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Abstract: Upstream wind turbines yaw to divert their wakes away from downstream turbines, increasing the power 
produced. Nevertheless, the majority of wake steering techniques rely on offline lookup tables that translate a set of 
parameters, including wind speed and direction, to yaw angles for each turbine in a farm. These charts assume that 
every turbine is working well, however they may not be very accurate if one or more turbines are not producing their 
rated power due to low wind speed, malfunctions, scheduled maintenance, or emergency maintenance. This study 
provides an intelligent wake steering technique that, when calculating yaw angles, responds to the actual operating 
conditions of the turbine. A neural network is trained live to determine yaw angles from operating conditions, including 
turbine status, using a hybrid model and a learning-based method, i.e. an active control. The proposed control 
solution does not need to solve optimization problems for each combination of the turbines’ non-optimal working 
conditions in a farm; instead, the integration of learning strategy in the control design enables the creation of an active 
control scheme, in contrast to purely model-based approaches that use lookup tables provided by the wind turbine 
manufacturer or generated offline. The suggested methodology does not necessitate a substantial amount of training 
samples, unlike purely learning-based approaches like model-free reinforcement learning. In actuality, by taking use of 
the model during back propagation, the suggested approach learns more from each sample. Based on the flow 
redirection and induction in the steady state code, results are reported for both normal (nominal) wake steering with 
all turbines operating as well as defective conditions. It is a free tool for optimizing wind farms that The National 
Renewable Energy Laboratory (USA) offers. These yaw angles are contrasted and checked with those discovered 
through the resolution of an optimization issue. Active wake steering is made possible by the suggested solution, 
which employs a hybrid model and learning-based methodology, through sample efficient training and quick online 
evaluation. Finally, a hardware-in-the-loop test-bed is taken into consideration for assessing and confirming the 
performance of the suggested solutions in a more practical setting. 

Keywords: Fault diagnosis, Neural network, Data– driven approach, Model–based scheme, Wind farm simulator, 
Hardware–in–the–loop test–rig. 

1. INTRODUCTION 

Wake steering can increase the net power produced 
by a wind farm by yawing up-stream turbines to 
redirect their wake away from downstream turbines, 
as shown e.g. in [1-3] for turbines in commercial 
wind farms. These works proposed the use of a lookup 
table that for each Wind Speed (WS), Wind Direction 
(WD), and Turbulence Intensity (TI) sequence provides 
the yaw angles to maximise net power. This table is 
generated offline by solving an optimisation problem for 
each WS, WD and TI sequence exploiting a wake 
model. For their wake models, e.g. the works [1-3] 
suggested in particular the employment of the lifting 
line [4]), Gauss Curl–Hybrid [5], and Gaussian [6] 
models, respectively. 

One common key aspect not considered by these 
works is the faulty condition (and the failure, i.e. the 
shutdown) of one or more turbines in a farm, which 
often occurs due to low wind speed (wind speed below 
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the cut–in speed), anomalous working conditions, 
routine maintenance, or emergency maintenance, as 
remarked e.g. in [7, 8]. Therefore, by simply applying a 
lookup table, which does not consider the turbine 
healthy status, can lead to non- optimal control, such 
as yawing a turbine to direct its wake away from a 
downstream turbine that is not working properly, thus 
decreasing the power of the upstream turbine without 
gaining any power increase from the downstream 
turbine. To account for turbine conditions, the lookup 
table approach would need to optimise over turbine 
efficiency and availability; this could be prohibitively 
expensive for a large wind farm due to the large 
number of possible combinations of turbine 
availability. 

One possible approach to take into account turbine 
efficiency reduction or even their shutdown due to 
faults or failures while avoiding optimisation over all 
combinations of turbine availability is through learning 
by using real–time data. Learning– based control, 
sometimes in connection with Reinforcement Learning 
(RL) methods, has recently demonstrated interesting 
properties, and it may be considered for the problem of 



Driven Wake Steering Control for a Simulated Wind Farm Model International Journal of Robotics and Automation Technology, 2023, Vol. 10    15 

wake steering when all wind turbines are active. For 
example, the works [9] and [10] exploited RL for 
maximising wind farm power generation. On the other 
hand, [11, 12] applied RL to the related problem of 
power tracking, thus matching the output power of the 
wind farm as a function of the electricity grid. 

Note that a key challenge with purely learning– 
based methods is that they can require a long time to 
train; therefore, hybrid model– and learning–based 
solutions, such as the solutions proposed in [13], 
showed to train faster than RL. To this end, hybrid 
methods have also shown interesting features for real–
world problems, such as building control, but have not 
been tested on wind farm control. 

It is worth noting that the use of Machine Learning 
(ML) tools, such as Deep Learning (DL) is available in 
many cases [14], for example in computer vision [15], 
speech recognition [16]. Thus, researches are involved 
in fault detection [17, 18] of Wind Turbines (WT)s, as 
for in this paper. With respect to other situations, it is 
normal to have data from healthy conditions and only 
a few sequences of the faulty ones [19]. In this paper, a 
scheme was exploited to extend the knowledge 
acquired from different WTs and extend it to different. 
WTs can be similar, but with different working 
conditions, as shown e.g. in [20, 21]. The development 
of Things (IoT) can allow the collection of data from 
remote and different tools, such as Supervisory Control 
And Data Acquisition (SCADA) devices. 

Where as typical ML models are predicated on the 
idea that both the training and testing data belong to 
the same data distribution, TL aims to improve 
learners’ performance by transferring information from 
a related domain. For example, in ML, the concept of 
Transfer Learning (TL) is influenced by how people 
learn, which involves applying prior knowledge to solve 
difficulties. For instance, if a person can ride a bike, 
learning to drive a car will go more swiftly than starting 
from scratch with no prior driving experience. As will be 
seen in the paper, TL allows ML models to transfer 
learned information from source domains to a target 
domain in order to enhance the effectiveness of the 
target learning function, even though both the source 
and target domains have different data distributions 
[22]. Moreover, it is possible to transmit data samples 
from the source domain to the target model to enhance 
learning [23]. There are still significant research gaps 
that need to be filled, despite the fact that TL is 
becoming more and more popular and has been 
used in various sectors, including defect detection. 

The methods that are currently accessible only 
use one computer as a source [24]. In order to learn 
features from the source and target domains together, 
domain adaptation is proposed in the study as a fault 
detection technique. A support vector machine 
classifier is then used to predict problems [25]. In order 
to forecast bearing inner race, ball, and outer race 
problems under fluctuating working conditions, a TL 
approach was applied. In order to classify gear pitting 
flaws, the publication [26] suggested an enhanced 
deep neural network optimized by a particle swarm 
optimization methodology and a regularization method. 

Although labeling data is a challenging operation 
when fault data is unbalanced, the information can still 
be sent to a destination without labeled data. When the 
labeled data was unavailable for the target, the 
greatest mean discrepancy was employed to reduce the 
difference between the source and target domains. 
Several DL models, such as the sparse autoencoder 
[27] or the Convolutional Neural Network (CNN) [28], 
are employed for condition recognition in addition to 
the domain adaptation utilizing the maximum mean 
discrepancy. In order to extract transferable features 
from the unprocessed vibration data, the article 
suggested a feature-based CNN [29]. 

Some other researches, which combine TL with DL 
for fault diagnosis, focuses on TL that allow data to be 
combined across numerous devices. To cope with big 
data sets and capture nonlinear trends from diverse 
measures, an approach such as DL is required 
rather than shallow machine learning models. TL with 
DL is used to transfer gained knowledge from vast fault 
history WT to scarce fault history WT, which is 
insufficient to train typical ML models. In fact, in contrast 
to prior research by the authors [30], this paper 
employs DL and TL methods for fault diagnostic 
application to WT SCADA data. Other well–established 
traditional approaches showing the application of 
artificial intelligence tools for fault diagnosis for power 
plants and other industrial applications can be found 
e.g. in [31-35]. 

In particular for this paper, it proposes a Hybrid 
Model– and Learning–Based (HMLB) approach to 
wake steering for the first time, with the aim of man- 
aging wind turbine working conditions that can vary due 
to their availability after faults and shutdown. Note that 
this HMLB scheme was developed earlier for dynamic 
control, whilst this work develops a similar approach for 
steady–state conditions. This method could also be 
seen as model–based or white box RL, which is able to 
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take into account possible faults and failures affecting 
the wind farm. 

Therefore, the solution considered in this paper 
relies on Neural Networks (NN)s to describe the 
nonlinear dynamic analytical link between the wind farm 
measurement and the control signal. The chosen 
network architecture belongs to the Nonlinear Auto-
Regressive with eXogenous (NARX) input prototype, 
which can describe dynamic relationships along time. 
The training of the NN exploits standard training 
algorithm, that processes the data acquired from the 
process [36]. The developed strategies are verified 
by means of a high–fidelity simulator, which describes 
the normal and the faulty behaviour of a wind farm 
plant. The achieved performances are assessed in the 
presence of uncertainty and disturbance effects, thus 
validating the robustness features of the proposed 
schemes. The effective- ness of the proposed solutions 
is also verified and validated using a more realistic 
test–bed consisting of a Hardware–In–the–Loop 
experimental tool. This should to serve a more realistic 
application of the proposed schemes. It is worth noting 
the main contributions of this work. With respect to 
previous investigations by the authors, see e.g. [37], 
this pa- per develops an Active and Learning–Based 
Control (ALBC) strategy that is verified and validated 
also with respect to a real–time test–bed. 

The manuscript is organised as follows. Section II 
presents the HMLB solution for the steady– state 
setting considered in this paper, including how it 
applies for real–time (online) control and offline 
training. The training phase of the ALBC approach 
requires the generation of data through a model; 
therefore, a learning–enabled version of the wake 
model is presented in Section III. Section IV recalls 
the wind park simulator. This solution is exploited for 
the active wake steering of a wind farm in Section V. A 
more realistic validation of the achieved results is 
addressed in Section VI using the Hardware–In–the–
Loop (HIL) tool. Finally, Section VII summarises the 
achievements of the paper and highlights possible 
directions of future works. 

2. HYBRID MODEL– AND LEARNING–BASED 
CONTROL METHOD 

The active control method exploited here [13] is 
an ALBC method, originally developed for dynamic 
control. The same approach can be applied in 
steady–state conditions, specifically for active wake 
steering. This approach could also represent a model–

based or white box RL. In particular, Section II-A 
explains how this approach can be used for real–time 
(online) active control of a particular wind farm, whilst 
Section II-B shows the offline training mechanism. 

A. Online Active Control 

In real–time conditions, the active control strategy 
passes the current state and the exogenous inputs 
to a policy, , with optimised parameters !* , which 
generates the control action. In this steady– state case, 
the considered policy takes in only the exogenous 
inputs: the Wind Speed (WS), vw, the Wind Direction 
(WD), φ, and the turbine status. The policy is trained for 
a particular wind farm, where the number of turbines 
and their location is fixed. The vector indicates whether 
each turbine in the farm is active, inactive, or faulty. 
The policy generates a vector, γ, with a yaw angle, γi, 
for each i–th turbine in the farm. Thus, ALBC requires 
to solve the problem defined by the relation of Eq.  
(1): 

         (1) 

The policy  	   is obtained by using a NN, as 
recalled in this section. The optimised parameters, θ∗, 
represent the weights and biases of the NN, obtained 
during the training as described in Section II-B. 

This study proposes a different data–driven 
approach, based on NNs, which is exploited to 
implement the fault diagnosis block. This section briefly 
recalls their general structure and properties, which are 
used to implement the policy generator for the signals 
γ(t). 

Therefore, a NN is realised in order to reproduce 
the behaviour of the policy relation of Eq. (1) using a 
proper set of input and output measurements. The NN 
structure consists of different layers of neurons [36], 
modelled as a static function f. This function is 
described by an activation function with multiple inputs 
properly weighted by unknown parameters that 
determine the learning capabilities of the whole 
network. 

A categorisation of these learning structures 
concerns the way in which their neurons are 
connected each others. This work proposes to use 
feed– forward network, also called multi-layer 
perceptron, where the neurons are grouped into 
unidirectional layers. Moreover, this multi-layer 
perceptron is pro vided with a tapped delay line, which 
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is a feed– forward network whose inputs come from a 
delay line. This study proposes to use this solution, de- 
fined as ’quasi–static’ NN, as it represents a suit- able 
tool to predict dynamic relationships between the 
input–output measurements and the considered policy 
function . In this way, a NARX description is 
obtained, since the nonlinear (static) network is fed 
by the delayed samples of the system inputs and 
outputs selected by the analysis tool described in 
Section IV. Indeed, if properly trained, the NARX 
network can estimate the current (and the next) control 
vector γ(t)	   on the basis of the selected past 
measurements of system inputs and outputs ul(t)	  and 
yj(t), which represent the wind turbine status . 
Other inputs of the NN are the WS and WD, i.e., vw	  and 
φ. Therefore, with reference to the policy generator, 
which is used to design the yaw vector   γ, this NARX 
network is described by the relation of Eq. (2): 

       (2) 

where uj(·)	   and yl(·)	   are the generic j–th and l–th 
components of the measured inputs and outputs u 
and y, respectively, that are selected via the 
sensitivity analysis table recalled in Section IV. They  
represent the status  of the wind turbines of the 
wind farm, thus including possible fault (efficiency 
reduction) and failure (shutdown) conditions. F(·)	   is 
the function realised by the static NN, which depends 
on the layer architecture, the number of neurons, their 
weights and their activation functions. The NARX 
network is thus used as active policy estimator 	  . t	   is 
the time step, whilst the signals uj(·), yl(·), vw(·), and φ(·)	  
have a number of delays nd	   that have to be properly 
selected. 

The design parameters of the optimised vector !* 	  
also includes the number of neurons and the number of 
delays of the network inputs and outputs, while the 
value of the weights of each neuron are derived from 
the network training from the data acquired from the 
wind farm. 

Note finally that a sigmoidal activation function for 
the input and the hidden layers are exploited. The 
output layer use linear activation functions. Therefore, 
the output of the NN needs to be con- strained 
between the yaw angles [0o ÷ 25o ] 	   by using a 
saturation block before feeding the wind turbine model. 
In this way, the constrain of the yaw to be positive 
prevents the control to generate unachievable or 
fatigue-causing changes between positive and negative 
yaw. Moreover, keeping the yaw below 25o	   limits loads 

of the turbines. The wind speed and wind direction 
are normalised by a maximum wind speed and wind 
direction and the output is scaled up by the maximum 
yaw, 25o, to ensure the inputs and outputs of the NN 
are in the range between 0	  and 1, thus facilitating the 
NN training. These tasks are automatically performed 
by training the NN in the Matlab and Simulink  
environments, as shown in Section V. Moreover, the 
ALBC method described in this section is the same as 
that in model–free RL. The difference between the 
ALBC approach proposed here and model–free RL is 
in the training method, as described in Section II-B. 

B. Offline Training 

During training, the ALBC scheme samples the 
exogenous inputs. For each batch of samples, the 
ALBC scheme runs a forward pass of the policy on 
those inputs to generate a control action, calculates the 
loss from the inputs and control by using the model, 
runs a backward pass of the policy to get gradients of 
the loss with respect to the policy parameters, and 
takes a gradient step to update the policy parameters 
in the direction that decreases the loss. The ALBC 
strategy has been implemented in the learning 
framework [38], which exploits the algorithm for 
gradient–based optimisation addressed in [39]. The loss 
function v  in Eq. (3) is defined as negative and 
represents the average power produced by the 
turbines: 

        (3) 

Where Wi (vw, φ, S )	   represents the power generated 
from the i–th turbine given the WS vw, the WD φ, 
and the yaw γ	  of all turbines in the farm; Nt	   indicates 
the number of wind turbines that are able to contribute 
to the power generation. This power is computed using 
the Gaussian wake model and the wind farm simulator 
addressed in Sections III and IV, respectively. 

A key aspect of the proposed ALBC, and where it 
differs from model–free RL, is that during the backward 
pass of the training phase, the ALBC generates the 
predicted output signals through the model to get the 
exact gradients. This is in con- trast to model–free 
RL, which does not exploit the model and thus needs to 
estimate the gradient from samples. To use the 
ALBC for wake steering, a version of the wake model 
able to predict future measurements with a learning–
enabled strategy is required. Its implementation is 
presented in Section III. 
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3. GAUSSIAN WAKE MODEL 

The section describes the wake model considered 
in the wind farm simulator recalled in Sectionsec: wind-
farm-description. Therefore, the complete wind farm 
model consists of three main submodels: the wind and 
wake models, the plant model, and the controller 
model, interacting as sketched in Figure 1. 

The design of the proposed ALBC requires the 
generation of proper signals by means of the Gaussian 
wake model derived in [6] and explained more in 
general in [40]. The Gaussian wake model has been 
implemented in the Flow Redirection and In- duction in 
Steady State (FLORIS) software package  [41], and 
included by the authors in the former wind farm 
simulator developed in Matlab and Simulink [42]. 
However, this version cannot easily be used with 
existing learning packages [38]. Therefore, a 
learning–enabled implementation of FLORIS is 
required, which has been obtained by the authors 
by using a prediction model based on a NN, as 
suggested in Section II-A for the policy generator.  

 

Figure 1: Block diagram of the wind and wake models of 
the wind farm simulator. 

The solution achieved has been validated with 
respect to FLORIS. In particular, Figure 2 illus- trates a 
hub height slice of the flow field from the modified 
version of FLORIS for the validation case considered 
in this work: a 9 turbine wind farm with incoming hub 
height wind speed vw, incoming hub height wind 
direction φ, and yaw angles γ	   as described in 
Section IV. This flow field and the underlying values 
of wind speed on the rotor disk match those from 
FLORIS. 

 

Figure 2: Hub height slice of the flow field from FLORIS 
depicted in Matlab. 

The improved version of FLORIS is compatible with 
any learning method implemented in Matlab and 
Simulink, including existing packages for RL and 
user–implemented hybrid methods, such as the 
development of the ALBC scheme proposed in this 
paper. 

4. WIND FARM SIMULATOR 

This benchmark model implements a simple wind 
farm with 9	  wind turbines that are arranged in a square 
grid layout [42]. The distance between the wind 
turbines in both directions are 7	  times the rotor diameter, 
L. Two measuring masts are located in front of the wind 
turbines, one in each of the wind directions φ	  
considered in this benchmark model, e.g. 0o	  and 45o. 
The wind speed is measured by these measuring 
masts and they are located in a distance of 10 times 

 

Figure 3: Layout of the wind farm with 9 wind turbines. 
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L	   in front of the wind farm. The wind turbines of the 
farm are defined by their row and column indices in the 
coordinate system illustrated in Figure 3, which 
sketches layout of the wind farm with the 9 turbines 
of the square grid and the masts along the wind 
directions. It is worth noting that the original simulator 
described in [42] has been modified by the authors in 
order to include the wake model recalled in Section III. 

The farm uses generic 4.8	  MW wind turbines, which 
were described in detail [43]. The turbine is a three 
bladed horizontal axis, pitch controlled variable speed 
wind turbine. Each of the wind turbines are described 
by simplified models including control logics, variable 
parameters and 3 states. The i–th wind turbine model 
generates the electrical power, Pig(t), the collective 
pitch angle, βi(t), and the generator speed, ωi g(t). Note 
that the wind farm simulator has been modified by the 
authors in order to include the control of the wind 
turbine yaw angles  γi(t). The second control input is 
thus represented by the pitch angle βi(t)	  modified by the 
baseline wind farm controller [42]. 

The two scenarios with different wind directions but 
driven both by the same wind speed sequence vw(t)	  
(possibly with a time shift) are considered. The wind 
sequence contains a wind speed vw	   in- creasing from 5	  
m/s. to 15	  m/s, and with a peak value of about 23	  m/s. 
In this benchmark model a very simple wind farm 
controller is used, which provides the wind turbine 
controllers with a power reference Pi ref (t). More details 
on wind farm model considered in this paper can be 
found in [42]. It is worth noting that the wind farm 
considered here could be seen as simplistic model. 
However, the work [42] describes how the simulator 
can fit realistic wind farms. 

With these assumptions, the complete continuous–
time description of the wind farm under diagnosis has 
the following form: 

        (4) 

where u(t) = [vw(t), βi(t)]T and y(t) = xc(t) = [ωig(t), 
Pig(t)]T	   are the input and the monitored output 
measurements, respectively. The subscript i	  
indicates the measurement from the i–th wind 
turbine of the wind farm (i = 1, . . . , 9). fc (·)	  represents 
the continuous–time nonlinear function describing the 
model of the plant under investigation. 

In this benchmark three faults are considered that 
influence the measured variables from the wind 
turbine, i.e. βi(t), ωig(t), and Pig(t). It is also assumed 
that the considered faults can be detected at a wind 
farm level by comparing the performance from other 
wind turbines in the wind farm, but they are difficult to 
detect at a wind turbine level. Moreover, these three 
faults affect different wind turbines at different times, as 
described in more detail in [42]. 

The remainder of this section describes the 
relations among the fault cases considered above, 
and the monitored measurements acquired from the 
wind park benchmark, in the presence of uncertainty 
and measurement errors. Moreover, Table 1 shows the 
fault effect distribution in the case of single fault 
occurrence, with respect to the acquired inputs and 
outputs of the wind park simulator. 

Table 1: Wind Park Fault Scenarios 

Fault  
Scenario 

Affected WT(s)  
(row, col) 

Affected  
Measurements 

Fault 1 (3, 3) {vw(t), ω9(t), P4 g} 

Fault 2 (3, 2), (3, 3) {vw(t), β2(t), P6 g} 

Fault 3 (3, 2), (3, 3), (2, 3) {vw(t), β3(t), P7 g} 

 
Table 1 was obtained by performing a fault 

sensitivity analysis. In practice, Table 1 is thus built by 
selecting the most sensitive measurement (ui	  or yj) with 
respect to the simulated fault conditions. Obviously, 
when different fault conditions have been considered 
with respect to the scenario of this work, different 
measurements will probably be taken into account. 
These conditions define uniquely the wind turbine 
status S in the wind park. 

A proper analysis has been performed in order to 
verify and test the robustness of the considered strategy 
with respect to uncertainty and disturbance effects 
affecting the considered benchmark. A Monte Carlo 
tool could be useful at these stage, as the efficacy of 
the diagnosis depends on both the model    
approximation capabilities and the measurements 
errors. 

In particular, the benchmark includes realistic wind 
turbine uncertainties that have been considered by 
modelling some meaningful variables as Gaussian 
stochastic processes around the nominal values and 
with standard deviations corresponding to the realistic 
minimal and maximal error values of Table 2. 
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Table 2: Benchmark Uncertainties 

Parameter Value Standard Deviation  

ρ	   1.225Kg/m3 ±25%	  

J	   7.794 × 106Kg/m3 ±35%	  

Cp Cp0 ±35%	  

 
Note finally that the wind park simulator ad- dressed 

in this section will be replaced with a more realistic 
test–bed described in Section VI, which will be 
exploited for verifying and validating the final 
performances of the proposed solutions. 

5. SIMULATION RESULTS 

The wind farm system is considered as described in 
Section IV consisting of 9 National Renewable Energy 
Laboratory (NREL) reference turbines [44]. The 
atmospheric conditions are constant, with wind shear of 
0.12, wind veer of 0.0, and turbulence intensity of 0.06. 
The incoming hub height wind direction can vary 
according two directions, as re- called in Section IV, the 
incoming hub height wind speed ranges from 3m/s to 
24m/s. The turbine status describes the working 
conditions of the turbines that can be active, inactive 
(shutdown), or faulty. These conditions are provided 
e.g. by a Fault Detection and Isolation (FDI) scheme 
already proposed by the authors e.g. in [45]. Figure 4 
shows the different working conditions of the wind 
turbines of the park, when a set of turbine statuses, 
each one with nine, eight, seven and six turbines are 
considered. They are described by means of their row 
and column indices in the layout matrix. 

 

Figure 4: The considered working conditions of the wind 
farm. 

The wind farm benchmark model considered in this 
work was proposed earlier in [44] and modified by the 
same authors who developed the wind turbine 
benchmark model. It consists of nine wind turbines 
arranged in a squared grid of three rows and three 
columns. The distance between two adjacent turbines 
is seven times the rotor diameter R. Two measuring 
masts (anemometers) are placed in front of the first line 
of turbines, at a distance of ten times R, providing the 
measurements of the undisturbed wind speed. The 
considered turbines are 4.8MW	   three– blades HAWT, 
represented by a simpler model, with respect to the 
previously described turbine. Each of them is 
provided with a controller, but also a wind farm 
controller is included in the benchmark model. 
Common fault scenarios can be simulated. The 
complete wind farm model consists of three main 
submodels: the wind and wake model, the plant 
model, and the controller model, interacting as sketched 
in Figure 1. The layout of the wind farm with nine 
turbines of the square grid and the masts along the 
wind directions are sketched in Figure 4.  

The distance between the wind turbines in both 
directions is 7 times the rotor diameter, L. Two 
measuring masts are located in front of the wind 
turbines, one in each of the wind directions consid 
ered in this benchmark model, e.g. 0o	   and 45o. The 
wind speed is measured by these measuring masts  
which are located in a distance of 10 times L	   in front 
of the wind farm. The wind turbines of the farm are 
defined by their row and column indices in the 
coordinate system, as illustrated in Figure 4. The farm 
uses generic 4.8 MW wind turbines, which are three–
bladed horizontal axis, pitch–controlled variable–
speed wind turbines. Each of the wind turbines is 
described by simplified models including control logics, 
variable parameters and 3 states. 

The ALBC method has been trained as described in 
Section II-B. Based on the NN properly trained as 
suggested in Section II-A, the control policy was 
estimated with one hidden layer with 30 neurons and 
an input layer with 15 neurons. A number of 4 delays 
has been exploited. An adaptive learning rate was used 
in the learning algorithm. 

Table 3 shows the loss function of Eq. (3) for 
each turbine status vector in the test set, where the 
faulty turbines are highlighted, also according to 
Table 1, labelled by the number of fault–free turbines. 
The four turbine statuses in the test set are thus 
illustrated in Figure 4. 
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Table 3: Values of the Loss Function of EQ. (3) 
Labelled by the Number of Fault–Free 
Turbines Nt  

Reference Loss Function Average Loss Function Nt 

- 751 - 755 9 

- 735 - 731 8 

- 726 - 728 7 

- 714 - 717 6 

 
The loss in the test set is computed according to 

Eq. (3). Table 3  shows that for all turbine status 
cases in the test set, the averaged loss approximates 
quite accurately the reference optimal loss. The 
reference loss is the loss for the yaw angles found by 
optimisation using FLORIS for just the fault– free 
turbines, as described in [41]. This is the 
(approximately) optimal loss value, which is correct up 
to the accuracy of the FLORIS optimisation method. 

The trained ALBC policy proposed in this work is 
applied to the test set. Table 4 shows the net wind farm 
power for each turbine status in the test set, averaged 
over the wind speeds in the test set both for the ALBC 
and the approximate optimal power from FLORIS for 
the fault–free turbines. The power obtained using 
the baseline controller is reported, which sets all the 
turbines to have zero yaw (relative to the incoming 
wind direction). The power achieved via the developed 
ALBC closely matches the optimal power for each of 
the turbine statuses, indicating how this ALBC method 
is able to adapt effectively to turbine status. The power 
obtained by both the ALBC and the optimal power are 
higher than the one under baseline control, indicating 
the importance of wake steering for this test case. 

Table 4: Wind Farm Power (KW) for Each Wind 
Turbine Status in Simulation 

Fault–Free 
Turbines Nt 

ALBC 
Method 

Optimal 
Power 

Baseline 
Controller 

6 4321 4334 3981 

7 4987 5001 4498 

8 5521 5567 4987 

9 6123 6145 5426 

 
Table 5  summarises the net wind farm power 

for each wind speed in the test set, averaged over 
the turbine statuses in the test set for the ALBC, the 
optimal power, and baseline control. The power 
obtained by the ALBC closely matches the optimal 

power and is higher than the baseline power for 
each of the turbine statuses, indicating that the ALBC 
identifies the correct relationship between wind speed 
and yaw angles. 

Table 5: Wind Farm Power (Kw) for Each Wind Speed 
Vw in the Test Set 

Wind Speed vw 
(m/s) 

ALBC 
Scheme 

Optimal 
Power 

Baseline 
Controller 

4 987 996 961 

5 1998 2001 1876 

6 3112 3124 3001 

7 5882 5898 5679 

8 8299 8321 8012 

 
To further validate the proposed ALBC, the 

generated yaw angles γ	   are analysed with respect 
to the changes in the wind speed vw	   and number of 
fault–free turbines Nt. Tables 6 and 7 report the yaw 
angles (o) assigned to the bottom middle (3, 2) and 
center (2, 2) turbines in the farm, respectively. The 
tables show the yaw angles for the developed ALBC 
and the optimal power for the cases from the test set 
where nine and eight turbines (Nt) are fault– free. In 
Table 6, the yaw angles for the ALBC and optimal 
power are quite similar. The ALBC works properly for 
all wind speeds in the 9 turbine case, the bottom 
middle turbine (3, 2) should yaw to steer the wake from 
the downstream turbine, but that in the 8-turbine case, 
this solution does not lead to any benefit since the 
downstream turbine (3, 3) is faulty. 

Table 6: Yaw Angles (O ) Computed for the Bottom 
Middle Turbine (3, 2) 

Wind Speed 
vw (m/s) 

ALBC 
Scheme 
Nt = 9 

ALBC 
Scheme 
Nt = 8 

Optimal 
Power 
Nt = 9 

Optimal 
Power 
Nt = 8 

4 19.8 0.8 19.7 0.8 

5 19.6 0.7 19.6 0.9 

6 18.7 0.7 20.3 0.8 

7 19.8 0.65 19.7 0.9 

8 19.6 0.7 20.1 0.8 

 
In contrast to the bottom middle turbine (3, 2), the 

center (2, 2) turbine should yaw for both the 9 and 
8 active turbine cases, since in both cases the 
turbine downstream from the center turbine is active. 
The yaw angles in Table 7 show that the ALBC yaws 
effectively the center turbine in both the nine and eight 
turbine cases, as desired. 
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Table 7: Yaw Angles (O ) Computed for the Center 
Turbine (2, 2) 

Wind Speed 
vw (m/s) 

ALBC 
Scheme 
Nt = 9 

ALBC 
Scheme 
Nt = 8 

Optimal 
Power 
Nt = 9 

Optimal 
Power 
Nt = 8 

4 19.2 19.1 18.75 19.3 

5 18.7 18.8 18.8 18.9 

6 18.5 18.6 20.5 18.5 

7 18.2 18.3 18.6 18.6 

8 17.6 17.8 18.6 18.6 

 
The yaw angles obtained with the ALBC and the 

ones corresponding to the optimal power in Table 7 are 
more different than those in Table 6. In order to 
investigate how significant this difference is, the optimal 
yaw angles for the case with Nt = 9	   fault–free turbines 
are considered with vw = 6m/s, then replace the angle 
for the center turbine with that from the ALBC, and 
calculate the resulting wind farm power. It can be 
shown that using the yaw from the ALBC decreases 
the power produced by about 0.5kW, which is less than 
0.01% of the total power. If instead the center turbine 
does not yaw at all, i.e. the yaw is 0o, then the total 
power decreases by 1.5%. This indicates that yawing 
the center turbine (2, 2) is important to maximise the 
power, but also that the power function has a plateau 
around a yaw of 18o ÷ 21o . 

Finally, the training procedure, the power 
production, and the yaw angles reported in this 
section indicate that the developed ALBC solution is 
able to find the yaw angles that maximise the total 
power production of the wind farm. This result is valid 
for varying wind speed and different turbine status 
considering faulty conditions. 

6. HARDWARE–IN–THE–LOOP VALIDATION  

The HIL test–rig has been implemented in order to 
verify and validate the proposed solutions in more 
realistic real–time working conditions. These 
experimental tests aim at validating the achieved 
results obtained in simulations, considering the al- most 
real conditions that the wind turbine systems under 
analysis may deal with, during their working situations. 

The set-up of the test–rig, represented in Figure 
5,  consists of three interconnected components: 

Simulator: the model of the wind farm, including the 
wind and the wake models, have been implemented in 
the Matlab, Simulink and Lab VIEW environments, and 

consider factors such as disturbance, measurement 
noise and uncertainty, according to the system 
described in Section IV. This software tool runs on 
an industrial CPU and allows also the real–time 
monitoring and the ALBC method of the simulated 
system parameters. 

 

Figure 5: The wind farm block diagram of the HIL testrig. 

On board electronics: The control schemes have 
been implemented in the AWC 500 sys- tem, which 
features standard wind turbines specifications, but it 
may fit the requirements of a wind park. This element 
receives the signals relative to the main controlled 
outputs. Then, it processes the control algorithm, 
possibly including the fault estimation and diagnosis 
module, and produces the command signals 
transmitted to the wind farm simulator. 

Interface circuits: they carry out the 
communication between the simulator and the on 
board electronics, receiving the output signals from the 
simulator and transmitting the signal generated by the 
control algorithm. 

Table 8 summarises the results obtained using this 
real–time HIL set–up. 

Table 8: Wind Farm Power (Kw) for Each Wind 
Turbine Status With the Hil Test–Bed 

Fault–Free 
Turbines Nt 

ALBC 
Method 

Optimal 
Power 

Baseline 
Controller 

6 4327 4338 3987 

7 4992 5008 4502 

8 5528 5572 4991 

9 6129 6153 5433 

 
It is worth observing the consistency of the almost 

real–time test of Table 8 with respect to the results 
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reported in Section V. Although the average 
performances seem to be better than those obtained 
using the HIL platform, some issues have to be taken 
into account. Indeed, the numerical accuracy of the 
on–board electronics, which involves float 
calculations is more restrictive than the CPU of the 
simulator. Moreover, also the A/D and D/A conversions 
can motivate possible deviations. Note that real 
situations do not require to transfer data from a 
computer to the on board electronics, so that this 
error is not actually introduced. However, the obtained 
deviations are not critical and the developed control 
strategies can be also considered in real applications. 

Some concluding remarks can be finally drawn 
here. This paper considered a wake-steering controller 
to allow the use of preview wind direction information, 
with the goal of improving yaw tracking in dynamic wind 
conditions. Using data from an offshore wind power 
plant, it was developed a method for generating 
realistic wind direction measurements to evaluate 
preview-based wake steering. Simulations were 
performed for a nive-turbine array using the FLORIS 
model to determine power production for different 
control scenarios. With perfect preview information, 
preview-based wake steering was found to increase 
energy production significantly more than standard 
wake steering, with a preview time providing the most 
benefit. The optimal preview time was derived to 
depend on the yaw controller dynamics and wind 
conditions. For controllers that yaw less frequently, 
longer preview times will likely be needed to overcome 
controller lag. But for more responsive controllers, or 
when operating in highly variable wind conditions, 
shorter preview times should help ensure the yaw 
position does not lead the wind direction too much. 

With realistic preview measurement accuracy, on the 
other hand, no improvement in wake-steering 
performance was observed. However, the wind 
direction coherence model was used to determine 
preview measurement accuracy represents the 
average coherence for a variety of atmospheric 
conditions. More research is needed to determine how 
longitudinal wind direction coherence depends on 
atmospheric conditions as well as terrain. Particular 
sites or wind conditions may be more favorable for 
preview-based wake steering. 

To fully evaluate the benefits of preview-enabled 
wake steering with realistic measurement accuracy, 
more sophisticated control strategies should be 
explored. For example, rather than waiting for the wind 

turbine’s existing yaw controller to implement wake 
steering, additional performance gains could be made 
by yawing the turbine more frequently, (e.g., at fixed 
time intervals). Further, model predictive control 
approaches could be used to explicitly optimize the 
control actions based on the wind direction preview. 

In addition to yaw controller improvements, more 
effective methods for estimating the approaching wind 
directions should be investigated. For instance, some 
works presented a consensus approach for estimating 
local wind directions through information exchange 
between wind turbines that could improve forecasting 
accuracy. Moreover, remote- sensing devices, such as 
scanning devices, could be used to measure the 
approaching wind conditions over a large area. 

7. CONCLUSION 

In this study, an intelligent wake steering technique 
was introduced that calculates yaw angles based on the 
actual operating parameters of the turbine. It 
specifically made use of a learning- based hybrid 
model, or active control, where a neural network was 
trained online to calculate yaw angles from operating 
conditions like wind turbine status. In actuality, wake 
steering is frequently used to yaw upstream wind 
turbines in order to divert their wakes away from 
downstream turbines, so boosting the power 
generated. The majority of wake steering techniques, 
however, rely on lookup tables that are acquired offline 
and that translate a set of parameters, including wind 
speed and direction, to yaw angles for each turbine in a 
farm. These charts assume that every turbine is 
working well, however they may not be very accurate if 
one or more turbines are not producing their rated 
power due to low wind speed, malfunctions, scheduled 
maintenance, or emergency maintenance. The pro- 
posed control method did not rely on optimization 
problems, such as those applied to each combination of 
the wind farm turbines, unlike solely model- based 
systems that often use lookup tables provided by the 
wind turbine manufacturer or developed offline. This is 
how the incorporation of a learning approach into the 
control architecture enabled the creation of an active 
control architecture. On the other hand, the created 
methodology did not need a lot of training samples, 
unlike purely learning- based methods like model-free 
reinforcement learning. By taking advantage of the 
model during the back propagation learning 
procedure, the suggested strategy learned more from 
each sample. Based on flow redirection and induction 
in steady state code, results were taken into account 
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for both standard (nominal) wake steering (all turbines 
functioning) and with problematic turbines (lower 
efficiency or shutdown). The National Renewable 
Energy Laboratory (USA) has made this code an open-
source tool for optimizing wind farms. These yaw 
angles were compared to those discovered by solving 
an optimization problem, and those results were 
validated. The proposed method, which made use of 
a hybrid model- and learning-based approach, was 
demonstrated to enable active wake steering through 
sample-efficient training and quick online evaluation. 
Finally, a hardware-in-the-loop test-bed was taken into 
consideration for evaluating and con- firming the 
performance of the suggested solutions in a more 
practical setting. The use of the proposed methods with 
data from actual wind farms and installations will be 
considered in subsequent research. When considering 
future research directions, the challenges associated to 
testing and implementing new control in modern wind 
farms need to be highlighted, with investment costs in 
the billion- euro range. Direct testing of new ideas on 
the full scale is simply not possible, and instead a 
careful proof-of-concept and validation strategy is 
required. To this end, it is foreseen that in the coming 
years, the sequence of large-eddy simulations, wind 
tunnel experiments, and small field campaigns will 
play an ever larger role. Each of these faces its own 
challenges, respectively related to model bias, scale 
similarity, and establishing statistical significance. 
Moreover, for actual commercial implementation, 
additional issues arise, such as controller safety and 
proof of commercial value for different sites, among 
others. 
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