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Abstract: Fisheye cameras, valued for their wide field of view, play a crucial role in perceiving the surrounding 
environment of vehicles. However, there is a lack of specific research addressing the processing of significant distortion 
features in segmenting fish-eye images. Additionally, fish-eye images for autonomous driving face the challenge of few 
datasets, potentially causing over fitting and hindering the model's generalization ability. 

Based on the semantic segmentation task, a method for transforming normal images into fish-eye images is proposed, 
which expands the fish-eye image dataset. By employing the Transformer network and the Across Feature Map 
Attention, the segmentation performance is further improved, achieving a 55.6% mIOU on Woodscape. Additionally, 
leveraging the concept of knowledge distillation, the network ensures a strong generalization based on dual-domain 
learning without compromising performance on Woodscape (54% mIOU). 
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1. INTRODUCTION 

Fisheye cameras offer significant application value 
in autonomous driving perception tasks owing to their 
wide field of view. Compared with normal images, 
fisheye images show significant distortion, making 
conventional image processing methods unsuitable for 
fisheye images. 

Traditional methods for processing fisheye images 
involve calibrating the fisheye image using the 
geometric model of the fisheye camera to correct its 
distortion effect, as illustrated in Figure 1(a)-(c). 
However, this method achieves only partial 
undistortion, as highlighted in Figure 1(c). Additionally, 
the undistorted image obtained by this method often 
brings new distortions, as shown in Figure 1(d). 

Due to various challenges, calibrating fisheye 
images is insufficient to fully transform them into 
normal images while preserving the original field of 
view. As a result, numerous studies have concentrated 
on processing fisheye images directly, undertaking 
tasks such as target detection and semantic 
segmentation. 

The transfer learning from normal to fisheye images 
is also of research interest. Current model training 
often utilizes pre-trained models for transfer learning. 
However, for fisheye vision tasks, the insufficient 
fisheye dataset size and the fact that most pre-trained 
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Figure 1: Fisheye images and their calibration [1]. 

models are trained on normal image datasets (e.g., the 
ImageNet) often hinder achieving optimal performance 
when transferring networks pre-trained on normal 
images to fisheye images. 

To compensate for the scarcity of real fisheye 
image datasets, normal images can be transformed 
into fisheye images using a geometric model of fisheye 
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camera imaging, or fisheye images can be generated 
on a simulator [2]. However, the generated fisheye 
images still differ slightly from real ones, necessitating 
the combination of the virtual dataset with the normal 
dataset for data expansion and improve model 
generalizability. Therefore, visual tasks for fisheye 
images often fall within the domain adaptation research 
area. 

2. RELATED WORK 

2.1. Semantic Segmentation Algorithms for Normal 
and Fisheye Images 

The predominant approaches in normal image 
semantic segmentation algorithms are the Fully 
Convolutional Network (FCN) [3]. Common network 
structures include FCN [3], U-net [4], PSPnet [5], etc. 

Additionally, the use of Transformer in semantic 
segmentation tasks is gaining popularity, with some 
works integrating the convolutional neural networks into 
Transformers, resulting in models such as PVT [6], 
Segformer [7], HRViT [8]. 

Table 1: General Semantic Segmentation Networks and 
their Accuracy Measured in mIOU Metric 

Name Dataset mIOU (%) 

PASCAL 2012 62.2 

Cityscapes 65.3 FCN 

ADE20K 39.3 

Unet PASCAL 2012 72.7 

PASCAL 2012 85.5 
PSPNet 

ADE20K 55.4 

DeepLabv1 PASCAL 2012 66.4 

PASCAL 2012 85.7 
DeepLabv3 

Cityscapes 81.3 

PVT ADE20K 48.7 

Cityscapes 84.0 
Segformer 

ADE20K 51.8 

Cityscapes 82.6 

ADE20K 57.7 HRFormer 

PASCAL-Context 58.5 

 
Hanisch et al. [9] pioneered the fisheye image 

semantic segmentation research by employing the 
traditional segmentation algorithm (SEEDS). This 
approach combines feature extraction and 
classification, breaking down the segmentation task 
into three steps.  

Due to the lack of specialized semantic 
segmentation datasets for fisheye images, early 
studies often transformed normal datasets into fisheye 
datasets using the fisheye camera model. For instance, 
some works [10]-[12] augmented the Cityscapes 
dataset through the radial geometric transformation 
and tested it with various network architectures 
including FCN, ERFnet, PSPnet, etc. 

Deng et al. [13] utilized a deformable convolution 
with fixed intermediate sampling positions and adaBN 
to distinguish between real fisheye images and virtual 
fisheye images. Ye et al. [14] investigated the effect of 
datasets with different parameter transformations on 
model training. 

However, the absence of validation using real 
fisheye data in most early works raises questions about 
the effective transfer of these methods to real fisheye 
images. 

2.2. Across Feature Map Attention 

The Across Feature Map Attention module (AFMA) 
[15] utilizes the original image, the feature map of the 
model's middle layer, and the final output for attention 
computation. It is defined as follows: 

,        (1) 

where  is the segmented original image. The 
segmented feature map is classified by the convolution 
of  channels, and the downsampled feature map is . 

 is the size of the  feature map, which is then 
segmented to get .  is the output of the model, 

and  is the pooling of  to  size. 

The Across Feature Map Attention aims to improve 
the results of semantic segmentation by focusing on 
classes similar to small objects in the image. This 
enhancement contributes to the model's performance 
in accurately segmenting small objects. Fisheye 
images, with their large field of view and distortion 
characteristics, often contain many small objects at the 
edges, making accurate small object recognition 
crucial. We propose that adding AFMA module to the 
network can enhance the performance in fisheye image 
segmentation tasks. 

2.3. Knowledge Distillation 

Knowledge distillation is proposed by Hinton et al. 
[16], and is used to compress model size, as well as 
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speed up training. In knowledge distillation, the hidden 
or output layer of the teacher model is used as a target 
for the student network to learn so that it can achieve 
similar performance as the larger model. 

Knowledge distillation can be divided into two main 
approaches, one for the output distillation of the model 
and one for the intermediate layers. 

The main purpose of distillation of the output of the 
model is to make the model directly mimic the final 
output of the teacher network, the distillation loss can 
be defined as: 

           (2) 

where    is the KL scatter.  are the outputs of the 
teacher and the student, respectively. And the KL loss 
can be expressed as: 

         (3) 

The distillation of the middle layer of the network 
was first proposed in Fitnets [17], suggesting an idea of 
matching the activation layers of the teacher-student 
network features. The feature-based knowledge 
distillation can be formulated as: 

 

         (4) 

where and are the intermediate layers of the 
teacher and student networks,  and  
refer to the transformation function in case of a 
mismatch in the shape of the feature maps of the 
teacher-student network, and  is the l2 -norm 
distance, or MSE loss: 

         (5) 

3. METHODS 

3.1. Fisheye Camera Imaging Model and 
Transformation 

The camera model defines the geometric 
relationship between incident light and the imaging 
position. In the imaging plane of a pinhole camera 
(Figure 2(a)), the position of a pixel is linearly related to 
the incident light's position in the real world, as 

described by the following equations: 

           (6) 

where  is the intersection point of the incident light in 
the camera plane;  is the angle from the intersection 
point to the coordinate axis of the camera plane;  is 
the pixel position of the incident light in the imaging 
plane;  is the angle of the pixel position on the 
coordinate axis of the imaging plane, and  is the scale 
factor. 

 

Figure 2: (a) Pinhole Camera Model; (b) Fisheye Camera 
Model. 

In the fisheye camera model (Figure 2(b)), the pixel 
positions on the imaging plane do not have a linear 
relationship with the real-world light incident position. 
Instead, they satisfy a geometric mapping relation  
described by the spherical model: 

          (7) 

Various versions of this mapping relationship exist 
in related studies [18], and our work explores and 
experiments with the following three models: 

Equidistant model (Figure 3). The polar distance  
of the pixel position is the arc length  of the angle of 
the incident ray on the spherical plane: 
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          (8) 

where  is the distance from the pixel to the center of 
the imaging plane,  is the angle of the incident ray to 
the center of light, and  is the distance from the 
imaging plane to the center of light. 

 

Figure 3: Equidistant Model [1]. 

Stereographic model (Figure 4). The polar 
distance  at the center pixel position can be 
expressed as: 

.
          (9) 

 

Figure 4: Stereographic Model [1]. 

Orthogonal model (Figure 5). The polar distance u 
at the pixel position is the projection of the incident light 
at the point s on the circular arc: 

        (10) 

 

Figure 5: Orthogonal Model [1]. 

3.2. Fisheye Knowledge Distillation 

Compared to convolutional network-based models, 
Transformer-based models utilize the entire image for 
computation instead of fixed convolutional kernels. As 
a result, Transformer models have smaller inductive 
bias and larger receptive fields, making them more 
suitable for tasks such as semantic segmentation, 
which require long-distance dependencies. While many 
well-performing models in the Woodscape benchmark 
[19] utilize the attention mechanism, our focus is on 
exploring the performance of networks with small 
inductive bias properties, such as Segformer, on 
fisheye vision tasks. 

3.3. Effects of Inductive Bias on Fisheye Visual 
Tasks  

We propose a knowledge distillation approach to 
improve the network in learning the representation of 
fisheye images. 

In the student-teacher model (illustrated in Figure 
6), the teacher model processes a standard image, 
while the student model learns from the augmented 
fisheye image. The coordinate map of the data 
augmentation is passed to the network's hidden layer, 
where the teacher model's feature map or soft labels 
undergo transformation to align with the fisheye image. 
Subsequently, the student network learns about these 
features.  

During the training process, the teacher network 
needs to be frozen. Additionally, since the coordinate 
mapping map can only be transformed for images of 
the same size, the hidden layer of the teacher network 
is upsampled to match the size. 
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3.4. Dual-Domain Learning 

As mentioned in Section 1, the domain adaptation 
combining virtual and real data is a major focus of 
semantic segmentation research. Our focus is on 
domain adaptation learning using the Cityscapes virtual 
fisheye dataset and the Woodscape real fisheye 
dataset, i.e., by combining the two datasets for training. 

Ideally, larger datasets pose a greater challenge for 
model fitting, leading to higher model metrics. 
However, the combination of the two datasets, virtual 
and real, does not necessarily improve metrics due to 
the presence of a domain gap. For instance, in 
Synwoodscape 6, the authors trained the virtual 
images generated on the simulator in combination with 
real images but failed to achieve higher metrics. 

In our work, we engage in dual-domain learning on 
virtual and real data. However, the categories labeled 
by Cityscapes and Woodscape in differ from each 
other. This necessitates the network to learn different 
categories in the two domains. Therefore, our approach 
involves dual-classification head learning, with each 
classification head trained on its respective dataset. 
Finally, we fine-tune the network. 

4. EXPERIMENTS 

4.1. Dataset 

This section outlines the datasets utilized in the 
experiments of our work. 

Woodscape [20] is a real fisheye dataset provided 
by ValeoAI in 2021. It comprises 10,000 labeled 
images for semantic segmentation, with 8,200 images 
constituting the public dataset and the remaining 1,800 
forming the non-public test set. The dataset 
encompasses tasks such as semantic segmentation, 
instance segmentation, 2D target detection, mud dirt 
detection, and end-to-end driving data. The semantic 
segmentation annotations encompass nine categories 
(excluding the null category) and include four views of 
the car from the front, back, left, and right. 

Cityscapes is a standard semantic segmentation 
dataset for driving scenes, consisting of driving 
recorder images from 50 different cities. It includes 
5,000 finely labeled images and 20,000 roughly labeled 
images, covering a total of 19 categories. 

4.2. Transforming Images from Pinhole to Fisheye 
Camera 

Comparing with Figure 7(a)(b), changing the focal 
length in the orthogonal model results in the most 
noticeable radial distortion. Similarly, comparing with 
Figure 7(b)(c), keeping the focal length unchanged in 
the orthogonal model reveals the most significant 
distortion when altering the viewing angle pitch of the 
imaging model. In order to mimic the large distortion 
characteristics in fisheye images, all subsequent 
experiments in this work use the orthogonal model as a 
benchmark. 

 

Figure 6: Fisheye Distillation Learning Process. 
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4.3. Performance Comparison of Different Network 
Transfer 

To compare the performance of different pre-trained 
models on fisheye images and determine the baseline 
model for our work, various typical network structures 
are selected. Pre-training weights are obtained from 
publicly available sources on Cityscapes, and the 

models are tested on Woodscape. Subsequently, their 
metrics are compared on both the Cityscapes dataset 
and Woodscape. 

Comparing various pre-trained models with similar 
metrics on the Cityscapes dataset (Table 2), Segformer 
[7], featuring a Transformer structure, exhibits superior 
performance on Woodscape. This could be attributed 

 

Figure 7: Performance of different fisheye camera models on pinhole camera image transformation. 

Table 2: Comparison and Visualization of Transfer Performance (Measured by mIOU in %) for Different Structured 
Networks 
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to improved generalization performance by the 
Transformer structure after extensive training, owing to 
the absence of the inductive bias property in 
convolutional neural networks. Consequently, the 
Segformer network excels in transfer performance 
compared to the other networks considered. 

4.4. Validation of Fisheye Data Augmentation 

This experiment verifies the effectiveness of fisheye 
data augmentation. 

In our work, the orthogonal model is employed for 
online data augmentation on the Cityscapes dataset, 
utilizing transform parameters ranging from 
(f0:500~1000; pitch:0~-0.60). The augmented data is 
then input into the network for training. Training is 

conducted with a constant learning rate, 200 warm-up 
steps, a learning rate set to 2e-5, an Adam optimizer, a 
total duration of 20 epochs, and a batch size of 32. 
After the training, the results of the original network and 
the pre-trained network are compared with those of the 
real fisheye dataset, and the results are fine-tuned on 
the real fisheye dataset. 

As observed in Table 3, the pre-trained model 
exhibits superior performance on the real fisheye 
dataset, with higher performance achieved after fine-
tuning. In addition, considering that the labeled classes 
in Cityscapes and Woodscape are not the same, it is 
necessary to redefine the classification head. Thus, the 
network's backbone is frozen, and only the decoder is 
trained. Subsequently, it is fine-tuned on Woodscape. 

Table 3: Comparison of Fisheye Augmentation by Fine-Tuning 
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Figure 8: Visualization of the model output trained (a) without 
fish-eye data augmentation, (b) with fish-eye data 
augmentation. 

Table 4: Performance of Fisheye Data Augmentation 
(Entire Network) 

 Mean_IOU Mean_acc 

No augmentation 0.5661 0.5804 

Augmentation 0.6626 0.6639 

 
Based on the observations from Table 4 and Figure 

8, the pre-trained network with the virtual fisheye 
dataset demonstrates superior transfer performance on 
the real fisheye dataset compared to the pre-trained 
network with normal images. 

4.5. Validating the Validity of AFMA Module 

Table 5: Performance of Across Feature Map Attention 
Modules (Measure by mIOU in %) 

 Baseline With AFMA 

Road 0.9401 0.9412 

lanemark 0.7020 0.7068 

Curb 0.5543 0.5547 

Person 0.4363 0.4465 

Rider 0.3391 0.3396 

Vehicles 0.8684 0.8683 

Bicycle 0.4160 0.4220 

Motorcycle 0.3745 0.3798 

Traffic sign 0.2826 0.2662 

Overall 0.5645 0.5647 

 
To verify the effectiveness of small object 

segmentation on fisheye images, we tested the 
performance of the network before and after loading 
the AFMA module. After initial fine-tuning on 
Woodscape, online image augmentation is employed to 
prevent overfitting. This involves a random cropping 
with a rate of 0.8 to 1 and a random flipping. The 

training utilizes the Adam optimizer with 200 warm-up 
steps and a learning rate of 2e-4. During metrics 
evaluation, specific calculations are performed for each 
class to assess the segmentation performance of small 
object classes, such as lanemark, curb, and person. 

As seen in Table 5, the segmentation performance 
of small objects such as lanemark, curb, and person 
are improved, and the overall metrics are also slightly 
improved. 

A decrease in metrics for traffic signs is observed, 
possibly because traffic signs appear sparsely and 
infrequently within the same map. The module relies on 
pixels of the same class at other locations in the map 
for small object supervision, yet the scarcity of traffic 
signs diminishes the supervisory performance of this 
module for this class. 

 

Figure 9: Visualization of performance by baseline and 
AFMA module. 

4.6. Exploration of Fisheye Knowledge Distillation 

This experiment verifies the effectiveness of 
knowledge distillation. Three different training methods 
are mainly compared: training with data augmentation, 
training with distillation, and training by combining both. 

In our work, we explored two distillation methods: 
distillation of the hidden layer using MSE loss and 
distillation of the soft labels directly on the network 
output using KL loss. 
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Figure 10 displays the results. When using MSE 
loss for distillation against the hidden layer, the network 
is challenging to fit. On the other hand, when distilling 
using transformed soft labels with KL loss, the network 
is easier to fit but does not achieve the desired 
performance. The accuracy of some classes decreases 
in comparison to the results obtained from direct 
training with hard labels. 

The fisheye distillation network exhibits reduced 
noise compared to the network without distillation. 
However, it does not achieve high accuracy and is 
harder to train. 

A hypothesis is that the hidden layers or soft labels 
used for distillation originate from the same network, 
thus the output of each pixel corresponding to the 
same image is not transformed. The fisheye geometric 
transformation only changes its position, and for an 
image with a transformed distortion parameter, learning 
a fixed value for each pixel may cause the network to 
lose translational isotropy, thereby hindering the 
optimal parameter learning. 

4.7. Dual-Domain Learning 

The experiment combines the virtually generated 
fisheye dataset and the real dataset to train the 
network on both domains, addressing the issue of 
overfitting observed in small fisheye image datasets. 

A potential problem with training the network on 
both the Cityscapes virtual fisheye dataset and the 
Woodscape real fisheye dataset is that the labels of the 
two datasets are inconsistent. When training with a 
single classification head, it is necessary to combine 
the classes of the two datasets and to ignore the 
classes that do not exist in the other dataset; At the 

same time, two classification heads corresponding to 
the two datasets are also used for training, and then 
the weights of the two classification heads are 
combined after training. 

As can be seen in Figure 11, due to the different 
classes in the two datasets, the use of a single 
classification head needs to mask its class on the other 
dataset, and the method of identification based on 
confidence adopted in the experiments tends to leave a 
large number of pixels unsupervised, and therefore 
inaccurate segmentation can occur;  

When training with two classification heads on each 
of the two datasets, since no masking is required, 
every pixel can be supervised, which is better than 
using a single classification head, where the 
classification head trained on Woodscape can achieve 
similar metrics (mIOU=0.56) as the baseline network 
(fine-tune on Woodscape only), while the merged 
classification head on Woodscape also reveals classes 
on another dataset, such as sidewalks, buildings and 
sky. 

Based on the comparison in Figure 11, utilizing two 
classification heads on two datasets emerges as a 
more reasonable training method. This approach of 
dual-domain learning not only expands the dataset for 
the network to learn but also prevents overfitting on a 
single dataset. It enhances the generalization of the 
model, enabling the network to learn more features of 
the classes without compromising overall performance. 

5. CONCLUSION 

Our work centers around a series of hypothesized 
ideas of fisheye image segmentation tasks.  

 

Figure 10: Performance of fisheye knowledge distillation learning. 
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Experimental results reveal that the Transformer 
network structure exhibits superior robustness and 
transfer performance on fisheye images compared to 
convolutional networks. Data augmentation using a 
fisheye camera model and pre-training on the 
generated virtual fisheye dataset improves the model's 
effectiveness on real datasets and makes fine-tuning 
easier to fit. 

Meanwhile, the Across Feature Map Attention 
module, designed to aid the segmentation of small 
objects, proves effective in enhancing the network's 
performance on fisheye images. Fisheye distillation 
learning reduces image noise, but the results, while 
less noisy, are not as accurate as those obtained 
through direct training. Finally, dual-domain learning 
with two classification heads enables the network to 
learn more features while maintaining metrics similar to 
direct fine-tuning. 

REFERENCE 

[1] Kumar, Varun Ravi, et al. “Surround-View Fisheye Camera 
Perception for Automated Driving: Overview, Survey & 
Challenges.” IEEE Transactions on Intelligent Transportation 
Systems 24 (2022): 3638-3659. 
https://doi.org/10.1109/TITS.2023.3235057 

[2] Ekkat, Ahmed Rida et al. “SynWoodScape: Synthetic 
Surround-View Fisheye Camera Dataset for Autonomous 
Driving.” IEEE Robotics and Automation Letters 7 (2022): 
8502-8509. 
https://doi.org/10.48550/arXiv.2203.05056 

[3] Shelhamer, Evan et al. “Fully convolutional networks for 
semantic segmentation.” 2015 IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR) (2014): 
3431-3440. 
https://doi.org/10.48550/arXiv.1411.4038 

[4] Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-
net: Convolutional networks for biomedical image 
segmentation." Medical Image Computing and Computer-
Assisted Intervention–MICCAI 2015: 18th International 
Conference, Munich, Germany, October 5-9, 2015, 
Proceedings, Part III 18. Springer International Publishing, 
2015. 
https://doi.org/10.48550/arXiv.1505.04597 

[5] Zhao, Hengshuang et al. “Pyramid Scene Parsing Network.” 
2017 IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR) (2016): 6230-6239. 
https://doi.org/10.48550/arXiv.1612.01105 

[6] Wang, Wenhai et al. “Pyramid Vision Transformer: A 
Versatile Backbone for Dense Prediction without 
Convolutions.” 2021 IEEE/CVF International Conference on 
Computer Vision (ICCV) (2021): 548-558. 
https://doi.org/10.48550/arXiv.2102.12122 

[7] Xie, Enze et al. “SegFormer: Simple and Efficient Design for 
Semantic Segmentation with Transformers.” Neural 
Information Processing Systems (2021). 
https://doi.org/10.48550/arXiv.2105.15203 

[8] Gu et al. “Multi-Scale High-Resolution Vision Transformer for 
Semantic Segmentation.” 2021 IEEE/CVF Conference on 
Computer Vision and Pattern Recognition (CVPR) (2021): 
12084-12093 
https://doi.org/10.48550/arXiv.2111.01236 

[9] Hänisch, Evangelio, Tadjine and Pätzold, "Free-space 
detection with fish-eye cameras," 2017 IEEE Intelligent 
Vehicles Symposium (IV), pp. 135-140,  
http://doi.org/10.1109/IVS.2017.7995710 

[10] Deng, Yang, Qian et al. "CNN based semantic segmentation 
for urban traffic scenes using fisheye camera," 2017 IEEE 
Intelligent Vehicles Symposium (IV), pp. 231-236,  
http://doi.org/10.1109/IVS.2017.7995725 

 

Figure 11: Dual-domain learning visualization. 



148    International Journal of Robotics and Automation Technology, 2023, Vol. 10 Huang et al. 

[11] Sáez, Bergasa, Romeral et al. "CNN-based Fisheye Image 
Real-Time Semantic Segmentation," 2018 IEEE Intelligent 
Vehicles Symposium (IV), 2018, pp. 1039-1044,  
http://doi.org/10.1109/IVS.2018.8500456 

[12] Blott, G., Takami, M., & Heipke, C. (2018). Semantic 
Segmentation of Fisheye Images. ECCV Workshops. 
https://doi.org/10.1007/978-3-030-11009-3_10 

[13] Deng, Liuyuan et al. “Restricted Deformable Convolution-
Based Road Scene Semantic Segmentation Using Surround 
View Cameras.” IEEE Transactions on Intelligent 
Transportation Systems 21 (2018): 4350-4362. 
http://doi.org/10.1109/TITS.2019.2939832 

[14] Ye, Yaozu et al. “Universal Semantic Segmentation for 
Fisheye Urban Driving Images.” 2020 IEEE International 
Conference on Systems, Man, and Cybernetics (SMC) 
(2020): 648-655. 
https://doi.org/10.1109/SMC42975.2020.9283099 

[15] Sang, Zhou, Islam and Xing, "Small-Object Sensitive 
Segmentation Using Across Feature Map Attention," in IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 

vol. 45, no. 5, pp. 6289-6306, 1 May 2023,  
https://doi.org/10.1109/TPAMI.2022.3211171 

[16] Hinton, Vinyals & Dean (2015). Distilling the Knowledge in a 
Neural Network. ArXiv, abs/1503.02531. 
https://doi.org/10.48550/arXiv.1503.02531 

[17] Romero, Ballas, Kahou, Chassang, Gatta, & Bengio. (2014). 
FitNets: Hints for Thin Deep Nets. CoRR, abs/1412.6550. 
https://doi.org/10.48550/arXiv.1412.6550 

[18] Miyamoto, “Fish eye lens,” Journal of the Optical Society of 
America, vol. 54, no. 8, pp. 1060-1061, 1964. 

[19] Ramachandran, Saravanabalagi et al. “Woodscape Fisheye 
Semantic Segmentation for Autonomous Driving - CVPR 
2021 OmniCV Workshop Challenge.” ArXiv abs/2107.08246 
(2021) 
https://doi.org/10.48550/arXiv.2107.08246 

[20] Yogamani, Senthil Kumar et al. “Woodscape: A Multi-Task, 
Multi-Camera Fisheye Dataset for Autonomous Driving.” 
2019 IEEE/CVF International Conference on Computer 
Vision (ICCV): 9307-9317. 
https://doi.org/10.1109/ICCV.2019.00940 

 
Received on 19-11-2023 Accepted on 14-12-2023 Published on 27-12-2023 
 
DOI: https://doi.org/10.31875/2409-9694.2023.10.13 
 
© 2023 Huang et al. 
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License 
(http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, 
provided the work is properly cited. 
 


