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Abstract: Biomimetic flapping wing vehicles have attracted recent interest because of their numerous potential military 
and civilian applications. In this paper, we describe an evolutionary approach to tuning a Multi-Agent System for 
autonomous adaptive control of a Flapping-Wing Micro Air Vehicle. The wings of the vehicle are controlled by a split 
cycle oscillator, which combined with non-linearities and differences between each vehicle, brings significant challenge 
for selecting the proper parameters for the control system. Adopting a Neo-Darwinistic evolutionary approach, where 
solutions are evolved in a similar manner as in nature, allows us to precisely learn control parameters for each vehicle. 
After describing the evolution algorithm and evolving the control parameters, we utilize these values for autonomous 
waypoint following by the micro air vehicle. 
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1. INTRODUCTION 

Biomimetic flapping-wing vehicles have been the 
focus of much recent research due to their potential for 
both civilian and military application. In either possible 
application area, adaptive, fault-tolerant, control is 
paramount. This paper de- scribes a multiagent system 
for adaptive control of a model biomimetic flapping-
wing vehicle. 

The flapping-wing vehicles were thoroughly studied 
– the properties of flapping-wings are both theoretically 
and experimentally measured [1], various systems 
were designed, built and tested [2, 3], and different 
wing configurations were analysed [4, 5]. Even a wing 
design and optimization tool is available [6] for the 
researchers. Different control approaches were used 
for control of the vehicles - ranging from simple open 
loop control [7], through classical control [8, 9], modern 
control [10], and adaptive control [11], to vision based 
control systems [12]. 

The vehicle employed in this research is a hardware 
analogue of a minimally-actuated flapping-wing vehicle 
introduced by Wood [13, 14] with core control laws 
introduced and subsequently refined by Doman et al. 
[15, 16]. The analogue vehicle [17-19] operates 
similarly to the minimally actuated vehicles considered 
by Wood and Doman et al. in that all propulsion and 
control are provided by two minimally actuated wings, 
each of which possesses a single active and a single 
passive degree of freedom. It differs in that the 
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analogue vehicles active degrees of freedom are driven 
by a DC motor through a four-bar linkage instead of a 
piezoelectric transducer and in that the analogue 
vehicle is mounted vertically on a circular puck and 
supported from below by either air or fluid cushion. 
These changes allow us to experiment with the control 
of translation and roll without the need to address the 
practical difficulties of balancing lift and vehicle weight. 

2. VEHICLE DESCRIPTION 

2.1. Vehicle Configuration 

A conceptual vehicle closely related to those 
described by Wood and Doman et al. is presented in 
[20]. The physical analogue descendant from it is 
described in [17-19]. Both vehicles operate in a 
qualitatively similar manner with two minimally actuated 
wings providing all propulsion and control forces. They 
differ only in scale and in that the physical vehicle is 
supported from below by a fluid or air cushion. The 
physical vehicle, with its externally provided lift support, 
approximates a passively upright-stable version of the 
vehicle in [20] operating near its hover wing flapping 
frequency. Both vehicle types (hereafter referred to as 
”the vehicle”) have two wings mounted in the Xb –Yb 

body plane (see Figure 1). These wings are actively 
actuated within the range of ± φ. As the spars rotate, 
dynamic air pressure lifts the triangular wing platforms 
(membranes) up to an angle of α radians under a base 
vector embedded in the Yb –Zb plane. Individual wing 
flaps produce independent lift and drag forces at each 
of the two wing roots (points of attachment of the wings 
to the body). These can be resolved into body frame 
forces and torques and cause changes in the whole 
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vehicles position and pose in three space. The wings 
are controlled by Cycle Averaged/Split Cycle oscillator 
as described below. 

 
Figure 1: Orthographic view of flapping wing vehicle [20]. 
Both wing spars are restricted to rotational motion about their 
joints with the body and in the Yb –Zb plane. The range of 
those rotations is [−1...1] radians, α is between π/6 and π/2 
radians. Note that the dimensions are for orientation 
purposes only, and differ on the actual vehicle. 

2.2. Cycle Averaged / Split Cycle Control 

The instantaneous wing angle φ can be described 
by a cosine function φ = cos(ωt), where ω is the wing 
beat frequency. During a regular wingbeat, the 
upstroke and down- stroke are symmetrical, and the 
only force produced is the lift perpendicular to the wing 
plane. 

In a split cycle control, the wing motion consists of 
two cosine waves, φU for upstroke and φD for 
downstroke. Ad- vancing the upstroke (and 
consequently impeding the down- stroke) produces a 
lateral force while keeping the wing beat frequency 
constant. Formally, φU = cos((ω − δ)t) where δ is the 
frequency modifier, and φD = cos((ω + σ)t) where σ is 
dependent on δ. 

From [16] we know that δ ∈ [−∞ . . . ω/2] although 
certain value ranges are particularly important. If δ = 0 
the upstroke is symmetrical to the downstroke and a 
regular wingbeat occurs. However, if δ > 0 the upstroke 
is impeded and the downstroke is advanced, as shown 
in Figure 2. As a result, a force is generated in the 
direction of the downstroke. Conversely, if δ < 0 then 
the downstroke is impeded and the upstroke is 
advanced, as shown in Figure 3, resulting in force in 

the direction of the upstroke. These lateral forces act 
on the vehicle’s body via a moment arm producing an 
angular momentum. Put simply, by applying the split 
cycle the vehicle can turn. See [16] for a derivation and 
proof of split-cycle operation. 

 
Figure 2: Split-cycle results for δ > 0. 

 

 
Figure 3: Split-cycle results for δ < 0. 

2.3. Hardware Realization 

Our vehicle uses stepper motors and mechanical 
linkages to translate rotational movement of the motor 
shaft to flapping movement of wings. The stepper 
motor is able to realise split cycle control – e.g., making 
an upstroke faster than a down- stroke while keeping 
the wing beating frequency constant. A model of the 
wing assembly is shown in Figure 4. 
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Figure 4: 3D model of wings with linkages and motors 
(http://cps.wright.edu/). 

The details about the hardware and software 
needed for control can be found in [20]. It is important 
to emphasise wing control (i.e. translation of ω and δ 
values into stepper motor commands) is taken care of 
by an inner control loop and the outer loop control 
(navigation) cannot directly interfere with it. This outer 
control loop is implemented by the Multi-Agent System 
(MAS), described below. 

2.4. Multi-Agent Control System 

The MAS consists of five agents. A collection agent 
receives pose information x, y, ψ from the camera (or 
simulator), and runs smoothing and averaging 
algorithms to compute the estimated pose x, y, ψ. A 
monitor agent observes vehicle behaviour and requests 
vehicle diagnostics if the behaviour has deteriorated 
too much. The strategy agent keeps a list of desired 
waypoints, and provides them upon request to a 
controller agent. The controller agent determines the 
split- cycle oscillator control inputs (a δ and ω for each 

wing) based on the vehicle pose. Finally, a diagnostic 
agent runs vehicle diagnostics and determines if a fault 
occurred and ultimately Randomly generate the initial 
population; 2. Ev decides whether the controller agent’s 
rule base has to be adapted. The MAS diagram is 
shown in Figure 5, for more details about the MAS refer 
to [21]. 

3. BASIC MOVEMENTS EVOLUTION 

To follow waypoints using the multi-agent system 
described in the previous section, we first need to find 
the appropriate combination of δ and ω values for the 
basic vehicle movements. These basic movements 
(Move forward, Left turn, Right turn) are summarized in 
Table 1. Every vehicle is slightly different due to 
inherent non-linearities such as slip between linkages. 
Thus, the same δ and ω values cannot be used for 
every vehicle; they must be learned. 

The δ and ω values will be determined during this 
initial learning phase using a combination of extrinsic 
and intrinsic evolution [22]. The idea is that the new 
solutions are evolved from existing solutions by 
emulating Neo-Darwinistic evolution found in nature. In 
other words, the search for good δ, ω values is 
conducted by evolving them. Highly fit solutions result 
in good micro air vehicle behavior. The difference 
between intrinsic and extrinsic evolution is in how the 
fitness is determined. In extrinsic evolution computer 
models evaluate a given δ, ω value set. In intrinsic 
evolution the δ, ω values are downloaded to hardware 
and physical tests are conducted. 

Both forms of evolution use a form of an 
evolutionary algorithm (EA) to conduct the search. An 
EA consists of a population of individuals, where each 

 
Figure 5: Diagram of Agent-based control architecture. More information about each agent is provided in Section II-D. 
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individual represents a particular solution to a given 
problem. New individuals are created from existing 
individuals via random mutation, but only the highly fit 
ones will survive. (The fitness formula is given later in 
this section.) An EA runs for a fixed number of 
generations, at the end of the run the fittest individual is 
the final solution. The EA steps are shown below: 

The needed parameters will be evolved using an EA 
where one individual is chosen as a parent, and ten off 
spring are generated from this parent using a mutation 
operator, which with a certain probability changes the 
properties of the individual. The individuals are 
encoded as; 

{δL, δR, ωL, ωR, σδL, σδR, σωL, σωR} 

where the first 4 parameters are object parameters 
(elements of the solution) and the second 4 parameters 
are strategy; 

1. Randomly generate the initial population; 

2. Evaluate the fitness of the initial population; 

while max number of generation not reached: do 

i. Select the best individuals for reproduction; 

ii. Generate new individuals via random mutation; 

iii. Evaluate the fitness of new individuals; 

iv. Discard the least fit individuals; 

end 

Algorithm 1: A basic evolutionary algorithm. 

Table 1: Basic Vehicle Movements. ↑, ↓ Indicate 
Direction of Change, not its Magnitude 

 

parameters used to control the mutation step size. The 
object parameters are mutated independently using a 
normal distribution and the appropriate strategy para-
meter. The equation for production of a new individual 
y from a single parent x is given as: 

δLy = δLx + N (0, σδL)          (1) 

where N (0, σδL) is a normally distributed random 
variable with zero mean and a standard deviation of 
σδL. The other object parameters with their respective 
strategy parameters are mutated the same way as 
described in the Equation 1. 

In our algorithm, the parent lives only one 
generation, because the next generation will be taken 
from the offspring only. The fittest individual is selected 
to be the parent in the next generation. The fittest 
individual encountered is recorded, but it is not a part of 
the population in future generations. This way the best 
solution isn’t lost. The first parent is randomly 
initialized, using lower and upper bounds on δ and ω 
that are needed because of hardware limitations. 
Hardware limits max value of ω to 30 rad/s (minimum is 
1 rad/s), and δ !(−10, 10). Split-cycle control requires 
|δ|≤ω/2. 

In this phase of the research effort, we used an 
evolutionary algorithm to search for the optimal values 
of δ and ω. Other more classical optimization 
algorithms might be useful but whether or not that is 
true would require a detailed analysis of the solution 
space morphology which we did not do1. 

Our choice of an evolutionary algorithm to conduct 
the search was two-fold. First, evolutionary algorithms 
are usually considered optimization algorithms but 
basically they are search algorithms. Evolutionary 
algorithms can search any1 solution space regardless 
of morphology. Thus evolutionary algorithms allow us 
to optimize without conducting a solution space 
analysis. Secondly, and more importantly, every 
vehicle is slightly different due to inherent nonlinearities 
in the linkages and other manufacturing differences 
(such as a slightly different size of wings, etc.). As a 
result, optimal values for one vehicle will not be optimal 
for another. The goal here is not to achieve generally 
optimal movements but rather smooth and repeatable 
correct movements. Consequently, we needed a 
search method rather than an optimization method. 
Evolutionary algorithms allow us to search for good 
solutions by evaluating actual vehicle behavior, which 
cannot be accomplished using classical optimization 
algorithms. This type of search process is called 
intrinsic evolution. 

                                            

1However, our experiments did show small perturbations in δ/ω had no 
observed behavioral changes which suggests gradient-based optimization 
algorithms would not be very effective 
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3.1. Extrinsic Evolution 

Because the lifespan of linkages at the vehicle is 
limited, it is reasonable to first execute extrinsic 
evolution of control parameters δ and ω to 1) verify the 
correctness of the evolution algorithm; 2) get the initial 
estimate of optimal control parameters. The more 
precise model of the vehicle is available, the better is 
the estimate. However, obtaining a precise (first-
principle) model of the flapping wing system is very 
complicated, especially because of the small forces 
and torques that would have to be measured to 
correctly identify the model. Modelling non-linearities 
such as linkage slip also poses a significant challenge. 
However a simplified model that treats the vehicle as a 
point mass body and aggregates the generated forces 
and torques is a sufficient approximation, because it 
will exhibit similar behavior albeit on a different time 
scale. 

For the purpose of the extrinsic evolution, we 
started with the following assumption. The faster the 
wings beat (i.e. higher ω), the more force is generated 
(because the wing acceleration is higher). The higher 
split cycle shift (higher |δ|), the more force is generated 
(because the difference between upstroke and 
downstroke is higher). The higher force results into 
faster movement. 

The optimal solution completes the basic movement 
in shorter time, and is within the imposed constraints. 
Thus in our simple model we use to evaluate fitness of 
candidate solution we employ the following equation: 

fit x( )  =  KL .! Lx ." Lx +  KR.! Rx ." Rx         (2) 

where K1 , K2 are adjustable weights, in the simplest 
case: 

• KL = KL = 1 for Move forward 

• KL = 1; K2 = −1 for Turn right 

• KL = −1; K2 = 1 for Turn left 

We ran the EA for 20 generations in each run, for 
20 runs total. The expected optimal solution would 
converge to maximal ω for both wings and maximal 
values for δ but with opposite signs in case of turns. 
The results are shown in Figure 6. Notice in all cases 
the runs converged to (or at least very close to) the 
global optimum. 

The best evolved values for our simple model were: 

• Turn left: δL = −10, δR = 10, ωL = ωR = 30 

• Turn right: δL = 10, δR = −10, ωL = ωR = 30 

• Move forward: δL = 10, δR = 10, ωL = ωR = 30 

which is consistent with our expectations. 

3.2. Intrinsic Evolution 

During the intrinsic evolution we used the actual 
vehicle for evaluating fitness of the candidates. The 
major difference was that for Turn left and Turn right 
fitness is defined as f = 1/T where T is the time needed 
for the vehicle to turn by 360 degrees from its initial 
position. For Move forward the fitness is defined as  
f = 1/(K1. Twp.+ K2. dwp), where Twp is time needed to 
reach x-coordinate of the waypoint p (located 
approximately 30cm in front of the vehicle), dwp is the 
distance from the y-coordinate of the waypoint p when 
its x-coordinate is reached. K1 = 100 and K2 = 1 are 
weights to scale the different units (seconds and 
pixels). 

Because the hardware has a limited lifespan, we 
only ran the EA once and for only 20 generations. This 
is limiting in the sense that we can reach suboptimal 
results, but if we were to run more runs as was the 
case for extrinsic evolution, the linkages could wear out 
prematurely and would have to be replaced, in which 
case the learning would have to be done again from 
the very beginning. In other words, extrinsic evolution 
provides relatively good results, but to obtain a fine- 
tuned control system we need to use intrinsic evolution. 

 
Figure 6: Extrinsic evolution run for Turn left move. Notice 
that the algorithm in almost all cases reaches global optimum 
f = 600. 
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The incremental improvements in turn times for 
evolved control parameters are shown in Figure 7. For 
the forward motion, the vehicle actually was not able to 
reach the desired waypoint (its y-coordinate) in vast 
majority of tries. In such case the experiment was 
stopped after 2 minutes and the fitness of given 
individual was marked as zero. Effectively this reduced 
the EA to a random search, until a viable solution was 
found. The best solution after 20 generations (and the 
only one found that had non-zero fitness) is shown in 
Figure 8. The best values of control parameters found 
for our vehicle are summarized in Table II. Notice the 
best values are very similar to the values found by 
extrinsic evolution. This validates our model used for 

extrinsic evolution as usable for initial estimate. The 
differences in control parameters are caused by 
imperfections and non-linearities in real hardware, and 
indeed, those were not included in our simple model. 
The intrinsically evolved values were used in the next 
section to perform waypoint following. 

4. WAYPOINT FOLLOWING 

Our experiments are conducted in a large (5 × 7) 
water tank. The vehicle currently can move on a two-
dimensional plane and rotate around its Xb axis. The 
vehicle is equipped with a pair of Lithium Polymer 
batteries, a power distribution board, and the main 
computer, as shown in Figure 9. All hardware is 
mounted on a carbon-fiber platform, attached to a 
floating Styrofoam puck. The water surface acts as a 
low- pass filter, slowing down the vehicle movement 
and dampening disturbances. 

 
Figure 9: Assembled vehicle before the experiment. Note 
wings in the middle, LiPo batteries on sides, the power 
distribution board in the back and the control board in front. 

 

Table 2: Control Parameters for the Basic Movements. 
Values for Idle were Determined Empirically 
and Based on the Hardware Initialization 
Procedure (Default Values) 

Movement δL δR ωL ωR 

Move Forward 0 0 25 30 

Left Turn 0 10 12 30 

Right Turn 10 -10 30 30 

Idle 0 0 12 12 

 

A camera is placed above the water tank, such as 
its field- of-view encompasses the entire water tank. 

 
Figure 7: Time needed to complete Turn left and Turn right 
moves during intrinsic evolution. Notice that left turn takes 
longer to finish, which is caused by non-linearities in the 
hardware. 

 

 
Figure 8: Best found solution for forward movement Blue: 
Initial position of the vehicle, Green cross: waypoint the 
vehicle was commanded to reach. The experiment was 
stopped once the center of vehicle crossed the y-axis of the 
waypoint. 
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The camera locates and records the vehicle position. 
The vehicle has color markers for this purpose. 
Figure 10 shows a close-up view of the vehicle, 
including the color markers. 

 
Figure 10: Vehicle during an experiment in the water tank 
(close-up view). Note the color markers used for machine 
vision pose estimation. 

The video stream from the camera is processed on 
a regular laptop computer, using the OpenCV library for 
computer vision. The processed video is recorded for 
reference, and the estimated pose is sent to the 
onboard MAS via a WiFi link. 

After learning control parameters for the basic 
movements the multi-agent system [21] can perform 
autonomous waypoint following. The experiment is held 
in a large water tank to lock the vehicle into 2D of 
freedom and to mechanically low-pass noise in the 
control system by using water surface as a damper. 
Machine vision is implemented to track the position of 
the vehicle using color markers. The waypoints are 
virtual and dynamically placed in the experiment area. 
For more details about the experimental setup, the 
reader should see [21]. 

Two waypoints were placed to the opposite sides of 
the water tank, and the vehicle was expected to go 
back and forth between them. The vehicle was able to 
follow successfully the waypoints, as can be seen in 
Figures 11 and 12. Video of the experiment can be 
seen at https://youtu.be/oYEjCaRoLNU. 

5. FUTURE WORK 

Both the evolution of control parameters and the 
consequent waypoint following performed as expected, 
proving the viability of this concept. The immediate next 
steps in our work are to implement obstacle avoidance 
mechanism in the multi-agent system, so the vehicle is 
able to operate in an environment with obstacles, being 
more closely related to a real application. 

 
Figure 11: Autonomous waypoint following. The blue dot is the desired waypoint; the vehicle is marked with a bright green dot 
and a green line pointing towards the front of the vehicle. In the top left corner of the screen is shown the rule that fired. Top left: 
Initial position of the vehicle; Top right: First waypoint achieved, the vehicle is turning around; Bottom left: Approaching the 
second waypoint; Bottom right: Second waypoint achieved, moving back to the first waypoint. See video of the experiment at: 
https://youtu.be/oYEjCaRoLNU. 
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Figure 12: Vehicle trajectory (blue) during waypoint following. 
Two waypoints being followed are marked with red dots, with 
distance threshold pictured around them. The vehicle itself is 
as large as the circle around the waypoints. Purple: start 
position, Light blue: end position, Blue arrows: indicate 
orientation of the vehicle. 

The second step is to implement in-flight learning 
and fault- detection function as proposed in [21], so the 
vehicle can recover from certain faults and finish its 
mission even if it sustains damage in the control 
system. 

Note that the evolutionary algorithm used in this 
work is only one of many existing evolutionary 
algorithms. More sophisticated algorithms, such as 
Artificial Bee Colony [23] or Particle Swarm 
Optimization [24] can be used and compared and 
evaluated. However, for the scope of this work the 
basic evolutionary algorithm provided sufficiently good 
results. 
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