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Abstract: Overhead crane systems play a vital role in different factories to transport heavy loads. This paper provides an 
overview of recent developments in the modeling and control of three-dimensional overhead crane systems. It provides 
a categorized survey of the published work. Different control methodologies when applied to overhead crane are 
examined, outlined and assessed to aid for future work. 
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I. INTRODUCTION 

Cranes systems are used all over the world. Cranes 
are usually employed at factories, shipyards, 
construction sites, warehouses to transport heavy 
loads. One type of cranes is the overhead cranes, 
illustrated in Figure 1. They usually run in cartesian 
coordinates and have three main parts: the trolley, the 
bridge and the payload. The trolley moves along the 
bridge whereas the bridge moves perpendicular to the 
trolley motion. A gantry crane is the type of overhead 
cranes in which the crane travels on a mobile base. 
Overhead cranes in industry have complex and 
nonlinear dynamics, are in general subject to not only 
parameter fluctuations but also unmodelled dynamics, 
actuator nonlinearities, and disturbances. This work 
focuses on modeling and control of underactuated 
three dimensional (3D) overhead crane system. A 
review of the system modeling and control is 
presented. 

 
Figure 1: 3D Overhead Crane. 
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II. MODELING OF OVERHEAD CRANES 

Generally, there are two types of overhead crane 
models, the first type is two dimensional (2D) model 
[1-8], which is also called single-pendulum-type [9]. 
The 2D crane model is apparently nonlinear and has 
three states; trolley position, rope length and swing 
angle [7]. In general, during the operation, the rope 
length is fixed or slowly changing, hence, some studies 
[1-6, 8] assume the rope length is fixed, which reduces 
the number of states to two. In addition, if the swing 
angle is assumed to be small, a linearized model can 
be used to describe the system dynamics [1] On the 
other hand, the model accuracy and complexity can be 
increased by considering the friction between the 
moving parts [7], adding uncertainties to the system [8] 
or considering external disturbances [3]. 

The other type of overhead crane models is the 3D 
overhead crane or double-pendulum-type cranes [10]. 
In 1998, the general mathematical model of the 3D 
overhead crane is derived using Lagrangian equation 
[11]. The model is nonlinear and has five states; trolley 
position, bridge position, rope length and two swing 
angles. like 2D overhead cranes, assuming fixed rope 
length can simplify the model and reduce its states to 
four only [9, 12-20]. In other studies [11, 12, 18], the 
linearized model is obtained by assuming a fixed rope 
length and small swing angles for simplification. On the 
other hand, for a more accurate model, some 
investigations [10, 11, 21-23] considered the damping 
coefficients while others [10, 15, 18] considered the 
external disturbances like wind force to be added to the 
model. Unlike most of the studies, [13] takes the friction 
and air resistance into account in his model. Table 1 
summarizes the findings of this section. 

A typical dynamic model of the 3D crane system 
can be represented using the following equation [23]: 

! ! ! + !!   + ! !, ! ! + ! ! = !      (1) 

where ! = !, !, !, !! , !!
!

is the state vector, ! =
!! , !! , !! , 0,0

!
 is the driving forces vector. The mass 
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matrix !(!), the damping matrix !, the Coriolis and 
centrifugal matrix ! !, !  and the gravitational force 
vector !(!) are defined as follows: 
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Where !! ,   !!  and !!  are the viscous damping 
coefficients. The nonzero elements of !(!) are given 
by: 
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The nonzero elements of !(!) are given by: 

!! = −!" !"#!! !"#!! ,   !! = !"# sin!! !"#!! ,   !!
= !"# !"#!! sin!! 

Where !!  is mass traveling along !-axis, !!  is 
the mas traversing along !-axis, and !! is the mas 

moving along the hoisting cable, !  is the payload 
mass and ! is the gravitational acceleration. 

IIII. CONTROL OF OVERHEAD CRANES 

Controlling a crane system can be challenging due 
to its structure. The number of actuators in the crane 
system is less than the number of states to be 
controlled [24]. These types of systems are called 
under-actuated systems. The actuated and unactuated 
states in the crane model are usually separated using 
state transformation before designing the controller. 
The dynamic model in equation 1 can be separated 
and into two equations: 

!!! ! !! +!!" ! !! + !!! !, ! !! + !!" !, ! !! +
!! ! = τ!        (2) 

!!" ! !! +!!! ! !! + !!" !, ! !! + !!! !, ! !! +
!! ! = 0         (3) 

Where   !!! ! ∈ !!×! , !!" ! ∈ !!×! , !!" ! ∈
!!×!  and !!! ! ∈ !!×!  are sub-matrices of ! ! . 
!!! !, ! ∈ !!×!, !!" !, ! ∈ !!×!, !!" !, ! ∈ !!×! and 
!!! !, ! ∈ !!×!  are sub-matrices of ! !, ! . !! ! ∈
!!×! and !! ! ∈ !!×! are sub-matrices of ! ! . 

Equation (3) is rearranged as follows: 

!! = −!!!
!! ! !!" ! !! + !!" !, ! !! + !!! !, ! !! +

!! !           (4) 

By substituting (4) into (2), the actuated states of 
the system !! can be acquired by solving: 

!! ! ! + !!! !, ! !! + !!" !, ! !! + !! ! = !      (5) 

Where 

!! ! = !!! ! −!!" ! !!!
!! ! !!" !  
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!! ! !!" !, !  

!!" !, ! = !!" !, ! −!!" ! !!!
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!! ! !! !  

Similarly, the unactuated states of the system !! 
can be acquired by solving: 

!! ! ! + !!" !, ! !! + !!! !, ! !! + !! ! = !!   (6) 

Where 

!! ! = !!! ! −!!" ! !!!
!! ! !!" !   

!!" !, ! = !!" !, ! −!!" ! !!!
!! ! !!! !, !   
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There are two general types of control methods 
utilized to control overhead cranes: open-loop control 
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and closed-loop control. Open-loop control is divided 
into two general methods, optimal trajectory planning 
and command shaping. [25, 26] used optimal trajectory 
planning to control 2D crane system. [27] employed 
genetic-algorithms-based optimal trajectory planning 
while [28] used sliding-mode anti-swing trajectory 
control and [29] utilized linear programing for motion 
planning of a 2D crane system. Trajectory planning is 
offline and requires a prior knowledge of the desired 
trajectory and initial conditions of the system. The other 
open loop control technique is input shaping or 
command shaping. Command shaping is an online 
technique unlike trajectory planning. In [30, 31], linear 
input shaping is used to control a crane while [32] used 
nonlinear input shaping. This technique can also be 
combined with other techniques, e.g., 
particle-swarm-based input shaping is used to control 
nonlinear 3D overhead crane [33]. Input shaping has 
the advantage of dramatically reducing payload 
oscillations induced by crane motion. However, 
because input shapers are located at the feed-forward 
channel, a special design is needed to compensate for 
any error in the model. Table 2 illustrates some 
relevant references for open-loop crane control. 

Table 2: Open-Loop Control of Overhead System 

Open-loop Method References 

Trajectory planning [25, 26, 27, 29] 

Command Shaping [1, 30, 31, 32, 33] 

 

The other type of control strategies is closed-loop 
control. Different closed-loop control methods are used 
to control overhead crane systems. Linear control uses 
linearized model to design the crane controller [11, 34]. 
Since the crane model has high nonlinearities, the 
linearized model is sometimes not accurate enough to 
provide information about position and swing angles of 
the load. Another disadvantage of linear control 
methods is that they have sensitivity to any change in 
the model e.g., the cable length, because they are 
design to control the system at a single cable length. 
Moreover, the presence of uncertain nonlinear factors 
like the wind, and moving parts frictions would also 
reduce the performance of linear crane control 
methods. Another control method is called partial 
feedback linearization [19, 22, 35]. The partial 
feedback linearization method simplifies the control 
problem, i.e., they are always employed in crane 
control as an initial simplification step [24]. 

Backstepping method is a method developed for 
designing controls for stabilizing a type of nonlinear 
dynamical systems with a special structure. These 
systems consist of subsystems in which the output 

from one subsystem can work as a stabilizing control 
for the subsequent subsystem. [36] used backstepping 
to control a crane with a flexible cable. The 
backstepping technique is widely integrated with other 
control methods, such as backstepping sliding mode 
control [37, 38], adaptive backstepping control [9]. 
Indeed, it employed Lyapunov function as the aim of 
designing to sustain the stability.  

Another issue in crane control is the uncertainty of 
the model e.g., friction nonlinearity, external 
disturbances like wind, flexibility of the cables etc. [2, 9, 
39, 40] used adaptation laws to estimate unknown 
system parameters. Then, they utilized estimated 
values to control the crane. A combination of adaptive 
techniques with sliding mode and neural networks are 
utilized to control uncertain overhead crane [41]. An 
adaptive sliding-mode is used to control 2D crane with 
high-speed hoisting motion [42]. On the other hand, [8, 
43] used robust linear quadratic regulator (LQR) on 
overhead crane system to overcome uncertainties in 
the model. [44] utilized a real-time robust technique for 
a crane control. [45] introduced a gain 
scheduling-based robust controller scheme for a crane 
with fluctuating parameters. In [46], a wave-based 
robust control is employed to control a crane with 
flexible cable. Robust control methods are suitable if 
the model has small uncertainties. On the other hand, 
for a wide range of parameter variation, adaptive 
control has a better performance, but it is sensitive to 
unstructured uncertainty [24]. Table 3 shows some 
relevant references for adaptive crane control. 

Table 3: Adaptive Control of Overhead Crane System 

Crane Type Cable Length References 

2D Crane Fixed [2, 51] 

Varying [42] 

3D Crane Fixed [9, 39] 

Varying [10, 40, 41, 48] 

 

Model predictive control (MPC) is one of the 
advanced control methods that has been employed in 
the process crane control. [3, 12, 47]. The 
disadvantage of MPC control is that it highly depends 
on the model of the system and that MPC has no 
guaranteed stability [24]. 

Sliding mode control is widely used in crane 
systems. There are two types of sliding mode controls 
used in the recent studies of crane control. One type is 
to design a special siding mode control for cranes. The 
other type is to use sliding mode with another control 
strategy in order to improve performance of the 
systems for example [41, 48] used neural networks- 
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base adaptive hierarchical sliding mode control, partial 
feedback and sliding mode [35], adaptive fuzzy 
sliding-mode [49], sliding mode and Luenberger-type 
observer [23], sliding-mode-control-based robust 
finite-time [20] and backstepping aggregated 
sliding-mode [37]. 

Intelligent control is a class of control methods that 
use different intelligent computing algorithms, such as 
particle swarm optimization (PSO), neural networks, 
fuzzy logic, etc. [21] used fuzzy-logic based on the 
crane model and the control rules of experienced crane 
operators to control the crane. Fuzzy-logic can be used 
along with other control strategies like PID [50]. while 
others [49, 51] used adaptive fuzzy sliding-mode 
control. Other intelligent algorithms are also used in 
crane systems, like PSO with input shaping [33, 52], 
PSO-based robust [8], neural networks along with 
adaptive sliding mode control [48]. A combination of 
intelligent techniques is also used for crane control, 
e.g., neural-based fuzzy logic sliding mode control [8] 
and genetic algorithm-based two-stage fuzzy control 
[53]. Table 4 shows main techniques for 2D crane 
control while Table 5 shows main techniques for 3D 
crane control. 

Table 4: Control of 2D Overhead Crane System 

Cable Length Cable Length References 

Fixed Adaptive [2, 51] 

Sliding mode [4, 51] 

Intelligent control [4, 8, 51, 53] 

Varying Adaptive [42] 

Sliding mode [7, 28, 42] 

Intelligent control [27] 

 

Table 5: Control of 3D Overhead Crane System 

Cable Length Cable Length References 

Fixed Adaptive [9, 20] 

Sliding mode [9, 20] 

Intelligent control [14] 

Varying Adaptive [10, 40, 41, 48] 

Sliding mode [23, 35, 37, 38, 41, 48] 

Intelligent control [21, 38, 41, 48, 52] 

IV. CONCLUSIONS 

In this paper, we presented classified results 
pertaining to dynamic modeling and control design of 
three-dimensional overhead crane and 
double-pendulum-type systems. We focused on the 
developed methods for open-loop control as well as 
adaptive control. 
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