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Abstract: This paper presents a PD control law with adaptive gains with the MIT (Massachusetts Institute Technology) 
rule with different sliding modes; that is, the MIT rule has been designed with is known in the literature with first order 
sliding mode, second order sliding mode and high order sliding mode (HOSM) to obtain a better gain scheduling taking 
advantage the sliding modes techniques-the PD control law with adaptive gains that is designed for the lateral dynamics 
of a fixed-wing MAV. To apply the methodology of the model reference adaptive control (MRAC), sometimes called 
model reference adaptive system (MRAS), to the adaptive gains of the PD control, a sliding manifold is proposed 
considering the output of the lateral dynamics and with the output of the reference model. 
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1. INTRODUCTION 

Some dynamic systems in control theory have 
constant uncertain parameters or slow variation [2]. For 
example, an MAV (Mini Aerial Vehicle) that has added 
sensors or batteries that have done some variations in 
its weight in quantities minor or significant will have 
unknown inertia values. Another example is when an 
MAV is flying in bad weather, and the MAV is exposed 
during the flight to a change in the temperature, which 
affects the performance of the MAV due to the density 
of air, which is usually considered or calculated as an 
approximation with a constant value. 

Thus, to solve the problems mentioned above, an 
adaptive controller could be an option for realizing a 
stable flight with an MAV (Mini Aerial Vehicle) [1]. We 
can see the adaptive theory in different areas, such as 
robotics, aircraft, embedded systems, and remotely 
operated vehicles or underwater robots [2]. We can find 
research about the MIT rule, and it should be 
mentioned that the MIT rule name is because such 
methodology was developed in such institute in 1961. 
The model reference adaptive control or MRAC, 
sometimes defined as MRAS (model reference 
adaptive system), is a scheme of control where it is 
necessary to have a model reference and the real 
model or system to control. In such cases, the real 
model should follow the signal reference generated by 
the model reference (see Figure 2).  

For example, in [3], the theory based on the MIT 
rule is applied for a second-order system, and in [3],  
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the methodology to obtain the adaptation of a unique 
controller is presented. Also, in [4], we can see the 
application of the MIT rule in a linearized model, and 
after considering such a model, we can see that it is 
designed as an adaptive control law. In other works, [5] 
has presented the two classical methodologies used in 
a MRAS: MIT rule and Lyapunov, and the adaptive 
controller shown in [5] is applied in a spherical tank. 
The results in [3-5] use Matlab software.  

Thus, the contributions of this work are: 

• The design of a robust gain scheduling, with the use 
of MIT rule and sliding mode theory. 

• The reduction or almost elimination of the chattering 
effect with the use of high-order sliding mode. 

• The adaptation of all the gains that make up the law 
of control. 

• Change the adaptive gain with values small and big 
and achieve the control objective. 

The organization of this work is as follows: Section 
2 presents the equations for lateral dynamics—the 
controller methodology is presented in Section 3. 
Section 4 presented the simulation results. Finally, in 
section 5, the conclusions are presented. 

2. LATERAL DYNAMICS 

To obtain the model equations, the fixed-wing MAV 
is considered a rigid body by omitting any flexible 
structure of the MAV. Also, we do not consider the 
earth's curvature; it is regarded as a plane because we 
assume that fixed-wing MAVs will only fly short 
distances. With the previous considerations, we obtain 
the model by applying Newton's laws of motion. The 
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following equations describe the dynamics of the roll 
angle: 

  
!! = p             (1) 

  
!p= Lp p+L!a!a           (2) 

where p denotes the roll rate and !  describes the roll 
angle, see Figure 1. It is observed that  ! a  is the 
ailerons deflection. The lateral stability derivatives in 
roll are 

 
Lp  and  L!a  [14], and are given by [10]: 

  
Lp =

!SVc 2

4Ixx

Clp  

  
L!e =

"V 2Sc
2Ixx

Cl!a  

with: 

V: Fixed-wing MAV velocity. 

ρ: Air density (1.05 kg/m3). 

S: Wing area (0.09 m2). 

b: Wingspan (0.914 m). 

c: Middle chord line (0.010 m) 

xxI : Roll angle moment of inertia (0.16 kg・m2). 

lpC : Dimensionless coefficient for roll angle, obtained 
experimentally (-0.15). 

l aC ! : Dimensionless coefficient for ailerons movement, 
obtained experimentally 

(0.005). 

 

Figure 1: Pure rolling motion. 

3. MRAC WITH SMC 

The MIT rule is the original approach to model-
reference adaptive control. The name is derived from 

the fact that it was developed at the Instrumentation 
Laboratory at MIT. To present the MIT rule, we will 
consider a closed-loop system in which the controller 
has one adjustable parameter ! . The desired closed-
loop response is specified by a model whose output is 

 ym . Let  e  be the error between the output y of the 

closed-loop system and the output  ym , of the model. 
One possibility is to adjust parameters in such a way 
that the loss function (3) is minimized, the loss function 
is given by: 

  
J (! ) = 1

2
e2            (3) 

To make J small, we have to change the 
parameters in the direction of the negative gradient, 
that is, 

 
d!
dt

= "# $J
$!

= "# e $e
$!

          (4) 

The equation (4) is the MIT rule. The partial derivative 

 
!e

!" , which is called the sensitivity derivative of the 

system. It tells how the adjustable parameter influences 
the error. If it is assumed that the parameter changes 
are slower than the other variables in the system, then 
the derivative 

 
!e

!"  can be evaluated under the 

assumption that !  is constant. There are many 
alternatives to the loss function given by the equation 
(3). If it is chosen to be: 

  
J (! ) = e

           (5) 

the gradient method gives: 

  
d!
dt

= "# $e
$!

sgn(e)           (6) 

The first MRAS that was implemented was based 
on this formula. There are, however, many other 
possibilities, for example: 

  
d!
dt

= "# sgn( $e
$!

)sgn(e)           (7) 

The equation (7) is called the sign-sign algorithm. 

DESIGN OF THE ADAPTIVE CONTROL 

The controller to design is a PD controller with 
adaptation in the 

 
kp  and  kv  gains and it is based on 

the model reference adaptive system or MRAS. The 
problem to work with MRAS is to determine the 
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adjustment mechanism to stabilize the system. Thus, 
the adjustment mechanism for the gains has been 
designed with the MIT rule. To this rule, we added the 
sliding mode theory to design a robust controller to 
keep the desired roll angle in the presence of 
disturbances by wind gusts. The block diagram 
representing the adaptive system reference model is 
shown in Figure 2, where the Plant defines the lateral 
dynamics, and the Model has equations that describe a 
stable performance. 

 

Figure 2: Block diagram. 

To design the adaptive PD controller with the MIT 
rule and the technique of sliding mode for the roll angle 
of the MAV fixed-wing, we have considered. the 
equations (1)-(2), where δa defines the control input, 
and by the integral of the equation (1) has been 
obtained the roll angle. Thus, the adaptive control law 
is given by: 

   
! a = k̂ ple" + k̂vl !e"            (8) 

where 
  
k̂ p  and   k̂v  are the called position gains and 

velocity, respectively; thus, these are the adaptive 
gains. The error of the roll angle has been defined as 

 
e! = ! "!d . The adaptive gains of the PD control have a 
subscript to know the adjustment mechanism, which is 
tested. That is,   l !a1,a2 ,a3,a4  where a1 correspond to 
the MIT rule, a2 correspond to the MIT rule with sliding 
mode, a3 MIT rule with 2-sliding modes and finally a4 is 
for the MIT rule with HOSM. To design the MIT rule is 
introduced an error given by: 

 e = !m "!            (9) 

where !  is the roll angle from the MAV fixed-wing, and 

 !m  is the roll angle from the equations of the 
aerodynamic model. And then, to follow the 
methodology that have been shown in [6] for the MIT 
rule, the aerodynamic model is transform to 
transference function to develop the sensitivity 
derivatives are designed with partial derivatives 

considering 
  
k̂ pl  and   k̂vl  . Then, the closed loop transfer 

function is given by: 

  
! =

L"a (k̂ pl + k̂vls)

s2 + (Lp + L"ak̂vl )s+ L"ak̂ pl

!d        (10) 

And the model of reference of the roll angle has been 
defined as: 

  
!m =

" n
2

s2 + 2#" ns+" n
2 !d         (11) 

with ! = 3,17 and! = 3,16, remember that the equation 
(11) it should be designed as a stable system and it is 
the reference model and the parameters of (11) are 
computed or obtained with the root locus location on 
the left of the complex plain to obtain a stable system. 
Thus considering (10)-(11) are calculated the partial 
derivatives with respect to 

  
k̂ pl  and   k̂vl : 

  

!e"m

!k̂ pl

=
L#a

s2 + (Lp + L#ak̂vl )s+ L#ek̂ pl

(" $"d )       (12) 

  

!e"m

!k̂vl

=
L#a

s2 + (Lp + L#ak̂vl )s+ L#ak̂ pl

(")       (13) 

In general, the expressions (12) and (13) cannot be 
used because the parameters 

  
k̂ pl  and   k̂vl  are 

unknown, so an optimum case is assumed and is 
defined as: 

  
s2 + (Lp + L!ak̂vl )s+ L!ak̂ pl = s2 + 2"# ns+# n

2

      (14) 

Thus, the terms 
 
Lp  y  L!a  are included in the 

adaptation gain ! . Thus, the differential equations are: 

   

!̂kpa1 = !" 1

1
s2 + 2#$ ns+$ n

2 (% !%d )
&

'(
)

*+
e%m       (15) 

   

!̂kva1 = !" 2

1
s2 + 2#$ ns+$ n

2 (%)
&

'(
)

*+
e%m        (16) 

Then, we have proposed a different formulation 
than the presented in (6) based on MIT rule with first 
order sliding modes (MIT-2SM), that is, sliding manifold 
is defined as    s1 = !!m " p + k1e  to obtain a robust 
adjustment mechanism and to achieve a better 
performance in roll angle, with   k1  as a positive gain. 
Thus, the differential equations with MIT-2SM are: 
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!̂kpa2 = !" 1

1
s2 + 2#$ ns+$ n

2 (% !%d )
&

'(
)

*+
(, p sgn(s1))       (17) 

   

!̂kva2 = !" 2

1
s2 + 2#$ ns+$ n

2 (%)
&

'(
)

*+
(, p sgn(s1))       (18) 

where 
  
! p1 ,  !v1   ! 0 . The first-order sliding mode has 

presented the chattering effect; we will design an 
adjustment mechanism with a sliding mode of second-
order (MIT-2SM) to decrease the chattering impact, 
which is necessary for a robust first-order differentiator 
due to the derivatives in real-time are sensitive to noise 
at the time of computing the derivative [7]. This 
differentiator is given by: 

   

!x0 = v0 = !"0 x0 ! s1

1/2
sgn(x0 ! s1)+ x1

!x1 = !"1 sgn(x1 ! v0 )
 

where   x0 = s1  and    x1 = !s1 ,  !1 , !2   ! 0 . Thus, the 
differential equations of the MIT-2SM are: 

   

!̂kpa3 = !" 1

1
s2 + 2#$ ns+$ n

2 (% !%d )
&

'(
)

*+

,(- p1 sgn(s1)+ -v2 sgn( !s1))

      (19) 

   

!̂kva3 = !" 1

1
s2 + 2#$ ns+$ n

2 (%)
&

'(
)

*+

,(- p1 sgn(s1)+ -v2 sgn( !s1))

        (20) 

where 
  
! p1 , 

  
! p2 ,   !v1 ,  !v2    ! 0 . Then, with the objective 

of reduce or eliminated the chattering effect, it is 
designed the MIT rule with HOSM (MIT-HOSM), and is 
necessary a robust differentiator of second order [7]. 
This differentiator is given by: 

   

!x0 = v0 = !"0 x0 ! s1

2/3
sgn(x0 ! s1)+ x1

!x1 = v1 = !"1 x1 ! v0

1/2
sgn(x1 ! v0 )+ x2

!x2 = !"2 sgn(x2 ! v1)

 

where   x0 = s1 ,    x1 = !s1  and    x2 = !!s1  are real-time 

estimations of 
  
s1 ,    !s1  and    !!s1 . The values of  !0 ,  !1  and 

 !2  are constants defined positive. Finally, the 
differential equations of the adaptive PD controller with 
HOSM are defined by: 

   

!̂kpa4 = !" 1

1
s2 + 2#$ ns+$ n

2 (% !%d )
&

'(
)

*+

,(- p (!!s1 + 2( !s1

3
+ s1

2
)

1
6 sgn( !s1 + s1

2
3 sgn(s1))))

     (21) 

   

!̂kva4 = !" 2

1
s2 + 2#$ ns+$ n

2 (%)
&

'(
)

*+

,(- v (!!s1 + 2( !s1

3
+ s1

2
)

1
6 sgn( !s1 + s1

2
3 sgn(s1))))

     (22) 

where 
 
! p  and  ! v  are positive gains. 

4. SIMULATION RESULTS 

Figure 3 presents the results obtained by the MIT 
rule in roll angle. The red solid line is the reference that 
the model reference has generated, and the blue solid 
line is the response obtained from the roll angle and 
has to converge to the dashed line. Figure 4 presents 
the error between the model reference and the actual 
roll angle. In Figure 5, we can appreciate the control 
response of the adaptive PD control, and the control 
law signal has been saturated to ± 40o. The deflection 
value of the ailerons that have been allowed by the 
fixed-wing MAV are ± 20o. We have tried to reduce 
saturation to achieve the allowed values, but obtaining 
a good response to the control law was impossible. 
The MIT rule has presented some noise in its control 
signal when it has been saturated the control law in 
Figure 15 shows a zoom of the MIT rule to appreciate 
the noise mentioned. 

 

Figure 3: Response of the adaptive PD control with the MIT 
rule. 

 

Figure 4: Error signal with the MIT rule. 
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Figure 5: Control response with the MIT rule. 

Figure 6 shows the results obtained by the MIT rule 
with sliding mode. Figure 6 presented a considerable 
improvement compared to the results obtained with the 
MIT rule without the sliding mode; it is appreciated that 
the response obtained in roll angle achieves the 
desired signal (red solid line) in a time not longer than 
60 seconds. Figure 7 and Figure 8 presented the error 
and the control effort applying the MIT rule with sliding 
mode, respectively. 

The error is less of ± 1◦ after of the 20 seconds, see 
Figure 8. Even in Figure 7, it is appreciated that the 
control response is saturated in ± 20◦; this angle 
deflection is allowed by the control surface of the fixed-
wing MAV. The inconvenience in this algorithm-like 
adjustment mechanism is the effect chattering in Figure 
15, shown as a zoom of the MIT rule with second-order 
sliding mode to appreciate the effect mentioned. 

 

Figure 6: Response of the adaptive PD control with the MIT 
rule and first order sliding mode. 

 

Figure 7: Error signal with the MIT rule and first order sliding 
mode. 

 

Figure 8: Control response with the MIT rule and first order 
sliding mode. 

Figure 9 presented the response of the MIT rule 
with second-order sliding mode; it has been 
appreciated that the response obtained from the roll 
angle (blue solid line) achieves the desired roll angle 
(red solid line) after 60 seconds, and it presented a 
stationary state error of ± 1◦. 

The error signal is shown in Figure 10. The signal 
control has been shown in Figure 11; there is a 
reduction of the chattering effect, and the control signal 
is saturated to ± 20 we have achieved a good 
response to the control law, but the control signal still 
presents the chattering effect. To appreciate this effect 
better, see Figure 15. 

 

Figure 9: Response of the adaptive PD control with the MIT 
rule and second order sliding mode. 

 

Figure 10: Error signal with the MIT rule and second order 
sliding mode. 
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Figure 11: Control response with the MIT rule and second 
order sliding mode. 

Figure 12 shows the results obtained by the MIT 
rule and high order sliding mode (HOSM); it is 
appreciated that the response obtained from the roll 
angle (blue solid line) achieved the model reference 
signal after 80 seconds. 

Figure 14 shows that the error is less than ± 1◦ after 
120 seconds, but the chattering has been eliminated 
with the MIT rule, and the high-order sliding mode see 
Figure 15, and even the control signal is in the values 
± 20◦ for the ailerons of the fixed-wing MAV, see the 
Figure 13. 

 

Figure 12: Response of the adaptive PD control with the MIT 
rule and high order sliding mode. 

 

Figure 13: Error signal with the MIT rule and high order 
sliding mode. 

 

Figure 14: Control response with the MIT rule and high order 
sliding mode. 

 

Figure 15: Zoom of the reduction of the chattering effect of 
the adaptive PD controller with MIT rule and sliding mode 
theory. 

5. CONCLUSIONS 

This work used the MIT rule with the sliding mode 
technique to design a robust adjustment mechanism for 
an adaptive PD control. 
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Then, the adaptive control law is applied to achieve 
the desired values of the roll angle of a fixed-wing 
MAV. The adaptive PD control with the MIT rule as an 
adjustment mechanism was only possible saturate to 
± 40◦ and these values are not allowed by the fixed-
wing MAV, and even the control signal has presented 
noise; also, the tuning of the adaptive gains is complex 
because the system tends to be unstable with some 
decimal changes in the adaptation gain. 

On the other side, with the MIT rule with sliding 
mode, it is possible to obtain the desired roll angle with 
the saturation in ± 20◦, but in the control signal, it has 
presented the undesired chattering effect. Thus, the 
chattering effect in the control signal is reduced by the 
MIT rule with second-order sliding mode. Still, the 
response obtained from the roll angle (blue solid line) 
converges to the reference model in a more significant 
time than the MIT rule with sliding mode. 

Finally, the MIT rule with high-order sliding mode 
presented a better response in the control signal with 
the chattering effect eliminated, and even more, the 
control signal is inside of the desired values by the 
ailerons of the MAV fixed-wing, that is, in ± 20◦ of 
ailerons deflection. We appreciate that tuning the 
adaptive gain with the MIT rule with a high-order sliding 
mode is more accessible. The unique inconvenience is 
that fewer errors ± 1◦ are achieved after 120 seconds. 
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