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Abstract: Compared with the state estimation of quadruped robots based on external sensors such as camera and lidar, 
the state estimation based on body sensors can provide high-frequency and stable odometer estimation. By analyzing 
the state estimation methods of the legged robot based on the body sensor, the invariant extended Kalman filter (IEKF) 
based on the body sensor is determined to conduct the state estimation analysis of the quadruped robot. Through 
various path tracking experiments in simulation and real environment, the influence of travel speed, travel distance and 
different steering angles on the position state estimation results was analyzed, and the IEKF model was optimized by 
compensating the angular velocity. Experiments show that within the set speed range, after adding angular velocity 
compensation, the position estimation accuracy error of the robot dog is well controlled and is less than 1%. 
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1. STATE ESTIMATION METHOD FOR QUADRUPED 
ROBOT 

Invariant Extended Kalman Filter [1] defines the 
robot state on the Lie Group. If the dynamics satisfy the 
specific "affine group" characteristic, the symmetry will 
make the estimation error satisfy the "logarithmic 
linear" autonomous differential equation on the Lie 
Algebra. The linear system can be used to accurately 
recover the estimated state of the nonlinear system 
when it evolves over the group [2]. To sum up, the 
theoretical basis of the design of the invariant observer 
is that the estimation error is invariant under the action 
of the matrix Lie Group, and the error transfer matrix is 
independent of the state estimation value. The IEKF 
algorithm effectively solves the filter divergence 
problem of the EKF (Extended Kalman Filter, EKF) 
algorithm when noise is introduced and the 
inconsistency between observation and state 
estimation [3]. It is an international frontier method for 
state estimation of legged robots. 

In 2013, M. Reinstein and M. Hoffmann [4] 
statistically trained a regression function on angular  
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information and robot stride (relative position increment 
within one gait cycle) and produced a legged odometer. 
The data fusion of leg odometer and IMU is realized by 
using EKF. The method can handle the sliding of the 
foot well, and the position error is between 1% and 
1.5% of the total path length. The disadvantage is that 
retraining is required when changing the test scene. 

The StarlETH robot [5] designed by ETH Zurich has 
truly realized the fusion algorithm of inertial 
measurement unit and joint encoder in the experiment, 
which is used to predict the motion state of the robot. 
Bloesch M et al. [6] achieved state estimation for 
unknown terrain and arbitrary motion gaits by utilizing 
EKF framework, fusing joint encoder data and airborne 
IMU measurements, and incorporating all foothold 
positions into the estimation process. In the static 
walking small disturbance experiment, the root mean 
square errors (RMSE) of the velocity estimates in the 
three-axis directions are: 0.0111m/s, 0.0153m/s and 
0.0126m/s, respectively. Unscented Kalman Filter 
(UKF) [7] was used in dynamic motion experiments. 
The UKF algorithm was mounted on the StarlETH robot 
to perform dynamic motion experiments on uneven 
terrain. The RMSE of the velocity estimates in the 
three-axis directions were: 0.0546m/s, 0.0406m/s and 
0.0348m/s. Due to the different dimensions of the state 
vector selected by UKF, the number of sigma points 
required is also different. When calculating the Kalman 
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gain at the end, it is difficult to solve the high-
dimensional matrix. 

In 2016, A. Barrau and S. Bonnabel [8] introduced 
the IEKF based on Lie Group and verified that IEKF 
has better local convergence than EKF in experiments. 
Under challenging terrain, the divergence of EKF can 
be effectively avoided. In 2019, Hartley R et al. [9] 
applied IEKF to the bipedal robot CASSISE for the first 
time. In the free walking experiment on a 15M path, the 
position biases were less than 5%. Lin T-Y et al. [10] 
used IEKF and deep learning-based contact data for 
state estimation of a quadruped robot, as shown in 
Figure 1, the generated odometry trajectories were 
comparable to ORB-SLAM2. 

The quadruped robot dog has attracted widespread 
attention because of its good traffic capacity, and 
accurate positioning is one of the key prerequisites for 
its walking and navigation on complex roads. This 
paper mainly analyzes the position and state estimation 
algorithm of quadruped robot from four parts. The first 
part is the research status of the state estimation 
method of the legged robot, the second part mainly 
expounds the principle of the invariant extended 
Kalman filter and its improvement and optimization, the 
third part is the experiment, and the last part is the 
conclusion. 

2. PRINCIPLE OF INVARIANT EXTENDED KALMAN 
FILTER AND IMPROVEMENT AND OPTIMIZATION 

2.1. Filter Model Optimization and Design 

In the framework of EKF, to estimate the posture 
direction of the robot body (IMU) in the world 

coordinate system at ! time, the quaterniont  qt  is 
generally selected as the state quantity. In the 
framework of IEKF, different from EKF, the 
corresponding rotation matrix is selected as the state 
quantity, that is, 

  Rt !SO(3)  is assumed. Similarly, in IEKF, 
the speed and position state quantities of the robot are 

 wt
d  and 

   pt !!
3 . The set of the above state variables 

forms a matrix Lie Group  Xt !SEN+2 ,Where  N stands for 
contact point. 
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Where   RWB(t)  is the attitude matrix of the robot dog, 

  vB
W (t) is the velocity vector of the robot dog in the world 

coordinate system,   PWB
W (t) is the position vector in the 

world coordinate system, and 
  
PWCN

W (t)  is the position 

vector of the contact point of the foot end in the world 
coordinate system. Because the contact process and 
measurement model of each contact point of the robot 
in Trot gait are the same and without loss of generality, 
the state matrix can be simplified as 

 
Xt = Rt vt pt dt( ) , where 

 dt
 represents the position 

vector of the foot contact point in the simplified world 
coordinate system. 

References [9] and [10] consider the interference of 
noise on the IMU data, but do not consider the Yaw 
angular velocity drift error of the IMU rotating around 

 

Figure 1: Experiment on walking path estimation of quadruped robot dog. 
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the Z axis. The IMU's Roll and Pitch angles can be 
corrected using gravity as a reference, and the Yaw 
angle's reference is geomagnetism. Because the 
internal magnetic field of the robot is complex and the 
outside is wrapped by an iron shell, which seriously 
affects the accuracy of the geomagnetic information 
received by the IMU, it is necessary to perform angular 
velocity compensation on the measurement information 
of the IMU in the Yaw direction, to offset the Yaw 
angular velocity drift of the IMU. 

Assuming that the measured value of the IMU is 
affected by Gaussian white noise, and the Yaw angle 
drift error of the IMU caused by factors such as 
magnetic field is 

  wt
d  (i.e., angular velocity 

compensation). The value is always greater than or 
less than 0 (related to the direction of the magnetic 
field), which is different from Gaussian noise and more 
like the measurement error of numerical stability, 
therefore: 

   
!wt = wt + wt

g + wt
d , wt

g " N (03,1, ! (t " #t )
g$ )         (2) 

   
!at = at + wt

a , wt
a " N (03,1, ! (t " #t )

a$ )         (3)  

Where  N  represents Gaussian process and   ! (t " #t )  

represents !  function, 
  !wt  and 

  !at  represent the 
measured values of angular velocity and linear 
acceleration,  wt  and 

 at
 represent the actual angular 

velocity and linear acceleration of the robot dog, 
 wt

g
 

and   wt
a

 represent the Gaussian white noise with a 
mean value of 0,   wt

d
 represents the yaw angle drift 

error caused by factors such as magnetic fields, and its 
value is assumed to be 0 in the Roll and Pitch 
directions. 

It is assumed that the position of the contact point 
between the foot end of the robot dog and the ground 
remains fixed in the world coordinate system, that is, 
the measured speed of the contact point of the foot end 
is zero. To accommodate the potential small sliding of 
the foot end, the measured speed is assumed to be the 
actual speed plus Gaussian white noise, that is: 

   
!vW

C = vC
C + wt

v , wt
v ! N (03,1, " (t # $t )

v% )         (4) 

Where 
  !v

W
C

 represents the measured value of the speed 
of the contact point of the foot end 

 vC
C  represents the 

actual speed of the contact point between the foot end 
of the robot dog and the ground, and 

 wt
v  represents the 

Gaussian white noise with a mean value of 0. 

Using the inertial measurement unit and foot contact 
measurement, the system dynamics model can be 
expressed as [10]. 

   
d
dt

Rt = Rt !wt ! wt
g -wt

d( )
"
          (5) 

   
d
dt

vt = Rt ( !at ! wt
a )+ g           (6) 

 
d
dt
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d
dt

dt = RthR
!! t( ) "wt
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Where 
 
i( )!  means 3 × 3 skew symmetry matrix,  g  

represents the gravity acceleration vector,   
!! t  

represents the measured value of the encoder, 
  
hR
!! t( )  

is the measurement direction of the contact point 
coordinate system (measured by the encoder and 
calculated by forward kinematics) relative to the IMU 
coordinate system, and 

  
RthR

!! t( )  is the rotation matrix 
that transforms the vector from the foot contact 
coordinate system to the world coordinate system. 

The speed and position information of the robot dog 
obtained by the state estimation algorithm can meet the 
basic motion control requirements, but if you want the 
motion control of the robot to be more stable and 
accurate, or to be used for SLAM mapping and 
navigation [11], then the speed and position calibration 
is necessary. If the actual running speed of the robot 
dog is  v , and the estimated speed obtained by the 
state estimation algorithm is  vt , a scale factor A is 
required to satisfy (9). The same applies to position 
calibration. 

 v = A! vt            (9) 

  p = A! pt          (10) 

Where,  A  is the scale coefficient, which is a fixed 
constant value. 

2.2. Simulation Experiment Verification 

To verify the effectiveness and accuracy of the 
improved state estimation algorithm, an experimental 
environment is set up (Figure 2). In the Gazebo 
simulation environment, control the quadruped robot 
dog to move in a Trot gait, with a walking speed of 0-
0.2m/s, and record its real trajectory and estimated 
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trajectory. In Figure 2, the black square in section A is 
the starting point. The robot dog walks clockwise along 
the track line and returns to the end position of section 
A (coinciding with the starting point) to end. 

 

Figure 2: Experiment environment and quadruped robot dog. 

Figure 3 shows the estimated trajectory and walking 
trajectory of the robot dog in the Gazebo simulation 
environment. The blue line indicates the estimated 
trajectory of the robot dog based on the IEKF 
algorithm, and the red line indicates that the walking 
trajectory of the robot dog which is also the reference 
trajectory. After the simulation, the data package is 

imported into EVO, and the average position bias is 
3.2cm, and the RMSE is 3.7cm. The maximum 
cumulative bias of the trajectory appears at the end 
position, which is 7.9cm. The simulation experiment 
preliminarily proves the feasibility of the research on 
the state estimation of the quadruped robot dog based 
on IEKF. 

3. EXPERIMENT 

The main purpose of the experiment is to compare 
the IEKF algorithm with the EKF algorithm, as well as 
the two algorithms before and after adding angular 
velocity compensation, to verify the feasibility and 
reliability of the improved algorithm based on IEKF. 
Specifically, the remote-control handle controls the 
robot dog to reach the preset end position according to 
the preset trajectory, and then analyzes the accuracy of 
the position estimation of the robot dog by comparing 
the estimated trajectory and the set trajectory. In the 
experiment, the maximum moving speed was set to 
0.2m/s and 0.3m/s. The experimental environment and 
quadruped robot dog are shown in Figure 2. The size 
of the experimental environment is the same as that of 
the simulation environment. The total length of the path 
is 25m, of which the lengths of sections A and C are 
10m, and the lengths of sections B and D are 2.5m. 
The position of the black square where the robot dog in 
segment A is located is the starting point, and the end 
point is set according to different experiments. The 
robot dog is equipped with a 3DM-GX3®-25 IMU 
(Table 1). 

 

Figure 3: The estimated trajectory and walking trajectory of the robot dog in the simulation environment. 
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There are three types of experiments: (1) Straight-
through experiments. Measure the error between the 
estimated end position and the preset end position, and 
obtain the position estimation accuracy of the robot dog 
on a single axis. (2) Experiment around the rectangular 
field one time. Measure the error between the 
estimated end position and the starting position, and 
indirectly obtain the estimated accuracy of the angular 
velocity. (3) Experiment around the rectangular field 
three times. The error between the estimated end 
position and the starting position is measured to further 
verify the reliability of the algorithm. For these 
experiments, if the position estimation error is less than 
1%, the algorithm is reliable, otherwise it is unreliable. 

3.1. Straight-Through Experiment 

Set the starting and ending points of section A, the 
black square in Figure 2 is the starting point, the green 
square at the other end of section A is the end point, 
and the entire distance is 10m. At the beginning of the 
experiment, the two front feet of the quadruped robot 
dog stepped on the starting position. After starting, the 
robot dog moves forward at two speeds of 0-0.2m/s 
and 0-0.3m/s respectively. Stop when both front feet 
are at the end. 

 

     (a) Speed is 0-0.2m/s 

 

         (b) Speed is 0-0.3m/s 

 

Figure 4: The experiment of the robot dog moving forward 
10m in a straight line at different speeds. 

The results of the straight-through experiment are 
shown in Figure 4. The set trajectory is represented by 
a black dotted line, which is a straight line along the X-
axis for 10m and the steering angle is 0. Different 
position state estimation algorithms are represented by 
solid lines with different colors and with different 
markers. In Figure 4, from top to bottom, the 
displacements of different position state estimation 
algorithms on the X-Y plane, the displacement 
components on the X axis, the displacement 
components on the Y axis, and the yaw angle of the 
trajectory of different position state estimation 
algorithms are listed. Based on the set trajectory and 
reference point, the displacement components of 
different algorithms in the X-axis are counted, and the 
position estimation error with the reference point of the 
X-axis component is calculated. 

A total of 11 groups of experiments were carried out 
in this part, and the results are shown in Table 2. The 

Table 1: 3DM-GX3® -25 IMU Performance Parameters 

Physical Dimensions and Electrical Characteristics 

Input voltage Interface Dimensions Weight Power Consumption 

4~36V 
DC 

USB2.0/ 
RS232 

44*24* 
11mm 18g 400mW 

Performance 

Roll/Pitch/Heading Accuracy Attitude resolution Attitude Repeatability Filter output frequency Vibration limit 

±2° ＜0.01° 0.2° 1-1000Hz 500g 
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following conclusions are obtained through 
experiments: the error of the IEKF algorithm is much 
smaller than that of the EKF algorithm, and the errors 
of the two algorithms after adding angular velocity 
compensation are smaller than those before adding. 
The accuracy error of the IEKF algorithm with angular 
velocity compensation is less than 1%. The IEKF 
algorithm obtains a higher accuracy than the EKF 
algorithm because the speed and position are 
calibrated at the time of design. The RMSE of the 
improved IEKF algorithm with angular velocity 
compensation is reduced by 84.9% and 85.4%, 
respectively, compared with that without angular 
velocity compensation. 

In the straight-line traveling experiment, the 
estimated position of the robot dog does not coincide 
with the estimated traveling trajectory, that is, there is a 
bias in the Y-axis. This is evident in both algorithms 
without angular velocity compensation. The bias is 
mainly caused by the following two points: (1) the initial 
angle of the robot dog does not coincide with the 
estimated trajectory. (2) There is a cumulative drift 
error in the yaw angle of the IMU. Since the initial angle 
biases must exist, the error value of each experiment 
has obvious and irregular changes, as shown in Table 
2. In this paper, the cumulative drift error of the IMU 
yaw angle is optimized by adding angular velocity 
compensation. The specific operation steps are 
through multiple in-situ rotation experiments, count the 
difference between the actual rotation angle and the 
estimated angle of the robot dog, and then obtain the 
compensation angular velocity  wt

d  through inverse 
integral conversion, and finally compensate it into the 
IMU data. The angular velocity compensation value of 
the IMU sensor used in this experiment is  
1.05 × 10-3rad/s. The accuracy and anti-electromagnetic 

interference ability of different inertial sensors are 
different, and the specific compensation value needs to 
be measured by your self. To further verify the 
reliability of the angular velocity compensation 
algorithm, the following motion experiments around the 
rectangular field are carried out. 

3.2. Experiment Around the Rectangular Field One 
Time 

The main purpose of this experiment is to study the 
estimation accuracy of different algorithms in the Yaw 
angle, and the feasibility and reliability of the angular 
velocity compensation algorithm. 

Different from the straight-through experiment, the 
starting point and the ending point of this experiment 
coincide, and the robot dog starts from the starting 
point and returns to the starting point after a circle. 
When moving around A-D, the ideal trajectory should 
be a regular rectangle. 

Based on the set trajectory and the reference point, 
the estimated end positions of different state estimation 
algorithms in the X-Y plane are counted, and the 
position estimation error with the reference point is 
calculated. When the speed is 0-0.2m/s and 0-0.3m/s, 
the experimental results of a circle around the 
rectangle are shown in Figure 5. 

A total of 11 groups of experiments were carried out 
in this part, and the results are shown in Table 3. The 
following conclusions are obtained through 
experiments: the position estimation result of the robot 
dog has obvious right-turn offset when no angular 
velocity compensation is added. The error of the IEKF 
algorithm is smaller than that of the EKF algorithm. 
After adding the angular velocity compensation, the 
error is much smaller than that before the addition, and 

Table 2: X-axis Position Estimation Error Summary Table when Traveling in a Straight Line (cm) 

 Groups 
Parameters 

1 2 3 4 5 6 7 8 9 10 11 RMSE 

0-0.2m/s -159.3 -172.3 -150.2 -132.6 -145.6 -142.6 -168.1 -145.5 -162.0 -168.8 -170.3 156.6 EKF 
(No angular velocity compensation) 0-0.3m/s -160.7 -178.9 -163.5 -155.3 -167.8 -152.9 -179.9 -154.6 -177.1 -170.5 -166.8 166.4 

0-0.2m/s -158.0 -172.3 -150.0 -132.2 -146.6 -142.3 -167.5 -145.1 -161.6 -169.0 -170.5 156.4 EKF 
(With angular velocity compensation) 0-0.3m/s -160.1 -178.9 -163.1 -156.2 -167.0 -152.5 -177.9 -153.1 -176.5 -170.0 -166.3 165.9 

0-0.2m/s -6.6 -13.8 -11.2 -9.1 -11.8 -9.6 -10.3 -12.5 -11.7 -10.6 -13.2 11.3 IEKF 
(No angular velocity compensation) 0-0.3m/s -13.8 -12.3 -10.8 -9.6 -14.2 -11.8 -11.1 -12.3 -12.2 -13.2 -13.5 12.3 

0-0.2m/s 1.1 1.6 1.1 0.2 -2.1 1.7 -1.5 2.2 1.1 -1.6 2.8 1.7 IEKF 
(With angular velocity compensation) 0-0.3m/s 1.1 2.5 1.2 0.8 2.3 -1.3 2.1 2.2 1.7 2.0 2.1 1.8 

 



Position and State Estimation of Quadruped Robot Dog International Journal of Robotics and Automation Technology, 2022, Vol. 9    23 

the accuracy error is 0.15% and 0.17%, less than 1%. 
Several sets of experimental results effectively prove 
the effectiveness of adding angular velocity 
compensation for algorithm optimization. 

3.3. Experiment Around the Rectangular Field 
Three Times 

To further verify the feasibility of the algorithm, an 
experiment was carried out in which the robot dog 

moved around the rectangle field three times  
(Figure 6), and the movement speed was 0-0.3m/s. 
The position error of the final state estimation is within 
15cm, the accuracy error is 0.2%, and is less than 1%.  

The above analysis and experiments show that the 
IEKF algorithm with angular velocity compensation can 
significantly optimize the position state estimation 
results of the robot dog. 

 

       (a) Speed is 0-0.2m/s 

 

       (b) Speed is 0-0.3m/s 

 

Figure 5: The experiment of the robot dog moving around the rectangular field one time at different speeds. 
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4. CONCLUSION 

Aiming at the problem of large error in the position 
state estimation of the quadruped robot dog, this paper 
adds angular velocity compensation to the IMU data 
based on the IEKF algorithm and solves the problem of 
Yaw angular velocity drift around the Z axis. The 
results of a series of multiple experiments with different 
travel speeds, different travel distances and different 
steering angles all show that after adding angular 
velocity compensation, the position state estimation 
accuracy of the robot dog is greatly improved, 
exceeding 84.9%, which effectively suppresses the 
deviation of the position and state estimation of the 
quadruped robot dog. 
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