
 International Journal of Robotics and Automation Technology, 2023, 10, 27-32 27 

 
E-ISSN: 2409-9694/23 

Virtual Sensor Design for Replacement the Faulty Physical 
Sensors 

Alexey Zhirabok1,2,*, Alexander Zuev2 and Vladimir Filaretov3 

1Department of Automation and Robotics, Far Eastern Federal University 
2Department of Intelligent Control, Institute of Marine Technology Problems 
3Department of Robotics, Institute of Automation and Control Processes 

Abstract: The paper considers the problem of virtual sensor design for nonlinear dynamic systems with non-smooth 
nonlinearities described by continuous-time models for faulty physical sensor replacement. It is assumed that to solve 
the problem, the system is equipped by diagnostic system allowing detecting and isolating the faulty sensor. For every 
such a sensor, the virtual sensor generating estimate replacing the faulty sensor is designed. To solve the problem, so-
called logic-dynamic approach is used which does not guarantee optimal solution but uses only methods of linear 
algebra to solve the problem for systems with non-smooth nonlinearities. The virtual sensor can be designed in the 
identification canonical form or Jordan canonical form. The advantage of the first form is a standard procedure of the 
virtual sensor design while Jordan form allows obtaining a simpler solution. The relations allowing designing the virtual 
sensor both in identification and in Jordan canonical form are derived. 
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1. INTRODUCTION 

Complex technical systems, as a rule, are equipped 
by different physical sensors to measure their 
performances. In addition, virtual sensors can be used 
for this purpose. They are based on the readings of 
physical sensors and produce estimates of 
unmeasured performances of the system. Besides, 
virtual sensors can be used to replace the faulty 
physical sensors.  

The problems of virtual sensors design and 
application are considered in many papers [1-4, 6-11]; 
some applications of virtual sensors are analyzed in 
[15]. Detailed procedure to design virtual sensors of full 
dimension for linear systems is suggested in [1].  

The main contribution of the present paper is that a 
procedure to design virtual sensors for replacing the 
faulty sensors for systems described by dynamic 
models with non-smooth nonlinearities is developed. 
To solve this problem, the method to design the virtual 
sensors of minimal dimension is suggested. This allows 
reducing complexity of the virtual sensors in 
comparison with cited above papers where such 
sensors of full order are constructed. Besides, the 
limitations imposed on the initial system are relaxed 
that allows extending a class of systems for which the 
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virtual sensors can be constructed. The suggested 
solution is based on the reduced order model of the 
original system. 

To solve the problem for systems with non-smooth 
nonlinearities, so-called logic-dynamic (LD) approach is 
used. This approach was used to solve the problems of 
fault diagnosis [12] and to analyze observability and 
controllability of nonlinear systems [13]. The LD 
approach does not produce optimal solution of the 
problem in the sense of the virtual sensor dimension 
but uses only methods of linear algebra to solve the 
problems for systems with non-smooth nonlinearities.  

2. THE MAIN MODELS 

Consider the system described by nonlinear 
differential equations 

 

!x(t ) = Ax(t )+ Bu(t )+ P! (Gx(t ),u(t )),   
y(t ) = Cx(t ),

        (1) 

where x(t )!Rn , u(t )!Rm , and y(t )!Rl , l >1 , are 
state, control, and output vectors, A, B, C, and P are 
known matrices; for simplicity, we assume that the only 
type of nonlinearity described by the term ! (Gx(t ),u(t ))  
is in the system, G is the matrix, the function !  may be 
non-smooth. Note that that matrix C describes physical 
sensors of the system.  

We assume that the system is equipped by the 
diagnostic system which allows detecting and isolating 
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the faulty sensor. Besides we assume that at some 
instant of time this system makes a decision that the 
j -th sensor has been failed. This means that the 

variable yj (t )  yields faulty information about the 
system states, and the virtual sensor estimating the 
variable v(t ) = yj (t ) = Cjx(t )  should be designed where 
Cj  is the j -th row of the matrix C.  

The problem is solved by designing the nonlinear 
functional observer estimating the variable v(t ) . Such 
an observer is described by the equations  

 

!z(t ) = A*z(t )+ J*y(t )+ B*u(t )+ P*! *(z(t ), y(t ),u(t ))+ Kr(t ),
y*(t ) = C*z(t ),      
v(t ) = Cvz(t )+Qy0 (t ),
r(t ) = R*y0 (t )" y*(t ),
             (2) 

where z(t )!Rk  is the observer state vector, k  is the 
observer dimension, A* , J* , B* , P* , R* , C* , Cv , Q , 
and K  are matrices to be determined; P*! *(z, y,u)  is 
the nonlinear term; y0 (t ) = C0x(t ) , C0  is the matrix C 
without the j -th row. Note that the variable y*(t )  in (2) 
is necessary to generate the residual r(t )  used in the 
feedback to provide stability of the observer. The 
variable y(t )  in the first equation contains in the j -th 
position not the faulty sensor readings but the variable 
v(t )  estimating the readings.  

Remark 1. In contrast to a model suggested in [15], 
the model (2) does not contain information about the 
faulty sensor readings.  

The observer (2) assumes that the matrices A*  and 
C*  are in the identification canonical form (ICF):  

 

A* =

0 1 0 ! 0
0 0 1 ! 0
0 0 0 ! 0
! ! ! " !
0 0 0 ! 0

!

"

#
#
#
#
#

$

%

&
&
&
&
&

,  C* = ( 1 0 0 ! 0 ) .

             (3) 

It is known [14] that to design the observer, Jordan 
canonical form (JCF) of the matrix A*  can be used as 
well:  

 

A* =

!1 0 ! 0
0 !2 ! 0
" " # "
0 0 ! !k

"

#

$
$
$
$$

%

&

'
'
'
''

.          (4) 

It is assumed that the eigenvalues !1,...,!k  in (4) 
are negative therefore the matrix A*  is stable by 
construction. In this case, the observer (2) is simplified:  

 

!z(t ) = A*z(t )+ J*y(t )+ B*u(t )+ P*! *(z(t ), y(t ),u(t )),
v(t ) = Cvz(t )+Qy0 (t ).

       (5) 

Remark 2. Note that stability of the observer (5) is 
insured by the negative eigenvalues !1,...,!k . Since the 
variable y(t )  in (5) contains v(t ) , this results in the 
feedback; therefore, special analysis of stability may be 
required.  

According to the LD approach, the ICF-based 
solution is performed in three steps. At the first step, 
the nonlinear term is removed from (1) and the linear 
model is designed:  

 

!z(t ) = A*z(t )+ J*y(t )+ B*u(t ),
y*(t ) = C*z(t ).

         (6) 

Then based on the relation  

v(t ) = Cvz(t )+Qy0 (t ) ,          (7) 

the possibilities of the variable v(t )  estimation and the 
nonlinear term P*! *(z, y,u)  construction are checked. 
Finally, the matrix K  is designed. Let us consider 
these steps in detail.  

3. ICF-BASED MODEL DESIGN 

We assume that the matrix !  exists such that 
z(t ) = !x(t ) . It is known that the matrices describing 
the model (6) meet the following equations [11, 12]: 

R*C0 = C*! , !A = A*! + J*C , B* = !B .        (8) 

The first step solution is based on the equation [11, 
12] 

 
( J*k ! J*1 !R* )U(k ) = 0 ,         (9) 

where 

 

U(k ) =

C
CAk!1

!
C0A

k

"

#

$
$
$
$

%

&

'
'
'
'

, k = 1,  2,  ...  . 

Equation (9) has a nontrivial solution if  

rank(U(k ) ) < lk !1 .        (10) 
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To design the model, one finds from (10), starting 
from k = 1 , the minimal k, from (9) the row 

 
( J*k ! J*1 !R* ) , finally, based on the relations 

for rows !i  and J*i  of the matrices !  and J* : 

R*C0 = !1 , !iA = !i+1 + J*iC , i = 1,k !1 , !kA = JkC , 

the matrices !  and B* = !B  are found.  

To perform the second step, rewrite (7) with 
v(t ) = Cjx(t )  in the form  

Cjx(t ) = Cv!x(t )+QC0x(t ) , 

that results in 

Cj = Cv! +QC0 = ( Cv Q )
!
C0

"

#
$

%

&
' .      (11) 

This equation has a solution if  

rank
!
C0

"

#
$

%

&
' = rank

!
C0

Cj

"

#

$
$
$

%

&

'
'
'

.       (12) 

If (12) is satisfied, then the matrix Cj  can be 

expressed via (!T   C0
T )T  and the model estimates the 

variable v(t ) = Cjx(t ) ; the matrices Cv  and Q  are 
found from (11). If (12) is not satisfied, one has to find 
another solutions of (9) with former or incremented k. 

If P* = !P = 0 , the final model is linear; to transform 
it into the observer, one chooses the eigenvalues 
!1,...,!k  and finds the feedback matrix K  [11]: 

K1 = !("1 + "2 + ...+ "k ) , K2 = !1!2 + !1!3...+ !k"1!k , …, 
Kk = (!1)

k"1"2..."k . 

the case P* ! 0  is considered in Section 5.  

4. JCF-BASED MODEL DESIGN 

By analogy with the ICF, the JCF-based solution is 
performed in two steps. At the first step, the linear 
model is designed: 

 !z(t ) = A*z(t )+ J*y(t )+ B*u(t ).        (13) 

Then the possibilities of the variable v(t )  estimation 
and the nonlinear term P*! *(z, y,u)  construction are 
checked. The linear observer stability is insured by the 

canonical form of the matrix A* . 

The matrices describing the model (13) meet the 
following equations [11, 12] 

!A = A*! + J*C , B* = !B . 

Based on (4), the first equation can be transformed 
into k  independent equations: 

!iA = "i!i + J*iC , i = 1,k , 

which are presented in the form  

(!i   " J*i )
A " #i In

C

$

%
&

'

(
) = 0 , i = 1,k ,      (14) 

where In  is the identity matrix.  

One has to choose !i < 0  and find from (14) the 
minimal number of the matrix !  rows satisfying the 
conditions (12) and find the matrices Cv  and Q  from 
(11); finally, set B* = !B . If P* = !P = 0 , the observer 
has been designed. The case P* ! 0  is considered in 
Section 5. 

Remark 3. Since the variable y*(t )  is not 
estimated, the suggested approach allows reducing the 
dimension of the observer.  

5. THE NONLINEAR CASE 

It is assumed that P* ! 0 . In this case the relations 
(8) and (13) are supplemented by P* = !P  and  

G = G*
!
C

"
#$

%
&'

.         (15) 

Equation (15) has a solution if  

rank !
C

"
#$

%
&'
= rank

!
C
G

"

#

$
$

%

&

'
' .       (16) 

To check the possibility of transformation of the 
linear model into the nonlinear model, one has to check 
the condition (16); if it is satisfied, construct the 
nonlinear term  

! *(z, y,u) =! (G*
z
y

"

#
$

%

&
' ,u) , 
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where the matrix G*  is found from (15); the nonlinear 
term ! *(z, y,u)  is added to the linear model (6) or (13). 
The nonlinear model has been designed. 

If (16) is not satisfied, one has to find another 
solution of (9) with former or incremented k (for the 
ICF-based model) or to find another solution of (14) (for 
the JCF-based model). When the system has several 
different nonlinearities, a solution can be obtained by 
analogy with [11, 15]. Actually, each nonlinearity is 
considered independently of one another.  

Analysis of stability for nonlinear observer can be 
fulfilled by methods described in [5, 14, 15]. 

6. EXAMPLE 

Consider the control system 

 

!x1(t ) = u1(t ) /!1 " b1 x1(t )" x2 (t ),       

!x2 (t ) = u2 (t ) /!2 + b1 x1(t )" x2 (t ) " b2 x2 (t )" x3(t ),       

!x3(t ) = b2 x2 (t )" x3(t ) " b3 x3(t )"!3 ,       
y1(t ) = x2 (t ),    y2 (t ) = x3(t ).
           (17) 

The equations (17) constitute a modified model of 
the well-known example of three-tank system (Figure 
1). The levels of liquid in the tanks are x1 , x2 , and x3 , 
respectively; is it assumed that cross-sections of tanks 
and pipes and controls u1(t )  and u2 (t )  are such that 
x1(t ) ! x2 (t ) ! x3(t )  for all t ! 0 . 

 

Figure 1: Three tank system. 

Assume that the first sensor has failed; as a result, 
set C1 = (0   1   0)  and construct the virtual sensor with 

C0 = ( 0 0 1 )  and y0 (t ) = y2 (t ) . For simplicity, one 
assumes that !1 =!2 = 1 , !3 = 0 , b1 = b2 = b3 = 1 . 

The system can be described by matrices and 
nonlinearities as follows [15]: 

A =
!1 1 0
1 !2 1
0 1 !2

"

#

$
$

%

&

'
' , B =

1 0
0 1
0 0

!

"

#
#

$

%

&
& , C = 0 1 0

0 0 1
!
"#

$
%&

,  

P =
1 0 0
!1 1 0
0 !1 1

"

#

$
$

%

&

'
' , ! (x,u) =

" G1x +G1x

" G2x +G2x

" G3x +G3x

#

$

%
%
%
%

&

'

(
(
(
(

,  

G1 = ( 1 !1 0 ) , G2 = ( 0 1 !1 ) , 

G3 = ( 0 0 1 ) . 

One can show that the ICF does not produce a 
solution since the condition (12) is not satisfied; as a 
result, the JCF will be used. Equation (14) becomes  

(!i     " J*i )

"1" #i 1 0
1 "2 " #i 1
0 1 "2 " #i

0 0 1
0 1 0

$

%

&
&
&
&
&
&

'

(

)
)
)
)
)
)

= 0 . 

Set !1 = "1  and obtain !1 = ( 1 0 0 )  and 

J*1 = ( 0 1 ) . With !2 = "2  we obtain 

!2 = ( 1 "1 0 )  and J*2 = ( !1 1 ) , that results in 

B* =
1 0
1 !1

"
#$

%
&'

, P* =
1 0 0
2 !1 0

"
#$

%
&'

.  

One can check that the condition (12) is satisfied, 
the solution of (11) is Cv = ( 1 !1 ) , Q = 0 , that is 
v = z1 ! z2 , z1 = !1x , z2 = !2x . 

The linear model is described by the equations  

 

!z1(t ) = !z1(t )+ v(t )+ u1(t ) = !z2 (t )+ u1(t ),       
!z2 (t ) = !2z2 (t )+ v(t )! y2 (t )+ u1(t )! u2 (t ) =
          = !3z2 (t )+ z1(t )! y2 (t )+ u1(t )! u2 (t ),
v(t ) = z1(t )! z2 (t ). 

 

One can check that the condition (16) is satisfied, 
the solution of (15) is 

G*1 = ( 0 1 0 0 ) , G*2 = ( 1 !1 !1 0 ) . 

The nonlinear term is described by the expression  
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P*! *(x* , y,u) =
" z2 + z2

"2(" z2 + z2 )" (" z1 " z2 " y2 + z1 " z2 " y2 )

#

$
%
%

&

'
(
(
=

                        =
" z2 + z2

"2 z2 + z1 " z2 " y2 " z1 + 3z2 + y2

#

$
%
%

&

'
(
(

.

 

The nonlinear model is described by the equations 

 

!z1(t ) = ! z2 (t ) + u1(t ),       

!z2 (t ) = !2 z2 (t ) + z1(t )! zz2 (t )! y2 (t ) + u1(t )! u2 (t ),
v(t ) = z1(t )! z2 (t ).
           (18) 

It can be shown that the observer is stable; 
therefore, it can replace the faulty first sensor.  

Simulation results of the system (17) and the 
observer (18) are presented on Figure 2 with 
u1(t ) = 0,5 , u2 (t ) = 0,2  and the initial conditions 
x(0) = (5   3   1)T , x*(0) = (1   4)T . Clearly, the variable 
z(t )  converges to x2 (t ) . 

 

Figure 2: Graphs of the functions x2 (t )  and z(t ) . 

7. CONCLUSION 

In this paper, the problem of virtual sensor design 
for nonlinear dynamic systems with non-smooth 
nonlinearities described by continuous-time models for 
faulty physical sensor replacement has been 
considered. The virtual sensors have been designed 
based on the identification and Jordan canonical forms. 
To solve the problem for nonlinear systems, so-called 
logic-dynamic approach has been used which does not 
guarantee optimal solution but uses only methods of 
linear algebra to solve the problem for systems with 

non-smooth nonlinearities. The synthesized virtual 
sensors provide a possibility for system to continue 
performing its functions with faulty physical sensors.  
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