
 International Journal of Robotics and Automation Technology, 2023, 10, 149-156 149 

 
E-ISSN: 2409-9694/23 

Finite Horizon Memory Control of Networked Systems Using 
Chain-like Lyapunov Function 

Liming Liu1, Yanxiang Wang2, Hong-Tao Sun3,*, Yitao Shen4 and Hao Wang3 

1School of Electronic and Electrical Engineering, Shangqiu Normal University, Shangqiu 476000, China 
2Department of Information Engineering, Shandong Water Conservancy Vocational College, Rizhao, 276826, 
China 
3College of Engineering, Qufu Normal University, Rizhao, 276826, China 
4School of Automotive Engineering, Harbin Institute of Technology (Weihai), Weihai, China 

Abstract: This paper proposes a novel finite horizon memory control (FHMC) design framework for networked systems 
by using input delay approach. A chain-like input delay model is established to characterize the networked control 
system (NCS) under memory control architecture in order to make full use of historic sampled-data. Based on the 
proposed chain-like delay model, the corresponding chain-like Lyapunov-Krasovskii function, which records the historic 
sampling information of NCS, is well constructed for facilitating further analysis and synthesis of the proposed FHMC 
scheme. Both state feedback controllers and static output feedback controllers are derived by solving LMIs (Linear 
matrix inequalities). The proposed FHMC scheme is skilled in improving control performance of networked systems. 
Simulations show the effectiveness of the presented FHMC scheme.  
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1. INTRODUCTION 

Networked control system (NCS) has been widely 
applied in many promising areas such as smart grids, 
Internet of Things and intelligent manufacture [1]. 
Although fruit results on analysis and synthesis of NCS 
have been arrived at in the past decades, some new 
and interesting challenges also arise [2]. 

In fact, sampling and time delay are the two key 
features that play an important difference in the stability 
and stabilization of the NCS [3]. Therefore, a 
fundamental design of the NCS should take such two 
factors into account. By considering continuous-time 
dynamics under discrete-time sampled-data control 
fashion, the input delay approach [4] is well developed 
to cope with both time delay and discrete-time 
sampling. On the one hand, such an input delay 
approach is beneficial to characterize the sampling 
characterization and time delay under a unified 
framework. On the other hand, it is convenient to use 
the well-studied Lyapunov-Krasovskii functional 
method to conduct analysis and synthesis for the NCS 
[5]. It is well known that Lyapunov-Krasovskii functional 
method exploiting the length of time delay can reach a 
delay-dependent condition for stabilization of the NCS. 
In addition, one can also relax the conservative of the 
time delay system by constructing some novel 
Lyapunov-Krasovskii functional. Although time delay 
can be neglected for modern advanced communication 
and computation technologies, it makes no difference  
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in the fact that the input delay approach becomes a 
primary design tool for the analysis and design of the 
NCS. At present, the input delay approach has been 
widely founded in networked analysis and design [3, 6]. 

However, the historic sampled-data are rarely 
considered in the presented networked control design 
[7,8]. It is clear that the performance under a 
memoryless controller can not be better than a memory 
one although a memoryless control scheme has the 
advantage of easy implementation. Thus, one can 
pursue a memory-based control scheme, which 
includes both current state and past information, to 
improve the robustness and performance of the NCS [9, 
10]. In fact, only current state measurement and 
delayed measurement are used to design memory 
controllers in most existing works [7,10]. In order to 
make full use of the historic sampled-data, the finite 
horizon memory control (FHMC) scheme, where its 
idea originated from finite impulse response (FIR) 
filters, is developed [11]. In essence, finite horizon 
memory control is similar to the FIR filter which can 
smooth the system state and reject disturbances or 
noises by measurements. This is also the reason why 
the FHMC scheme is able to mitigate the influence of 
abnormal signal from outside and improve the 
performance of control systems. 

Unfortunately, FHMC scheme is not easily 
implemented under networked control framework. 
Actually, the latest sampled-data is often used when 
one transforms the discrete-time sampling control to a 
time delay fashion of continuous-time style. However, 
the successive historic sampled-data are rarely 
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considered in the traditional memory control models 
under such hybrid systems which contain both 
continuous and discrete dynamics. On the one hand, 
memory control schemes are often founded in 
discrete-time systems rather than the referred hybrid 
systems [12]. On the other hand, the presented 
construction of Lyapunov-Krasovskii function just only 
pays attention to derive a less conservative criterion for 
a time-delayed NCS by using the delay interval division 
method. To our best knowledge, there is no general 
result on the FHMC scheme for the NCS under 
sampled-data control with time delay. 

Based on the above observations, the main 
contributions of this paper can be summarized as 
follows  

• A FHMC model for the NCS is established by 
using input delay approach. Different from the previous 
results which only the latest sampling information is 
used [7] or some probability distribution is needed [12, 
13], the proposed FHMC model makes full use of finite 
available historic sampled-data and characterizes it as 
a chain-like input delay model for the NCS.  

• A novel chain-like Lyapunov-Krasovskii candidate 
is well constructed based on the propose chain-like 
delay model. Different from the tradition delay interval 
divisions [14], we will develop a chain-like 
Lyapunov-Krasovskii candidate to characterize the 
chain-like delays step-by-step. Thus, each delayed 
sampling information is included in the proposed 
Lyapunov-Krasovskii candidate.  

 • Static output feedback controllers are derived by 
solving matrix pseudo-inverse. By comparing with the 
existing dynamic output feedback controller design 
method [15] or static output feedback method [16], the 
propose method will significantly simplify the static 
output feedback controller design by using direct matrix 
analysis and operations.  

 The reminder of this paper is organized as follows. 
Section 2 establishes the FHMC model for the NCS. 
Section 3 conducts the stability analysis and controllers 
design of the NCS based on the FHMC scheme. 
Section 4 verifies the proposed theory results through 
simulations. Section 5 concludes this paper.  

2. MODELING OF FHMC UNDER NETWORKED 
ENVIRONMENT 

The dynamics of the interested NCS to be 
controlled is described as follows  

( ) = ( ) ( ) ( )
= ( )
x t Ax t Bu t Dw t
y Cx t

+ +⎧
⎨
⎩

&
      (1) 

where x(t)!Rn , y(t)!Rm , u(t)!Rp  are the state, 
output and control vectors, respectively. A , B , C , 
D  are the constant matrices with appropriate 
dimensions. w(t)  is the external disturbance. 

Under networked control environment, suppose the 
sensor is time-driven with sampling period h  and the 
controller and actuator are event-driven. In order to 
exploit the historical sampled-data, the FHMC scheme 
is designed as  
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for t ![kh +! k, (k +1)h +! k+1) . Here, KSi  and KOi  are 
the state feedback controller gain and output feedback 
controller gain, respectively. ! k  is the transmission 
delay due to communication network, N  is the 
memory length of sampled-data. 

Then substituting (2) into dynamics (1) yields  

!x(t) = Ax(t)+ Bix(kh ! ih)+ Dw(t)     (3) 

for t ![kh +! k, (k +1)h +! k+1) . Here, Bi = BKSi  (state 
feedback case) or Bi = BKOiC  (output feedback case).  

Remark 1: Traditionally, only x(kh)  is used for the 
memoryless state or output feedback controller design, 
namely u(t) = Kx(kh)  [17]. However, the most recently 
N sampled-data, i.e. x(kh), x((k !1)h),!x((k ! N +1)h)  
are used for the proposed FHMC scheme. Under 
FHMC scheme, it is clear that both current 
measurement and historic samplings are feeded back 
in the closed-loop NCS. Thus, the improvement of 
control performance is expected.  

Define ! (t) = t ! kh , thus one can arrive at that ! (t)  
is a linear piecewise function with 0 < ! (t) < !  and 
historical sampling instants satisfy  

= ( )
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Then the closed system (3) can be further described 
by  

!x(t) = Ax(t)+
i=0

N!1

"Bix(t !! (t)! ih)+ Dw(t)      (5) 

for t ![kh +! k, (k +1)h +! k+1) . The initial condition is 
given by x(0) = x0  and x(!ih) = 0  for 
i = {1,2,!,N !1} . 
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Remark 2: It is clear that the time delay for each 
sampling instant can be represented by 
(k ! i)h = t !! (t)! ih . In fact, the time delay can be 
divided into two parts which includes fixed part and 
time varying part. The time varying part ! (t)  
characterizes by the network transmission delay and 
the fixed part h  characterizes the history sampling 
instants. Due to the fact that the fixed part is caused by 
every two adjacent sampling instants with a fixed 
sampling period h , we call this chain-like delay.  

The control objectives of this paper is to pursue the 
finite horizon memory controllers of the NCS (5) while 
the ISS property is guaranteed. The definition of ISS is 
given by  

Definition 1: [18] The FHMC of NCS (5) is said to 
be ISS if there exist a KL  function µ(!)  and a K  
function ! (!)  such that  

|| x(t, t0 ) ||! µ(|| x(t, t0 ) ||)+! (||w(t) ||" )      (6) 

where w(t)  is a bounded external disturbance.  

3. STABILITY ANALYSIS AND CONTROLLERS 
DESIGN 

In this section, the stability criterion and controller 
design for the NCS under FHMC scheme are 
presented.  

3.1. Stability analysis 

Theorem 1: Consider the FHMC of NCS (5). For 
some positive scalars h , ! , !  and ! , the NCS (5) 
is ISS if there exists some positive definite matrices P , 
Qi  and Ri , i!{0,1,!,N "1}  satisfying  
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!13 = PBK1 + e
!2" (# +h)R1 , 
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Proof: We choose the following chain-like 
Lyapunov-Krasovskii candidates as  

V (t) =V1(t)+V2 (t)+V3(t)                             
(8) 

where 

V1(t) = xT (t)Px(t)

V2 (t) =
i=0

N!1

" t!! !ih

t!ih

# e2" (s!t ) !xT (s)Qi !x(s)ds
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i=0

N!1

"(! + ih) !(! +ih)

0

# t+#

t

# e2" (s!t ) !xT (s)Ri !x(s)dsd#

  (9) 

Differentiating (8) with respect to t  along trajectory 
(3) yields  

!V1(t) = xT (t)(ATP + PA)x(t)+ 2xT (t)PDw(t)

+2xT (t)P
i=0

N!1

"Bix(t !! (t)! ih)
  (10) 

!V2 (t) = 2!V2 (t)

+xT (t)Q0x(t)! e
!2!" xT (t !" )Q0x(t !" )

+
i=1

N!1

"[xT (t !" ! ih)Qix(t !" ! ih)

!xT (t !" ! (i +1)h)Qix(t !" ! (i +1)h)]

  (11) 

!V3(t) = 2!V3(t)+
i=0

N!1

"[(" + ih)2 !xT (t)R!x(t)

!(! + ih)
t!(! +ih)

t

# e2" (s!t ) !xT (s)R!x(s)ds]
  (12) 
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Using Jessen inequality [19], there exists  

!(! + ih)
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Combining with (10)~(13), we can arrive at  

!V (t)+ 2!V (t)!"wT (t)w(t)  

! !T (t)"11!(t)+" (t)
2 !xT (t)Ri !x(t)     (14) 

where 
!(t) = col{x(t), x(t !" (t)),!, x(t !" (t)! (N !1)h),w(t)}  
and !11  is given by (7). 

Applying Schur complement lemma to the right side 
of (14), we obtain that  

!V (t)+ 2!V (t)!"wT (t)w(t) < 0     (15) 

if (7) holds. 

This yields  

!V (t)+ 2!V (t) < "wT (t)w(t).     (16) 

Multiplying both sides of (16) with e2!t , we have  

e!t !V (t)+ 2!e2!tV (t) < "e2!twT (t)w(t).    (17) 

From (17), one can obtain  

d(e2!tV (t))
dt

< "e2!twT (t)w(t).     (18) 

Integrating both sides of (24) from t  to +! , then  

e2!tV (t))!V (0) < " (e2!twT (t)w(t)!wT (0)w(0)),   (19) 

which implies  

V (t) < e!2!tV (0)+ "
0

t
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by multiplying both sides of (20). 

Let a = !min (P) , b = !max (P) , ||w ||= max(||w(t) ||) , it 
gives  

|| x(t) ||! b
a
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a
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which completes proof.  

Remark 3: From the constructed chain-like 
Lyapunov-Krasovskii function (8), it is clear that the 
single integral parts, 
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chain-like connection for historic sampled-data 
x(kh), x((k !1)h),!, x((k ! i)h) . Then, double integral 
parts, 
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characterize the delay-dependent information for 
historic sampled-data x(kh), x((k !1)h),!, x((k ! i)h) . 
Thus, each collected sampled-data information are fully 
taken into account for the chain-like 
Lyapunov-Krasovskii function (8). 

Remark 4: Traditional “interval division method”, 
which divides a large delay interval into servals small 
delay intervals, pays more attentions on finding a more 
larger time delay bound by designing more positive 
matrices in Lyapunov-Krasovskii function. However, 
the chain-like Lyapunov-Krasovskii functions will 
devote themselves into exploiting the historic 
sampled-data.  

Corollary 1: Consider the memoryless control of 
NCS (5). For some positive scalars ! , ! , if there 
exists positive definite matrix P0 , Q0 , R0  satisfying  

11 12

22

< 0
Σ Σ⎡ ⎤
⎢ ⎥∗ Σ⎣ ⎦

            (22) 

where  

!11 = [(1,1) = A
TP + PA + 2!0P +Q0 " e

"!"R0,  

(1, 2) = PBK + e!!"R0, (1,3) = PD,  

(2, 2) = !e!2!"Q0 ! e
!2!"R0, (3,3) = !# ]  

!22 = "R0 , 

!12 = !R0"  with !T = [A,BK,D] . 

Then, the NCS (5) is ISS.  

Proof: Let i = 0  in Theorem 3.1, one can easily 
arrive at the desired result. The similarly results can 
also be founded in [20]. 

3.2. State and Output Feedback Controllers Design 

Theorem 2: Consider the FHMC of NCS (5). For 
some positive scalars h , τ , α  γ , if there exists 

positive definite matrices X , Q
!
i  and R

!
i , 

i!{0,1,!,N "1}  satisfying  
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Then state feedback controllers of FHMC for the 
NCS can be designed as  

KSi =YiX
!1 i"{0,1, 2,…,N !1}  (24) 

the output feedback controllers can be designed as  

KOi =YiX
!1CT (CCT )!1 i"{0,1, 2,…,N !1}.   (25) 

Proof: Define X = P!1 , Yi = KSiX , Yi = KOiCX , 

Q
!
i = XQiX , R

!
i = XRiX . We first pre-and-post multiply 

both sides of the first matrix inequality of (7) with a 
diagonal matrix diag[X X ! X

N
" #$$$$ %$$$$

I ] . Then we use 

the fact that !XQ
!
i X "Q

!
i! 2X , 

!X R
!
i X " R

!
i! 2X ! XQ

!
i X "Q

!
i! 2X  to deal with 

nonlinear items Q
!
i = XQiX , R

!
i = XRiX , respectively. 

Then KSi =YiX
!1  is reached. Further, C!1 =CT (CCT )!1  

is exploited to derive the output feedback controller 
KOi =YiX

!1CT (CCT )!1 . Then the desired results are 
reached.  

Remark 5:	   In fact, it is not easy to derive a static 
output feedback controller for LMI (23) because of the 
existing of nonlinear item KCX . A common method to 
the static output feedback controller design one can 
refer to [21, 22]. However, a directly method using 
matrix pseudo-inverse is exploiting to reach the static 
output feedback controllers. Thus, state feedback 
controller and output feedback controller are designed 
in a unified framework [23]. 

Corollary 2:	   Consider the memoryless control of 
NCS (5). For some positive scalars ! , ! , ! , if there 

exists positive definite matrix X0 , Q
!
0 , R
!
0  satisfy  

11 12

22

< 0

⎡ ⎤
Σ Σ⎢ ⎥
⎢ ⎥
⎢ ⎥
∗ Σ⎣ ⎦

∞ ∞

∞
      (26) 

where  
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((2, 2) = !e!2!" Q
!
0! e

!2!" R
!
, (3,3) = !! ]  

!22 = R
!
0" 2X0 , 

!12 = ![AX0,BY0,D]
T . 

Then the static state feedback controller can be 
designed as  

KS0 =Y0X
!1,       (27) 

the static output feedback controller can be designed 
as  

KOi =Y0X
!1CT (CCT )!1.      (28) 

Proof: Let i = 0  in Theorem 3.2, one can easily 
arrive at the desired result. The similarly results can 
also be founded in [20].  

4. EXAMPLE AND DISCUSSIONS 

In this section, the simulation experiments on speed 
tracking of PMSM are give to illustrate the proposed 
memory-based control scheme. 

Consider the d ! q  model of permanent-magnet 
synchronous motor given as follows  
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where Rm  is the resistance, L  is the inductance, np  
is the number of pole pairs, ! f  is the permanent 
magnet flux, J  is the moment of inertia, J  is the 
load torque, id (t)  is the d -axis current, w(t)  is the 
rotor speed, iq (t)  is the q -axis current, uq (t)  is the 
q -axis voltage, ud (t)  is the d -axis voltage. 

Denote w!(t)  the reference rotor speed. By 
defining the tracking error e(t) = w!(t)"w(t) , 
e(t) = w!(t)"w(t)  and x2 (t) = e(t) , we can arrive at  
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where [ ]1 2( ) = ( ) ( ) Tx t x t x t , a = Bv
J

, b =
3np! f

2J
 and 

d(t) =
!TL
J
+ a !w!(t)+ !!w!(t) . 

The detailed parameters of PMSM are given as 
following Table 1.  

Then, set the simulation time T = 30s , sampling 
period h = 0.01s , ! = 0.2 , ! = 0.2 . Based on the 
above derived speed control model (30) , we use 
YALMIP [24] to solve LMIs in Theorem 3.2. It is easy to 
see that !w!(t) = !!w!(t) = 0  for a constant speed 
tracking.  

• State feedback case 

Based on Theorem 3.2, the state feedback 
controllers of FHMC scheme are solved and given as 
follows  

[ ]
[ ]
[ ]

0

1

2

= 0.0021 0.0035
= 0.0014 0.0031
= 0.0021 0.0027

S

S

S

K
K
K

− −

− −

− −

          (31) 

We first apply only KS0  and then the memory 
controllers KS0,KS1,KS2  to the controlled system (30). 
The simulations on state response and control inputs 
are given as below Figures 1 and 2.  

 

Figure 1: Responses on state feedback case. 

Table 1: Parameters of PMSM 

 w!(r / s)    J(kg !m)    np    ! f (Wb)    Bv (N !m ! s / rad)   

10  2.77!10"3    4    0.175   5.6 !10"6   
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Figure 2: Control inputs under state feedback case. 

The above Figure 1 shows that the performance of 
speed tracking under memory controllers KS0,KS1,KS2  
is obviously improved by comparing the memoryless 
case with only KS0 . However, one can see that more 
control effort is needed while improving such tracking 
performance from Figure 2.  

• Output feedback case 

Similar to state feedback case, the output feedback 
controllers of FHMC scheme are solved and given as 
follows  

[ ]
[ ]
[ ]

0

1

2

= 0.0061
= 0.0045
= 0.0054

O

O

O

K
K
K

−

−

−

      (32) 

by solving LMI (23). Here, matrices X , Q
!
0 , Q
!
1 , Q
!
2 , 

R
!
0 , R
!
0 , R
!
2  are the same as in (31). By applying 

KO0  and KO1 , KO1 , KO2  to the controlled system 
(30) respectively, we obtained the following state 
response and control input results. The simulations 
given by the following Figure 3 and 4.  

 
Figure 3: Responses on output feedback case. 

 
Figure 4: Control inputs under output feedback case. 

From Figure 3, it is obvious that the performance 
degradation is shown under output feedback case by 
comparing with the state feedback case which 
indicated by Figure 1. However, the improvement of 
speed tracking performance under memory control 
case is obvious for the output feedback case. 

Based on Figure 1 and Figure 3, one can see that 
the memory control scheme is benefit to improve the 
control performance for both state and output feedback 
cases. It is well known that the tracking control 
performance is worse that the feedback case due to 
the fact that less information is obtained under output 
feedback case. Such fact is also confirmed by the 
above simulation results. 

5. CONCLUSIONS 

In this paper, FHMC scheme has been developed 
for the NCS by using the historic sampled-data. First, a 
chain-like delay model has been established to make 
full use the historic sampled-data. In order to cope with 
such step-by-step input delays, the corresponding 
chain-like Lyapunov-Krasovski function has been 
constructed such one can exploit the historic sampling 
knowledge. Then, LMIs have been derived which is 
readily to arrive at the memory controllers design. At 
last, the effectiveness of the proposed memory control 
scheme is confirmed via some simulation results. 

In fact, the proposed FHMC scheme shows some 
advantages on improvement of the control 
performance of the NCS by exploiting the historic 
sampling-data under networked environment. This 
extended the results on input delay approach with 
applications to the NCSs. In the future, the 
event-triggered control and security issues should be 
further considered based on the proposed FHMC 
scheme. 

6. ACKNOLEGEMENT 

This work was supported in part by the National 
Natural Science Foundation of China under Grants 



156  International Journal of Robotics and Automation Technology, 2023, Vol. 10 Liu et al. 

62103229, 62173218, the Natural Science Foundation 
of Shandong Province under Grant ZR2021QF026, the 
China Postdoctoral Science Foundation under Grant 
2021M692024. 

REFERENCES 

[1] Keqin Gu. An integral inequality in the stability problem of 
time-delay systems. In Proceedings of the 39th IEEE 
Conference on Decision and Control, volume 3, pages 
2805-2810. IEEE, 2000. 

[2] Emilia Fridman, Michel Dambrine, and Nima Yeganefar. On 
input-to-state stability of systems with time-delay: A matrix 
inequalities approach. Automatica, 44(9): 2364-2369, 2008. 
https://doi.org/10.1016/j.automatica.2008.01.012 

[3] Johan Lofberg. Yalmip: A toolbox for modeling and 
optimization in matlab. In 2004 IEEE International 
Conference on Robotics and Automation, pages 284-289. 
IEEE, 2004. 

[4] Young Soo Moon, Poogyeon Park, Wook Hyun Kwon, and 
Young Sam Lee. Delay-dependent robust stabilization of 
uncertain state-delayed systems. International Journal of 
control, 74(14): 1447-1455, 2001. 
https://doi.org/10.1080/00207170110067116 

[5] Xian-Ming Zhang, Qing-Long Han, Xiaohua Ge, Derui Ding, 
Lei Ding, Dong Yue, and Chen Peng. Networked control 
systems: A survey of trends and techniques. IEEE/CAA 
Journal of Automatica Sinica, 7(1): 1-17, 2019. 
https://doi.org/10.1109/JAS.2019.1911651 

[6] Rachana A Gupta and Mo-Yuen Chow. Overview of 
networked control systems. Networked Control Systems: 
Theory and Applications, pages 1-23, 2008. 
https://doi.org/10.1007/978-1-84800-215-9_1 

[7] Kun Liu, Anton Selivanov, and Emilia Fridman. Survey on 
time-delay approach to networked control. Annual Reviews 
in Control, 48: 57-79, 2019. 
https://doi.org/10.1016/j.arcontrol.2019.06.005 

[8] Emilia Fridman, Alexandre Seuret, and Jean-Pierre Richard. 
Robust sampled-data stabilization of linear systems: an input 
delay approach. Automatica, 40(8): 1441-1446, 2004. 
https://doi.org/10.1016/j.automatica.2004.03.003 

[9] Dawei Zhang, Qing-Long Han, and Xian-Ming Zhang. 
Network-based modeling and proportional-integral control for 
direct-drive-wheel systems in wireless network environments. 
IEEE Transactions on Cybernetics, 50(6): 2462-2474, 2019. 
https://doi.org/10.1109/TCYB.2019.2924450 

[10] Xian-Ming Zhang, Qing-Long Han, and Bao-Lin Zhang. An 
overview and deep investigation on sampled-data-based 
event-triggered control and filtering for networked systems. 
IEEE Transactions on Industrial Informatics, 13(1): 4-16, 
2016. 
https://doi.org/10.1109/TII.2016.2607150 

[11] Engang Tian and Chen Peng. Memory-based 
event-triggering H!  load frequency control for power 
systems under deception attacks. IEEE Transactions on 
Cybernetics, 50(11): 4610-4618, 2020. 
https://doi.org/10.1109/TCYB.2020.2972384 

[12] Wook Hyun Kwon and Soohee Han. Receding horizon finite 
memory controls for output feedback controls of state-space 
systems. IEEE Transactions on Automatic Control, 49(11): 
1905-1915, 2004. 

https://doi.org/10.1109/TAC.2004.837594 
[13] Choon Ki Ahn. Robustness bound for receding horizon finite 

memory control: Lyapunov-krasovskii approach. International 
Journal of Control, 85(7): 942-949, 2012. 
https://doi.org/10.1080/00207179.2012.669849 

[14] Wook Kwon and Oh Kwon. Fir filters and recursive forms for 
continuous time-invariant state-space models. IEEE 
transactions on automatic control, 32(4): 352-356, 1987. 
https://doi.org/10.1109/TAC.1987.1104606 

[15] Songlin Hu, Xiuxia Yin, Yunning Zhang, and Yong Ma. 
Further results on memory control of nonlinear discrete-time 
networked control systems with random input delay. 
Nonlinear Dynamics, 77: 1531-1545, 2014. 
https://doi.org/10.1007/s11071-014-1397-y 

[16] Xian-Ming Zhang, Qing-Long Han, Xiaohua Ge, and Lei Ding. 
Resilient control design based on a sampled-data model for 
a class of networked control systems under denial-of-service 
attacks. IEEE Transactions on Cybernetics, 50(8): 
3616-3626, 2020. 
https://doi.org/10.1109/TCYB.2019.2956137 

[17] Xian-Ming Zhang and Qing-Long Han. Event-triggered 
dynamic output feedback control for networked control 
systems. IET Control Theory & Applications, 8(4): 226-234, 
2014. 
https://doi.org/10.1049/iet-cta.2013.0253 

[18] Hong-Tao Sun, Chen Peng, Yulong Wang, and Yu-Chu Tian. 
Output-based resilient event-triggered control for networked 
control systems under denial of service attacks. IET Control 
Theory & Applications, 13(16): 2521-2528, 2019. 
https://doi.org/10.1049/iet-cta.2018.5167 

[19] Jin Zhang and Chen Peng. Guaranteed cost control of 
uncertain networked control systems with a hybrid 
communication scheme. IEEE Transactions on Systems, 
Man, and Cybernetics: Systems, 50(9): 3126-3135, 2018. 
https://doi.org/10.1109/TSMC.2018.2833203 

[20] Engang Tian, Zidong Wang, Lei Zou, and Dong Yue. 
Chance-constrained h!  control for a class of time-varying 
systems with stochastic nonlinearities: The finite-horizon 
case. Automatica, 107: 296-305, 2019. 
https://doi.org/10.1016/j.automatica.2019.05.039 

[21] Hong-Tao Sun, Chen Peng, Maoli Wang, and Min Zhao. 
Input to state stabilization of networked systems under a 
specified packet dropout rate. ISA transactions, 129: 
297-304, 2022. 
https://doi.org/10.1016/j.isatra.2021.12.027 

[22] Hongtao Sun, Chen Peng, Dong Yue, Yu Long Wang, and 
Tengfei Zhang. Resilient load frequency control of 
cyber-physical power systems under qos-dependent 
event-triggered communication. IEEE Transactions on 
Systems, Man, and Cybernetics: Systems, 51(4): 2113-2122, 
2020. 
https://doi.org/10.1109/TSMC.2020.2979992 

[23] Cesar AR Crusius and Alexandre Trofino. Sufficient lmi 
conditions for output feedback control problems. IEEE 
Transactions on Automatic Control, 44(5): 1053-1057, 1999. 
https://doi.org/10.1109/9.763227 

[24] Zahra Sadat Aghayan, Alireza Alfi, and António M Lopes. 
LMI-based delayed output feedback controller design for a 
class of fractional-order neutral-type delay systems using 
guaranteed cost control approach. Entropy, 24(10): 1496, 
2022. 
https://doi.org/10.3390/e24101496 

 
Received on 19-11-2023 Accepted on 22-12-2023 Published on 29-12-2023 
 
DOI: https://doi.org/10.31875/2409-9694.2023.10.14 
 
© 2023 Liu et al. 
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License 
(http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, 
provided the work is properly cited. 
 


