highly fit
ones will survive. (The fitness formula is given later in
this section.) An EA runs for a fixed number of
generations, at the end of the run the fittest individual is
the final solution. The EA steps are shown below:

The needed parameters will be evolved using an EA
where one individual is chosen as a parent, and ten off
spring are generated from this parent using a mutation
operator, which with a certain probability changes the
properties of the individual. The individuals are
encoded as;

{δL, δR, ωL, ωR, σδL, σδR, σωL, σωR}

where the first 4 parameters are object parameters
(elements of the solution) and the second 4 parameters
are strategy;

1. Randomly generate the initial population;

2. Evaluate the fitness of the initial population;

while max number of generation not reached: do

i. Select the best individuals for reproduction;

ii. Generate new individuals via random mutation;

iii. Evaluate the fitness of new individuals;

iv. Discard the least fit individuals;

end

Algorithm 1: A basic evolutionary algorithm.

Table 1: Basic Vehicle Movements. ↑, ↓ Indicate
Direction of Change, not its Magnitude

parameters used to control the mutation step size. The
object parameters are mutated independently using a
normal distribution and the appropriate strategy para-
meter. The equation for production of a new individual
y from a single parent x is given as:

δLy = δLx + N (0, σδL) (1)

where N (0, σδL) is a normally distributed random
variable with zero mean and a standard deviation of
σδL. The other object parameters with their respective
strategy parameters are mutated the same way as
described in the Equation 1.

In our algorithm, the parent lives only one
generation, because the next generation will be taken
from the offspring only. The fittest individual is selected
to be the parent in the next generation. The fittest
individual encountered is recorded, but it is not a part of
the population in future generations. This way the best
solution isn’t lost. The first parent is randomly
initialized, using lower and upper bounds on δ and ω
that are needed because of hardware limitations.
Hardware limits max value of ω to 30 rad/s (minimum is
1 rad/s), and δ !(−10, 10). Split-cycle control requires
|δ|≤ω/2.

In this phase of the research effort, we used an
evolutionary algorithm to search for the optimal values
of δ and ω. Other more classical optimization
algorithms might be useful but whether or not that is
true would require a detailed analysis of the solution
space morphology which we did not do1.

Our choice of an evolutionary algorithm to conduct
the search was two-fold. First, evolutionary algorithms
are usually considered optimization algorithms but
basically they are search algorithms. Evolutionary
algorithms can search any1 solution space regardless
of morphology. Thus evolutionary algorithms allow us
to optimize without conducting a solution space
analysis. Secondly, and more importantly, every
vehicle is slightly different due to inherent nonlinearities
in the linkages and other manufacturing differences
(such as a slightly different size of wings, etc.). As a
result, optimal values for one vehicle will not be optimal
for another. The goal here is not to achieve generally
optimal movements but rather smooth and repeatable
correct movements. Consequently, we needed a
search method rather than an optimization method.
Evolutionary algorithms allow us to search for good
solutions by evaluating actual vehicle behavior, which
cannot be accomplished using classical optimization
algorithms. This type of search process is called
intrinsic evolution.

1However, our experiments did show small perturbations in δ/ω had no
observed behavioral changes which suggests gradient-based optimization
algorithms would not be very effective

An Evolutionary Approach to Tuning a Multi-Agent System International Journal of Robotics and Automation Technology, 2016, Vol. 3, No. 1 11

3.1. Extrinsic Evolution

Because the lifespan of linkages at the vehicle is
limited, it is reasonable to first execute extrinsic
evolution of control parameters δ and ω to 1) verify the
correctness of the evolution algorithm; 2) get the initial
estimate of optimal control parameters. The more
precise model of the vehicle is available, the better is
the estimate. However, obtaining a precise (first-
principle) model of the flapping wing system is very
complicated, especially because of the small forces
and torques that would have to be measured to
correctly identify the model. Modelling non-linearities
such as linkage slip also poses a significant challenge.
However a simplified model that treats the vehicle as a
point mass body and aggregates the generated forces
and torques is a sufficient approximation, because it
will exhibit similar behavior albeit on a different time
scale.

For the purpose of the extrinsic evolution, we
started with the following assumption. The faster the
wings beat (i.e. higher ω), the more force is generated
(because the wing acceleration is higher). The higher
split cycle shift (higher |δ|), the more force is generated
(because the difference between upstroke and
downstroke is higher). The higher force results into
faster movement.

The optimal solution completes the basic movement
in shorter time, and is within the imposed constraints.
Thus in our simple model we use to evaluate fitness of
candidate solution we employ the following equation:

fit x() = KL .! Lx ." Lx + KR.! Rx ." Rx (2)

where K1 , K2 are adjustable weights, in the simplest
case:

• KL = KL = 1 for Move forward

• KL = 1; K2 = −1 for Turn right

• KL = −1; K2 = 1 for Turn left

We ran the EA for 20 generations in each run, for
20 runs total. The expected optimal solution would
converge to maximal ω for both wings and maximal
values for δ but with opposite signs in case of turns.
The results are shown in Figure 6. Notice in all cases
the runs converged to (or at least very close to) the
global optimum.

The best evolved values for our simple model were:

• Turn left: δL = −10, δR = 10, ωL = ωR = 30

• Turn right: δL = 10, δR = −10, ωL = ωR = 30

• Move forward: δL = 10, δR = 10, ωL = ωR = 30

which is consistent with our expectations.

3.2. Intrinsic Evolution

During the intrinsic evolution we used the actual
vehicle for evaluating fitness of the candidates. The
major difference was that for Turn left and Turn right
fitness is defined as f = 1/T where T is the time needed
for the vehicle to turn by 360 degrees from its initial
position. For Move forward the fitness is defined as
f = 1/(K1. Twp.+ K2. dwp), where Twp is time needed to
reach x-coordinate of the waypoint p (located
approximately 30cm in front of the vehicle), dwp is the
distance from the y-coordinate of the waypoint p when
its x-coordinate is reached. K1 = 100 and K2 = 1 are
weights to scale the different units (seconds and
pixels).

Because the hardware has a limited lifespan, we
only ran the EA once and for only 20 generations. This
is limiting in the sense that we can reach suboptimal
results, but if we were to run more runs as was the
case for extrinsic evolution, the linkages could wear out
prematurely and would have to be replaced, in which
case the learning would have to be done again from
the very beginning. In other words, extrinsic evolution
provides relatively good results, but to obtain a fine-
tuned control system we need to use intrinsic evolution.

Figure 6: Extrinsic evolution run for Turn left move. Notice
that the algorithm in almost all cases reaches global optimum
f = 600.

12 International Journal of Robotics and Automation Technology, 2016, Vol. 3, No. 1 Michal Podhradsky

The incremental improvements in turn times for
evolved control parameters are shown in Figure 7. For
the forward motion, the vehicle actually was not able to
reach the desired waypoint (its y-coordinate) in vast
majority of tries. In such case the experiment was
stopped after 2 minutes and the fitness of given
individual was marked as zero. Effectively this reduced
the EA to a random search, until a viable solution was
found. The best solution after 20 generations (and the
only one found that had non-zero fitness) is shown in
Figure 8. The best values of control parameters found
for our vehicle are summarized in Table II. Notice the
best values are very similar to the values found by
extrinsic evolution. This validates our model used for

extrinsic evolution as usable for initial estimate. The
differences in control parameters are caused by
imperfections and non-linearities in real hardware, and
indeed, those were not included in our simple model.
The intrinsically evolved values were used in the next
section to perform waypoint following.

4. WAYPOINT FOLLOWING

Our experiments are conducted in a large (5 × 7)
water tank. The vehicle currently can move on a two-
dimensional plane and rotate around its Xb axis. The
vehicle is equipped with a pair of Lithium Polymer
batteries, a power distribution board, and the main
computer, as shown in Figure 9. All hardware is
mounted on a carbon-fiber platform, attached to a
floating Styrofoam puck. The water surface acts as a
low- pass filter, slowing down the vehicle movement
and dampening disturbances.

Figure 9: Assembled vehicle before the experiment. Note
wings in the middle, LiPo batteries on sides, the power
distribution board in the back and the control board in front.

Table 2: Control Parameters for the Basic Movements.
Values for Idle were Determined Empirically
and Based on the Hardware Initialization
Procedure (Default Values)

Movement δL δR ωL ωR

Move Forward 0 0 25 30

Left Turn 0 10 12 30

Right Turn 10 -10 30 30

Idle 0 0 12 12

A camera is placed above the water tank, such as
its field- of-view encompasses the entire water tank.

Figure 7: Time needed to complete Turn left and Turn right
moves during intrinsic evolution. Notice that left turn takes
longer to finish, which is caused by non-linearities in the
hardware.

Figure 8: Best found solution for forward movement Blue:
Initial position of the vehicle, Green cross: waypoint the
vehicle was commanded to reach. The experiment was
stopped once the center of vehicle crossed the y-axis of the
waypoint.

An Evolutionary Approach to Tuning a Multi-Agent System International Journal of Robotics and Automation Technology, 2016, Vol. 3, No. 1 13

The camera locates and records the vehicle position.
The vehicle has color markers for this purpose.
Figure 10 shows a close-up view of the vehicle,
including the color markers.

Figure 10: Vehicle during an experiment in the water tank
(close-up view). Note the color markers used for machine
vision pose estimation.

The video stream from the camera is processed on
a regular laptop computer, using the OpenCV library for
computer vision. The processed video is recorded for
reference, and the estimated pose is sent to the
onboard MAS via a WiFi link.

After learning control parameters for the basic
movements the multi-agent system [21] can perform
autonomous waypoint following. The experiment is held
in a large water tank to lock the vehicle into 2D of
freedom and to mechanically low-pass noise in the
control system by using water surface as a damper.
Machine vision is implemented to track the position of
the vehicle using color markers. The waypoints are
virtual and dynamically placed in the experiment area.
For more details about the experimental setup, the
reader should see [21].

Two waypoints were placed to the opposite sides of
the water tank, and the vehicle was expected to go
back and forth between them. The vehicle was able to
follow successfully the waypoints, as can be seen in
Figures 11 and 12. Video of the experiment can be
seen at https://youtu.be/oYEjCaRoLNU.

5. FUTURE WORK

Both the evolution of control parameters and the
consequent waypoint following performed as expected,
proving the viability of this concept. The immediate next
steps in our work are to implement obstacle avoidance
mechanism in the multi-agent system, so the vehicle is
able to operate in an environment with obstacles, being
more closely related to a real application.

Figure 11: Autonomous waypoint following. The blue dot is the desired waypoint; the vehicle is marked with a bright green dot
and a green line pointing towards the front of the vehicle. In the top left corner of the screen is shown the rule that fired. Top left:
Initial position of the vehicle; Top right: First waypoint achieved, the vehicle is turning around; Bottom left: Approaching the
second waypoint; Bottom right: Second waypoint achieved, moving back to the first waypoint. See video of the experiment at:
https://youtu.be/oYEjCaRoLNU.

14 International Journal of Robotics and Automation Technology, 2016, Vol. 3, No. 1 Michal Podhradsky

Figure 12: Vehicle trajectory (blue) during waypoint following.
Two waypoints being followed are marked with red dots, with
distance threshold pictured around them. The vehicle itself is
as large as the circle around the waypoints. Purple: start
position, Light blue: end position, Blue arrows: indicate
orientation of the vehicle.

The second step is to implement in-flight learning
and fault- detection function as proposed in [21], so the
vehicle can recover from certain faults and finish its
mission even if it sustains damage in the control
system.

Note that the evolutionary algorithm used in this
work is only one of many existing evolutionary
algorithms. More sophisticated algorithms, such as
Artificial Bee Colony [23] or Particle Swarm
Optimization [24] can be used and compared and
evaluated. However, for the scope of this work the
basic evolutionary algorithm provided sufficiently good
results.

ACKNOWLEDGMENT

This material is based upon work supported by the
National Science Foundation under Grant Numbers
CNS-1239196, CNS-1239171, and CNS-1239229.

REFERENCES

[1] Desbiens AL, Chen Y and Wood RJ. A wing characterization
method for flapping-wing robotic insects. In 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems
2013; 1367-1373.

[2] Leys F, Vandepitte D and Reynaerts D. Design of a flapping
wing micro air vehicle, based on the rufous hummingbird. In
2015 IEEE International Conference on Robotics and
Biomimetics (ROBIO) 2015; 1266-1271.
http://dx.doi.org/10.1109/ROBIO.2015.7418945

[3] Lau GK, Chin YW, Goh JTW and Wood RJ. Dipteran-insect-
inspired thoracic mechanism with nonlinear stiffness to save
inertial power of flapping-wing flight. IEEE Transactions on

Robotics 2014; 30(5): 1187-1197.
http://dx.doi.org/10.1109/TRO.2014.2333112

[4] Hines L, Colmenares D and Sitti M. Platform design and
tethered flight of a motor-driven flapping-wing system. In
2015 IEEE International Conference on Robotics and
Automation (ICRA) 2015; 5838-5845.
http://dx.doi.org/10.1109/ICRA.2015.7140016

[5] Colmenares D, Kania R, Zhang W and Sitti M. Compliant
wing design for a flapping wing micro air vehicle. In Intelligent
Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference on 2015; 32-39.
http://dx.doi.org/10.1109/iros.2015.7353111

[6] Arabagi V, HinesL and Sitti M. A simulation and design tool
for a passive rotation flapping wing mechanism. IEEE/ASME
Transactions on Mechatronics 2031; 18(2): 787-798.
http://dx.doi.org/10.1109/TMECH.2012.2185707

[7] Phan HV and Park HC. Remotely controlled flight of an
insect- like tailless flapping-wing micro air vehicle. In
Ubiquitous Robots and Ambient Intelligence (URAI), 2015
12th International Conference on 2015; 315-317.

[8] Zhang J, Cheng B, Yao B and Deng X. Adaptive robust wing
trajectory control and force generation of flapping wing mav.
In 2015 IEEE International Conference on Robotics and
Automation (ICRA) 2015; 5852-5857.
http://dx.doi.org/10.1109/ICRA.2015.7140018

[9] Mahjoubi H and Byl K. Dynamics of insect-inspired flapping-
wing mavs: Multibody modeling and flight control simulations.
in 2014 American Control Conference 2014; 3089-3095.
http://dx.doi.org/10.1109/ACC.2014.6858637

[10] Zhang J. Cheng B, Roll JA, Deng X and Yao B. Direct drive
of flapping wings under resonance with instantaneous wing
trajectory control. In Robotics and Automation (ICRA), 2013
IEEE International Conference on 2013; 4029-4034.

[11] Bayandor J. Bledt G, Dadashi S, Kurdila A. Murphy I and Lei
Y. Adaptive control for bioinspired flapping wing robots. In
2013 Amer- ican Control Conference 2013; 609-614.

[12] Hsiao FY, Yang LJ, Lin SH, Chen CL and Shen JF.
Autopilots for ultra lightweight robotic birds: Automatic
altitude control and system integration of a sub-10 g weight
flapping-wing micro air vehicle. IEEE Control Systems 2012;
32(5): 35-48.
http://dx.doi.org/10.1109/MCS.2012.2205475

[13] Wood RJ. The first takeoff of a biologically inspired at-scale
robotic insect. IEEE Transactions on Robotics 2008; 24(2):
341-347.
http://dx.doi.org/10.1109/TRO.2008.916997

[14] Teoh Z, Fuller S, Chirarattananon P, Prez-Arancibia N,
Greenberg J and Wood R. A hovering flapping-wing
microrobot with altitude control and passive upright stability.
In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on 2012, 3209-3216.
http://dx.doi.org/10.1109/iros.2012.6386151

[15] Doman D, Oppenheimer M and Sigthorsson D. Dynamics
and control of a minimally actuated biomimetic vehicle: Part i
- aerodynamic model. AIAA Guidance Navigation Control
Conference 2009.
http://dx.doi.org/10.2514/6.2009-6160

[16] ——. Dynamics and control of a minimally actuated
biomimetic vehicle: Part ii – control. AIAA Guidance
Navigation Control Conference 2009.

[17] Perseghetti BM, Roll JA and Gallagher JC. Robot Intelligence
Technology and Applications 2: Results from the 2nd
International Conference on Robot Intelligence Technology
and Applications. Cham: Springer International Publishing
ch. Design Constraints of a Minimally Actuated Four Bar
Linkage Flapping-Wing Micro Air Vehicle 2014; 545-555.

[18] Boddhu SK, Botha HV, Perseghetti BM and Gallagher JC.
Robot Intelligence Technology and Applications 2: Results
from the 2nd International Conference on Robot Intelligence

An Evolutionary Approach to Tuning a Multi-Agent System International Journal of Robotics and Automation Technology, 2016, Vol. 3, No. 1 15

Technology and Applications. Cham: Springer International
Publishing ch. Improved Control System for Analyzing and
Validating Motion Controllers for Flapping Wing Vehicles
2014; 557-567.

[19] Botha HV, Boddhu SK, McCurdy HB, Gallagher JC, Matson
ET and Kim Y. Robot Intelligence Technology and
Applications 3: Results from the 3rd International Conference
on Robot Intelligence Technology and Applications. Cham:
Springer International Publishing, 2015, ch. A Research
Platform for Flapping Wing Micro Air Vehicle Control Study
2015; 135-150.

[20] Gallagher J, Doman D and Oppenheimer M. The technology
of the gaps: An evolvable hardware synthesized oscillator for
the control of a flapping-wing micro air vehicle. Evolutionary
Computation, IEEE Transactions on 2012; 16(6): 753-768.
http://dx.doi.org/10.1109/TEVC.2012.2186816

[21] Greenwood G, Podhradsky M. Gallagher J and Matson E. A
multi- agent system for autonomous adaptive control of a

flapping-wing micro air vehicle. In Computational Intelligence,
2015 IEEE Symposium Series on 2015; 1073-1080.
http://dx.doi.org/10.1109/SSCI.2015.154

[22] Greenwood G and Tyrrell AM. Introduction to Evolvable
Hardware: A Practical Guide for Designing Self-Adaptive
Systems. Wiley-IEEE Press 2006.
http://dx.doi.org/10.1002/0470049715

[23] Karaboga D and Basturk B. A powerful and efficient
algorithm for numerical function optimization: artificial bee
colony (abc) algorithm. Journal of Global Optimization 2007;
39(3): 459-471. [Online]. Available:
http://dx.doi.org/10.1007/s10898-007-9149-x

[24] Uosaki K and Hatanaka T. Evolution strategies based
particle filters for fault detection. In Computational
Intelligence in Image and Signal Processing, 2007. CIISP
2007. IEEE Symposium on 2007; 58-65.
http://dx.doi.org/10.1109/ciisp.2007.369294

Received on 27-04-2016 Accepted on 02-07-2016 Published on 31-07-2016

DOI: http://dx.doi.org/10.15377/2409-9694.2016.03.01.2

© 2016 Michal Podhradsky; Avanti Publishers.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in
any medium, provided the work is properly cited.

