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Abstract: The last few years, the automotive industry sees the Autonomous Vehicles (AV) as a great opportunity to 
increase comfort and road safety. One of the most challenging tasks is to detect dangerous situations and react to avoid 
or, at least, mitigate accidents. This requires a prediction of the evolution of the traffic surrounding the vehicle. This paper 
is a survey of the methods used in Automotive engineering for predicting future trajectories and collision risk 
assessment. models of vehicles are classified from the simplest to the more complexes. These technologies aim to 
improve road safety by estimating the level of dangerousness of a situation to make decision to avoid collision or 
mitigate its consequences. 
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1. INTRODUCTION 

One of the fields that have seen the greatest 
evolution in recent years in the automotive industry is 
certainly Advanced Driver-Assistance Systems 
(ADAS), all these technologies aims to improve road 
safety and comfort of drivers and passengers. 

To achieve such complexes task, 4 components are 
necessary: 

• Perception: is a module that use multiples 
sensors (Camera, Radar, LiDAR, ultrasonic) to 
make a 3D map of the surrounding environment 
with road markings, traffic sign, cars, and also 
pedestrian and all obstacles. 

• Decision Making: this module uses the 3D 
representation of the surrounding environment 
provided by the perception module, and also a 
preloaded map of the roads to decide which 
behavior to take. Like turn right or left, make an 
avoidance maneuver or change lane. 

• Motion Planning: the purpose of this module is 
to draw a path that the vehicle must follow, and 
considers information of “Decision Making” and 
“Perception” modules to achieve that, according 
also to positions and velocity of objects in the 
road. 
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• Control: this module controls the physicals 
parameters of the vehicle’s actuators (engine 
speed, steering angle, break...) to make actual 
path matches the planned path. 

To achieve such complexes task, decision-making 
modules needs models that can predict future 
trajectories of the ego- vehicle and all the surrounding 
vehicles, and an estimate of the risk’s level of the 
situation. Risk can be defined by the likelihood and 
severity of damage that may occur to the vehicle. 

 

Figure 1: The 4 basic modules necessary to autonomous 
driving. 
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This article summarizes the most used vehicle’s 
models organized in two categories: 

• Physics-based Motion Models are low-level 
models, and consider vehicle as an object ruled 
only by laws of physics. 

• Maneuver-based Motion Models consider 
vehicle’s motion as one or a series of 
maneuvers. In addition, some models also 
consider the interactions between vehicles. Also 
presented, most used methods for estimating 
degree of risk, even if the notion of risk is not 
always clearly defined, indeed, it depends on the 
context. Here, it qualifies the probability that a 
collision can occur and its dangerousness. This 
survey aims to resume the work done by S. 
Lefère, D. Vasquez, and C. Laugier [23] and 
update it. 

2. PHYSICS-BASED VEHICLEMODELS 

This type of model represents vehicles as dynamic 
entities ruled by physics laws, motion can be predicted 
by using dynamic or Kinematic models. Current states 
(e.g speed, steering angle), control inputs (e.g steering 
wheel, accel- eration) and vehicle proprieties (e.g 
weight) are considered to compute future states. 
Several works have been done on these kinds of 
models, and it is the most commonly used for short 
term trajectory prediction. The complexity of the models 
depends on how close to the reality it is. In this section 
we present two types of physics-based motion models, 
dynamic models and kinematic models. Dynamic 
models are classified by complexity. 

2.1. Dynamic Models 

Dynamic models describe vehicle’s motion 
according to Newton’s second law of motion by 
considering different forces that affect it, such as the 
engine torque, breaks, lateral tire forces. The most 
complexes ones can involve many internal parameters 
or even combustion engine’s dynamic. 

2.1.1. 2D Point Mass Model 

 This model considers thevehicle as a single point in 
plane (center of gravity) with a mass [1], this model can 
be linear with a decoupled velocity and forces, as 
shown in Figure 2. 

 

Figure 2: Nonlinear 2D point mass model. 

The equations (1) represent the mathematical 
representation of the model. 

           (1) 

With x and y, the longitudinal and lateral position, vx 

and vy the longitudinal and lateral speed, and, Fx and Fy 

the longitudinal and lateral Forces. 

This model is relevant for motion on highways or 
urban arterial roads, but it become less precise when 
longitudinal dynamic is no longer the dominant one 
(non-straight road). Another representation can also be 
made by coupling the two forces. In this case, the 
model become nonlinear (Figure 3). 

 
Figure 3: Linear 2D point mass model. 

And the equations become: 

          (2) 
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where v and !  are the speed and the heading of the 
point, m and !  the masse and the yaw rate. 

 

Figure 4: Dynamic bicycle model. 

 

Figure 5: Constant Turn Rate and Velocity (CTRV) and 
Constant Turn Rate and Acceleration (CTRA) models. 

2.1.2. Dynamic Bicycle Model 

 The dynamic bicycle models merge left and right 
wheels to obtain a layout where the two resultants 
wheels are disposed at the center front and rear, and 
equidistant from the gravity center of the vehicle [2]. 
Those models are more realistic then the point mass 
models, indeed, it reflects the side-slip angle. They 
offer a good compromise between complexity and 
realism. 

2.1.3. Quadricycle Planar Model 

With this model, the vehicle is modeled with four 
wheels, and the dynamic for each one is considered 
independently [3]. Quadricycle planar model can be too 
complex to compute for path planning and motion 
prediction, knowing that models like bicycle model has 
enough accuracy for these kinds of application. 
However, it can be relevant for control applications 
such as the Electronic Stability Control System (ESC). 

2.1.4. 3D Models 

There are more complex models that con- sider 
pitching and rolling [4] by integrating the suspension 
and the distribution of the masses, it is used to study 
chassis motion in order to improve the comfort of 
passengers or minimizing rolling in case of sport cars. 
Other model can also integrate the dynamic of the 
engine (and transmission) for usages like cruise 
control. Or even tires [5] (e.g. for traction control).  

2.2. Kinematic Models 

Kinematic models are a physical representation of 
the vehicle that considers only configuration variables 
and their velocities, and ignore different forces that can 
affect it motion. 

Friction forces are neglected, and the entire car is 
considered as one body (dynamic of wheels is not 
considered independently) they are more popular than 
dynamic models for trajectory prediction because they 
are simpler, faster to compute in real-time, and, most of 
the time, enough accurate. In addition, the internal 
parameters of the vehicle needed by dynamic models 
(e.g. torque) are not observable by exteroceptive 
sensor. There by, it is meaningful to use these models 
for cars surrounding the vehicle of interest. Schubert et 
al. [6] have done a comparison of kinematics models 
for vehicles from the less to the more complex. 

The simplest is the Constant Velocity (CV) and 
Constant Acceleration (CA) models (Figure 6). Both 
considers straight motion in longitudinal and later axes 
for vehicles. The Constant Turn Rate and Velocity 
(CTRV) and Constant Turn Rate and Acceleration 
(CTRA) models (Figure 7) take into consideration 
rotation around the Z-axis with the yaw angle and yaw 
rate. 

 

Figure 6: Quadricycle planar model. 



Risk Assessment for The Decision Making of Autonomous Vehicles International Journal of Robotics and Automation Technology, 2018, Vol. 5    35 

 

Figure 7: Constant Velocity (CV) and Constant Acceleration 
(CA) models. 

The complexity remains low as the velocity and yaw 
rate are decoupled. By considering the steering angle 
instead of the yaw rate in the state variables, we obtain 
a “bicycle” representation, which takes into account the 
correlation between the velocity and they a wrate. From 
this representation, the Constant Steering Angle and 
Velocity (CSAV) and the 

Constant Steering Angle and Acceleration (CSAA) 
can be derived. 

3. TRAJECTORY PREDICTION OF SURROUN- 
DING VEHICLES 

In the precedent section we presented different 
manner to model vehicle motion, however it is useless 
without an evolution model for trajectory prediction. The 
ones presented below differs in the handling of 
uncertainties. 

3.1. Single Trajectory Simulation 

An evident method to predict future trajectories is to 
simply ignore uncertainties and apply an evolution 
model to the current state of a vehicle supposing that 
the current state is perfectly known, and the evolution 
model and its parameters are sufficiently accurate. This 
method can be used with dynamic models or kinematic 
models [7-9]. 

The advantage of this method is calculation time, 
which makes it suitable for applications with strong 
real-time constraints. However, this method does not 
consider the uncertainties on the current states, neither 
the evolution of model and as a result the predicted 
trajectories are not reliable for long term prediction. 

3.2. Linear Probabilistic Simulation 

One assumption can be made about noise and 
uncertainty on measurements with modeling them by a 

normal distribution [10, 11]. Thus, a Kalman filter can 
be used to predict the trajectory of the vehicle. 

Kalman filtering is a technique for recursively 
estimating a vehicle’s states from noisy and relatively 
uncertain measurements. It is a special case of 
Bayesian filtering where the evolution model is linear, 
and noise and uncertainty are considered using a 
normal distribution. 

The advantage of these techniques is that they 
represent uncertainty on the predicted trajectory. 
However, it is not always possible to make assumption 
on the gaussianity of noises. A mixture of Gaussian 
can be used with Switching Kalman Filter (SKF) [12, 
13], they rely on a bank of Kalman Filters to represent 
the possible evolution models of a vehicle ands witch 
between them. 

3.3. Nonlinear Simulation 

The weakness of Kalman filter is that it can only be 
used with linear models, however, Ex- tended Kalman 
Filter (EKF) offers a solution by linearizing the 
nonlinear model around the actual estimation at each 
iteration. It can be improved by using the unscented 
trans- formation (UT) and it is known as the Unscented 
Kalman Filter (UKF). 

Sometimes, it is not possible to presume on the 
linearity of the models or the gaussianity of the 
uncertainties, in this case Monte Carlo method can be 
used. 

The principle of this method is to randomly simple 
the evolution of the model from the input variables to 
generate possible future trajectories. Weight can be 
applied to penalize ones that do not respect the 
constraints of the road layout, or, the trajectories that 
exceed physical limitation of the vehicle [14, 15]. 

Limitation 

Since these models rely on physical properties, 
Estimation depend on previous observations. They 
cannot provide an accurate prediction beyond one or 
two seconds. indeed, if the dynamic of the vehicle 
change estimation can differ (e.g. tun at an 
intersection). 

To get a better estimation of future trajectories, 
model that can understand behavior of the vehicle is 
needed, this can be achieved for example by 
maneuvers classification. 
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4. MANEUVER-BASED MOTIONMODELS 

The idea of these models is to represent vehicles as 
independent entities that can perform a finite number of 
maneuvers [16] (or behavior) depending on the road 
layout, and independently from other vehicles. The 
path of the vehicles can be described as a series of 
maneuvers, consequently, this type of modeling can 
perform a better prediction in long term compared to 
physics-based models. One method is to consider the 
possible trajectories into a finite set cluster, each one 
corresponds to specific behavior (Figure 8). 

 

Figure 8: Example of clusters for a maneuver-based motion 
model (1. Straight, 2. Turn right, 3. Turn left). 

These clusters can be learned from data previously 
observed, with variables like the physical state of the 
vehicle (e.g. position, speed, yaw rate, turn signal) and 
road information (topology of the road, speed limits, 
Traffic light). 

In theory, any clustering algorithm can be used to 
achieve this task, like Multi-Layer Perceptron (MLP) 
[17], Logistic Regression, Relevance Vector Machines 
(RVM) [18], Support Vector Machines (SVM) [19]. 

Recent works tend to use Gaussian Processes to 
represent motion patterns [24, 29, 30], it can be seen 
as a generalization of Gaussian probability 
distributions. the trajectories in the learning data-set 
are sample functions from a Gaussian Process. Thus, 
the learning consists in fitting a Gaussian distribution 
over these functions. The main advantages are that 

GPs are robust to noise and their ability to represent 
the variation in the trajectories in a probabilistic 
manner. 

Another popular method to recognize behaviors is 
to represent them as a series of consecutive events in 
a Hidden Markov Model (HMM) [16, 20], and the 
transition probabilities between events can be learned 
from data. 

The limitation of this kind of modeling is that in 
practice, the assumption that the vehicles moves 
independently from each other on the road and do not 
interact is false. In fact, vehicles continually interact 
with each other, for example in intersections to decide 
which car should pass first, or for lane changing. 

To over take this issue, some models considers that 
vehicles can influence each other’s trajectory or 
behavior. Assuming that cars can interact between 
them provide a more realistic modeling, and a more 
“human” approach to predict their motion. Two methods 
are presented below, models based on trajectory 
prototypes, and based on Dynamic Bayesian Networks. 

Models based on trajectory prototypes: This method 
is similar to maneuver-based motion models, with the 
difference that it take into account the mutual influence 
during the matching phase, the algorithm will penalize 
the pairs of trajectories causing a collision, assuming 
that drivers will take a safer path the majority of the 
time [21, 22]. 

Models based on Dynamic Bayesian Networks: 
most interaction-aware motion models are based on 
Dynamic Bayesian Network (DBN) [23]. The interaction 
between pair of cars can be modeled by Coupled 
Hidden Markov Models (CHMM). However, the number 
of inter-dependencies can grow quickly with the 
number of possible entities.  

A solution to simplify the model is to consider 
asymmetric dependencies. This model has been used 
in number of works, especially for lane changing and 
overtaking maneuvers [24]. 

5. COLLISION RISKASSESSMENT 

This section presents various methods to estimate 
the risk of a situation in real time, for this task it is, most 
of the time, necessary to estimate future trajectories of 
the cars surrounding the ego-vehicle using one the 
models presented in the precedent section or a 
combination of them. 
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The notion of risk is not clearly defined, many 
definitions can be found depending on the context. In 
Intelligent Transportation Systems (ITS), it is generally 
qualified by the dangerousness of a situation for the 
passengers, which can cause physical injuries. 

5.1. Binary Collision Prediction 

The principle is simple, future trajectory is computed 
by solving differential equations of the vehicle model for 
the ego-vehicle and the other vehicle in the scene. It is 
supposed that trajectories can be computed with 
enough accuracy (good model and precise 
measurements). One manner to detect collision is by 
defining a threshold on the distance between two 
points (from two trajectories at the same time step) 
[23]. 

Another method is the “unavoidable collisions”, the 
algorithm will assign the value 0 or 1 depending on 
whether there exists a collision-free maneuver that the 
driver can perform. It is done by computing escape 
maneuvers and check which are feasible (with 
“feasible” meaning that the steering, braking or 
accelerating does not exceed the physical limitations of 
the vehicle). 

5.2. Collision Risk Based on Indicators 

One of the most popular methods for estimating 
collision risk is to calculating indicators: 

• ”Time-To-X”: is an indicator of time where X 
correspond to an event in relation to the collision 
[23], like the time remaining to the collision it-self 
(Time-To-Collision), and this time can be 
compared to the expected time needed to stop 
the vehicle or can be used as an indication of 
which action should be taken. It also can be 
used in human driving situation to warn the 
driver, in this case, the driver reaction time 
should be added to the time to stop the vehicle. 

• Another time indicator that are closely related to 
the TTC is the “Time-To-React”, which 
correspond to the remaining time to act before 
the collision becomes inevitable. in this case, the 
reaction time of the driver must be considered. 

• Predicted Object Minimum Distance (PMD): it is 
de- fined by the minimum distance between the 
vehicle and a potential obstacle (static or 
dynamic), if PMD=0 the collision is forecasted, 
and an emergency maneuver must be realized. 

By opposition, higher is this value, less 
dangerous is the considered obstacle. 

5.3. Probabilistic Collision Prediction 

When the future motion of a vehicle is represented 
by a probability distribution on sample trajectories, 
probabilistic estimation of risks can be used by 
detecting collision between all possible pair of 
trajectories, more of collision is detected, higher is the 
risk [25]. This approach provides a lot of flexibility in the 
handling of uncertainties, and can be adapted for any 
model mentioned, for a Maneuver-based motion model 
for example, the estimation can be done with both the 
maneuvers and their executions or presume that the 
maneuvers are known and sum on the possible 
executions only. 

Geometrical Method 

 This method uses Kalman filtering to compute the 
future trajectory of the ego-vehicle and other vehicles in 
the scene, the result is ellipses that represent the 
possible future positions of the vehicles. And more the 
time horizon of the prevision is long, more the ellipses 
are larges (Figure 9). 

 

Figure 9: Risk assessment with Kalman filter’s ellipses. 

The estimation is based on how many ellipses of 
the ego vehicle cross ellipses of other vehicles (at the 
same time horizon) [26]. And more ellipses are 
implicated in the collision, more dangerous it is. 
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5.4. Collision Risk Assessment with Path Planners 

Motion planners are algorithms that decide the path 
the vehicle must follow considering various constraints 
like time, traffic conditions, roads conditions, and 
different obstacle that can be encountered on the road. 
Some algorithms can adapt the path in real time if an 
unexpected event occur and give an alternate 
trajectory to follow. Two of them are presented below, 
potential field and elastic bands method. 

• Potential field: This algorithm considers the 
vehicle as moving particle in a plan subject to a 
potential field which is the sum of various fields 
generated by different elements in the road 
(lane, road, car...) [27]. obstacles, other vehicles 
and road boarder have repulsive field, while the 
road has attractive field in the direction that must 
be followed. The advantage is that many 
purposes can be achieved with this single 
algorithm, like choosing the right lane in highway 
(where the traffic is more fluid), obstacle 
avoidance, lane keeping. And the risk of a 
maneuver can be defined as the average value 
of the field for the followed path. 

• “Elastic bands”: is inspired by mobile robotics 
and is used to compute an emergency path to 
avoid a collision with an obstacle. The trajectory 
is represented by springs connected to each 
other by nodes. if an object is detected, the path 
will be deformed around it, respecting physical 
constraints of the springs [28]. This method 
brings a smooth trajectory to avoid obstacle and 
allow to return to the original path. 

• In addition to that, springs can be added by 
connecting them to the road edges and the 
already existing nodes to prevent an off-road 
path. Risk assessment can be achieved by 
estimate the force applied to the springs, and 
this value can be used as an indicator. Higher it 
is, more the situation is dangerous. 

6. CONCLUSION 

This Paper is a survey that resume the main models 
used ADAS for motion prediction, they were organized 
in three main categories. 

Physics-based motion models represents vehicle 
by the mathematical equation of motion. It includes 
various variable such as speed, acceleration or yaw-
rate. Ego-vehicle is mostly described by dynamic 

models since more information are available, like 
engine torque or breaks forces. For thesur- rounding 
vehicle, Kinematic models are preferred precisely 
because this information is not available. The drawback 
of these models is that it is not reliable after 2 seconds 
because the evolution of some variables is 
unpredictable. 

Maneuver-based motion models represent 
vehicles as in- dependent entities and represent future 
motion like one or a series of behavior like “turn left”, 
“go straight” or “change lane” This can be achieved 
with clustering algorithms and machine learning. The 
weakness of this method is that the assumption that 
the vehicles moves independently from each other on 
the road and do not interact is false. Interaction- aware 
motion models are similar to Maneuver-based motion 
models, except that it takes it into consideration. 

The second part is dedicated to risk estimation, 
different methods and metrics were presented from the 
simplest to the more complexes. The choice of the 
method depends on which vehicles model is used and 
also on the situation (road intersections, highways...). 
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