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Abstract: The algorithm based on deep learning has been widely used in defect detection in all walks of life, but the 
performance of the deep learning model depends mainly on rich annotation data. However, in the actual scene, 
obtaining large-scale, high-quality data to ensure users' privacy and safety is challenging, which limits its further 
promotion in specific application fields. To solve this problem, we propose a federated few-shot defect detection 
framework, which uses the privacy protection of the federated framework to jointly train independent few-shot tasks 
distributed on different clients to obtain a few-shot model that can quickly adapt to new tasks with limited data. We have 
done many experiments to evaluate our framework's effectiveness, and the results show that our framework is superior 
to the baseline and achieves the same performance as the model trained with a lot of data. 
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1. INTRODUCTION 

Surface defect detection plays an important role in 
the manufacturing process [1-5]. Undetected defects 
will affect the normal use of products and even lead to 
serious safety problems. Therefore, it is very important 
to realize an efficient and accurate defect detection 
system. However, it is challenging to accurately detect 
the surface defects of objects. As shown in Figure 1, 
some defects are blurred and hard to be distinguished 
from the background. In addition, the data volume of 
the defect detection dataset in the industry is very 
limited. For many extreme cases, it is almost 
impossible to collect enough data. The scarcity of data 
leads to the over-fitting of the model and poor 
performance. This problem hinders the practical 
application of defect detection to some extent [6]. 

To solve the problem of insufficient labeled data, 
many researchers are committed to making the model 
have excellent generalization ability through the 
few-shot learning technique [7]. The core idea of the 
few-shot learning technique is to classify and locate the 
targets in the image through training a small number of 
labeled samples and to obtain a detection model with 
certain generalization ability by designing reasonable 
training methods, model structure, and loss function, to 
realize effective detection of targets in complex 
environment [8-11]. 

The success of deep learning is inseparable from a 
large number of marked data [12], but the process of 
obtaining data also brings a series of data security risks. 
In the era of big data, data scattered on various devices 
will be collected and trained in a centralized machine 
learning model, which may lead to the disclosure of 
users' privacy and cause concerns about the security 
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of private information from all walks of life [13]. In this 
regard, researchers are thinking about how to ensure 
that data owners can combine the data of multiple 
users for model training without revealing their data 
privacy to provide them with more efficient, accurate, 
and safe models. Federated learning [14] came into 
being under this background. Different from the 
traditional machine learning model training, federated 
learning does not require all data to be centralized but 
only sends the model to each data source client, learns 
its own private data locally at the participants, and then 
aggregates the learning results of all parties to get the 
final global model. 

Federated few-shot learning [15] refers to the joint 
training of independent few-shot tasks built on multiple 
clients by using the few-shot learning method in the 
federated learning scenario so as to absorb the 
knowledge from multiple clients and build a few-shot 
model that can quickly adapt to local tasks. Among 
them, federated learning can train the model without 
leaving the local user data, which fully guarantees data 
privacy; few-shot learning solves the problem of the 
weak generalization ability of the model caused by a 
very small number of samples. The effectiveness of the 
combination of the two has been verified by a large 
number of studies, but there are still the following 
challenges in this direction. Firstly, the heterogeneity of 
data leads to the difficulty of convergence of the federal 
model [16]. In the federated learning scenario, due to 
the different data sources of each participant, the local 
data distribution of each participant is quite different 
from the global data distribution, that is, the problem of 
federal data heterogeneity. This problem makes the 
local optimization goal and the global optimization goal 
of each participant deviate during the training of the 
federated model, thus affecting the convergence speed 
of the model and the final prediction performance of the 
model. Secondly, the few-shot task in the federal scene 
is more difficult. The difficulty of the few-shot 



Few-Shot Defect Detection Algorithm Based on Federated Learning International Journal of Robotics and Automation Technology, 2024, Vol. 11  97 

classification task depends on the difference between 
different categories of samples. When the differences 
between different categories are large, the model is 
easier to distinguish, and vice versa. However, in the 
federal scenario, the data of a single participant is 
collected or generated from the same data source, 
which often leads to the sample categories of a single 
participant being closer to the global sample label 
space, making constructing the few-shot task more 
difficult. Difficult few-shot tasks will increase the 
difficulty of model learning and affect the generalization 
effect of the model. 

To solve the above problems, we propose a federal 
few-shot learning framework: the server uses 
reinforcement learning [22] technology to build a new 
clustering algorithm [17-20] to aggregate client models 
with similar tasks, thus solving the problem of client 
data heterogeneity; In the client local model, the 
contrast learning technology [21] is used to improve the 
intra-class compactness and inter-class differences at 
the instance level, thus alleviating the problem of 
misclassification and further improving the accuracy of 
recognition. We have done a lot of experiments to 
evaluate the effectiveness of our framework. The 
results show that our framework is superior to the 
contrasted baseline and achieves the same 
performance as the model trained with a large number 
of data. 

To sum up, our main contributions are summarized 
as follows.  

(1) In this work, we propose a clustering algorithm 
based on reinforcement learning. In federated learning, 
data heterogeneity leads to the difficulty of global 
model convergence. The problem of data 
heterogeneity was solved by aggregating only client 
models with similar tasks. Using reinforcement learning 
to build a clustering algorithm to divide clients with 
similar tasks into the same cluster avoids the problems 
of selecting the initial cluster center of traditional 
clustering, determining the number of clusters, and 
determining the high computational complexity of the 
clustering algorithm. 

(2) In the local model training, we found that many 
redundant candidate frames in the Faster-RCNN 
algorithm were extracted by the RPN (Region Proposal 
Network) network and input into the classification 
network in the second stage, which made the model 
training process slow and prone to misclassification. 
We use contrastive learning technology to improve the 
intra-class compactness of the same category and the 
inter-class differences of different categories and 
further find candidate boxes similar to labels, thus 
alleviating the impact of these issues and improving the 
accuracy of recognition. Through a large number of 
experimental tests, the effectiveness of our method is 
verified. 

2. RELATED WORK 

2.1. Defect Detection 

The purpose of defect detection is to classify and 
locate related defects in images. Early methods are 

 

Figure 1: Examples of PCB surface defects. (a) and (c) show two types of defects—spur and missing-hole—while (b) and (d) are 
the corresponding close-up views. As shown in the figure, these defects are subtle and challenging to detect against their 
background. 
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mainly based on hand-made features, such as 
directional gradient histogram [25] and accelerated 
robust features [26], and usually use some traditional 
machine learning algorithms, such as support vector 
machine [27-29], to distinguish defects from 
backgrounds. However, these methods are weak in 
extracting representative features in complex scenes 
and are often not suitable for practical projects. In 
recent years, deep learning algorithms have been 
widely used in defect detection because they can 
automatically learn a very discriminating representation 
by training models with marked data. A lot of work is 
based on some classic deep learning object detection 
frameworks, such as single shot detector (SSD) [30] 
and Faster R-CNN [23]. For example, Zeng et al. [31] 
used SSD to locate defective areas. Jin [32] used 
Faster R-CNN to identify related targets. Some 
researchers have proposed some effective modules 
and combined them with the classical detection 
framework. For example, Hao [33] introduced a feature 
fusion strategy in Faster R-CNN. Cheng and Yu [2] 
designed a new channel attention module, which 
improved the embedding of extraction. They designed 
a multi-layer feature fusion network to further improve 
the detection accuracy. These methods have achieved 
good results. 

However, all the above methods need a lot of 
annotated training data. In practical defect detection 
applications, this requirement is usually difficult to meet. 
To solve this problem, we combine federated learning 
with few-shot learning to realize a federated few-shot 
defect detection framework in this paper. In the case of 
insufficient training data, the framework can still 
achieve competitive performance while ensuring the 
security of user data. 

2.2. Few-Shot Detection 

The few-shot target detection task aims to classify 
and accurately locate the targets in the image by 
training a small number of labeled samples so as to 
obtain a detection model with good generalization 
ability. The task can be described as: given datasets 
and, representing base class datasets, each category 
has enough labeled training samples to represent new 
class datasets, and each category has only a few 
labeled samples. The categories in the base class and 
the new class do not overlap, that is, Cbase   ∩
  Cnovel   =   ∅. Given a test image, the category and 
position of N targets in this image are predicted. The 
goal of few-shot target detection is to predict the 
targets in the test image with the help of the prior 
knowledge learned in the annotated base class and a 
small number of new class training samples. Most work 
achieves this goal by designing strategies that transfer 
knowledge from similar task datasets to target task 
datasets. For example, Kang [8] proposed a 

re-weighting module to reflect the importance of 
various features. Fan [10] constructed a 
multi-relationship detector to take advantage of the 
similarity between different classes of samples. To sum 
up, the above methods are all based on meta-learning, 
which occupies a mainstream position in few-shot 
detection. However, these methods usually occupy a 
lot of memory to save pre-training data, so it is not 
convenient to apply them to practical projects. 

After experimental analysis, Tian [34] thinks that the 
paradigm based on meta-learning may not be the best 
solution. The federal few-shot defect detection 
framework we proposed is a few-shot defect detection 
framework based on fine-tuning. The client uses local 
data to fine-tune the basic model sent by the server 
and does not need to store a large amount of training 
data locally. This framework is more convenient to 
implement. 

2.3. Federated Learning 

In order to solve the two major problems of data 
islands and privacy protection in the era of big data, 
Federated Learning [14] has gradually stepped onto 
the historical stage with the purpose of shifting the 
focus of artificial intelligence to algorithm architecture 
with privacy protection. In 2016, Google put forward the 
original definition of federated learning [35], that is, a 
machine learning model can be trained in a distributed 
manner without centralized data. In the federated 
learning scenario, we divide the training data into 
horizontal federated learning, vertical federated 
learning, and federated transfer learning according to 
the data feature distribution and sample ID distribution 
among different participants [36]. Horizontal federal 
learning is mainly suitable for federal learning. 
Participants' data have overlapping data characteristics. 
The data characteristics overlap among participants, 
but the data samples owned by participants are 
different. However, longitudinal federated learning is 
suitable for data samples with overlapping training data 
of federated learning participants. However, when the 
datasets owned by participants in federated learning 
are small in the intersection of samples and features, 
all participants can try to use federated transfer 
learning to train a better machine learning model 
cooperatively. This paper will mainly focus on 
horizontal federal learning. 

Although federated learning can safely use the data 
information of all parties for model joint training in a 
distributed way, due to its training mode and setting, 
the data of all parties are usually non-independent and 
identically distributed; that is, there is data 
heterogeneity. Previous studies have shown that in 
heterogeneous data scenarios, local updates may lead 
to the performance degradation of the global model. As 
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shown in Figure 2, Zhao [37] proved that the Non-IID 
data distribution has a great influence on the model 
accuracy of the FedAvg algorithm through related 
experiments. Under the Non-IID data distribution, the 
data distribution of each participant is quite different 
from the global data distribution, which leads to the 
inconsistency between the local optimization objectives 
and the global optimization objectives of each 
participant. 

To solve this problem, we propose a clustering 
algorithm based on reinforcement learning, which 
divides clients with similar tasks into the same cluster. 
After the algorithm is completed, the federated 
aggregation algorithm FedAvg [35] is used to 
aggregate the model and send it to the clients so that 
clients with similar tasks can aggregate data with each 

other. After a large number of experiments, the 
algorithm significantly reduces the impact of Non-IID 
data on the global model and improves the 
generalization of the model. 

3. METHODOLOGY 

In this section, we explain the proposed federal 
few-shot defect detection framework and specific 
construction details. Specifically, section 3.1 introduces 
the whole process and learning plan. Then, sections 
3.2 and 3.3 describe the structure of the adopted basic 
model in detail. 

3.1. Overall Pipeline 

In this section, we outline the proposed federal 
few-shot defect detection framework, as shown in the 

 

Figure 2: Experimental effect of FedAvg under IID and Non-IID data distribution [37]. 

 

Figure 3: The overall training process of the model. The entire algorithm model proposed consists of 5 steps. Step 1: The server 
issues the basic model. The server trains the model using a public dataset and sends it to the client. Step 2: Client training. The 
client uses local sample data for model training. Step 3: The client uploads the model. The client uses the trained sample data as 
a local model representation and uploads it to the server. Step 4: Server aggregates client model parameters. The server uses 
the constructed clustering algorithm to aggregate clients with similar representation information. Step 5: Update. The client 
receives a model update from the server to update the local model. Repeat step four until the number of iterations or model 
convergence is reached. 
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figure. According to some previous work [1] and [33], 
we use Faster R-CNN [23] as our local model and 
replace the traditional method of region proposal [24] 
with RPN(Region Proposal Network) to realize 
complete end-to-end learning, thus speeding up the 
algorithm. FedAvg [35] aggregation algorithm is used in 
federated learning. FedAvg is a commonly used 
federated learning algorithm that aggregates model 
parameters through weighted averages. Its basic idea 
is to upload the parameters of the local model to the 
server, and the server calculates the average value of 
all model parameters and then broadcasts this average 
value back to all local devices. This process can be 
iterated many times until it converges, and it has the 
characteristics of low communication overhead and 
strong generalization. The entire framework process is 
shown in Figure 3 and the entire algorithm process is 
described in Algorithm 1. 

3.2. Optimization of Local Model 

We use Faster R-CNN as the client's basic model. 
We find that in few-shot learning because there is only 
limited local data, the object is usually located 
accurately. However, in difficult few-shot learning, it is 
easy to be wrongly classified into other categories that 
are easily confused. Secondly, in the Faster-RCNN 
algorithm, many redundant candidate frames are 
extracted by the RPN network and input into the 
classification network in the second stage, which 
causes the model training process to slow down and 
lead to misclassification. Our goal is to reduce the 

instance-level similarity between similar objects with 
different categories of labels. 

Specific methods. To learn contrastive object 
proposal encodings, we introduce a contrastive branch 
to guide the RPN features to learn contrastive-aware 
proposal embeddings. Further, proposals similar to the 
labeled label are found, which reduces the redundant 
candidate boxes to be input into the classification 
network in the second stage and increases the 
recognition accuracy. As shown in Figure 4. 

Similarity calculation. We use a bounding box 
classifier based on cosine similarity, in which the 
predicted !!!  instance is the !!!  class, which is 
calculated by cosine similarity between the feature 
vector !! and the class weight vector !!. 

!"#$%{!,!} =
!!
!!!

||!!||∙||!!||
       (1) 

Loss function. Our loss function is defined as 
follows. For a batch of feature maps  

{!! , !!}  !!!! , !! where is the !!! feature map feature of 
the regional scheme, !! is the label of foreground or 
background, !!  and τ is the nonparametric 
temperature, as shown in InfoNCE [38]. !!  and 
measure the cosine similarity between the !!!  proposal 
and the !!! proposal in the projected hypersphere. 

  ! = !!
!

Ⅱ{!!!
!!!,!!! } ∙ log !"#(!!⋅!!/!)

Ⅱ!!!∙!"#(!!⋅!!/!)
!
!!!

    (2) 
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3.3. Reinforcement Clustering Algorithm 

It is not the best choice to use the classical 
client-server federated learning architecture to train a 
globally shared model for scenarios where there are 
specific groups between clients, or the data distribution 
is obviously different. In contrast, it is more reasonable 
and effective to divide clients with similar data 
distribution into the same group and then train a 
federated learning model for each group, that is, to 
train a federated learning model for each client group 
with similar data distribution. 

We combine the Q-learning algorithm and 
partition-based clustering algorithm in reinforcement 
learning and propose a reinforcement-based clustering 
algorithm (RCA). Each iteration of the algorithm is 
regarded as a state of the RCA algorithm; each client is 
each Agent. Think of the combination of different 
clients as different actions. When selecting actions, the 
mechanisms of "exploration" and "utilization" are 
applied, and a new design method of greed coefficient 
is put forward to explore more possibilities and prevent 
falling into local optimum. The environment takes the 
changing trend of intra-class distance as the basis for 
sending reinforcement signals to the Agent. After 

receiving the reinforcement signals, the Agent updates 
the cumulative reward value of each behavior 
according to the types of reinforcement signals. When 
the cumulative reward value of each behavior in the 
Q-table converges or reaches the maximum number of 
iterations, the algorithm ends, and the clustering results 
are output for federated aggregation. 

Q-table construction. During the RCA algorithm 
operation, assuming that the number of input clients is 
n and the number of clusters is m, the Q-table with the 
size of N ∗M will be established in the initialization 
stage of the algorithm to store the cumulative reward 
value continuously updated by each Agent during the 
algorithm iteration. Each client is associated with an 
Agent in the algorithm, and each Agent is associated 
with a row of Q values in the Q-table. The iterative 
process of the algorithm is the process of constantly 
updating the Q-table. The structure of the Q-table is 
shown in Table 1. 

Construction of reinforcement signal. The 
reinforcement signal is the feedback signal given to the 
Agent by the environment in the strong learning task. 
There are generally two kinds of reinforcement signals, 
namely, rewarding reinforcement signals and punitive 

 

Figure 4: The overall structure of the local model. We introduced a contrastive learning branch in RPN to guide feature learning. 
We have designed a comparison objective to maximize intra-class consistency and cross-class inconsistency. 

Table 1: The Structure of the Q-Table 

Client (Agent) Action1 Action2 … Actionm 

Client1 R11 R12 … R1m 

Client2 R21 R22 … R2m 

Client3 R31 R31 … R3m 

… … … … … 

Clientn Rn1 Rn2 … Rnm 
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reinforcement signals. Intra-class distance refers to the 
mean square distance between sample points of the 
same class, which reflects the compactness of a 
cluster in the sample space. The smaller the intra-class 
distance, the more compact the samples in the cluster 
are, and the higher the similarity is. The greater the 
intra-class distance means that the samples in the 
cluster are more dispersed, the greater the span of 
each attribute value in the sample, and the lower the 
similarity between the samples. During the operation of 
the algorithm, when the intra-class distance becomes 
smaller, +1 represents the reward signal and -1 
represents the punishment signal. The calculation 
formula of intra-class distance is as follows. !(!!) 
represents the average within-class distance of cluster 
!!!, |!!| represents the number of samples in cluster 
!!!, M represents the dimension of input data, and !!" 
represents the !!! attribute value of sample !!!, !!" 
represents the !!! attribute of cluster center !!!. 

!!! =
!
|!!|

(!!! − !!!)!
!
!!!

|!!  |
!!!       (3) 

Selection of greed coefficient. Greedy strategy is 
a method based on probability to compromise the 
process of "exploration" and "utilization" in 
reinforcement learning when the Agent chooses 
behavior. In traditional federated learning, the greedy 
coefficient is a fixed value, which does not take into 
account the accumulation of "knowledge" by the Agent 
in the process of "exploration". In the process of 
"exploration", the Agent will store the accumulated 
"knowledge" in the Q-table in the form of cumulative 
reward value. The cumulative reward value of the 
Agent for each behavior can reflect the similarity 
between the sample and each cluster to some extent. It 
can be roughly considered that the similarity between 
the sample and the cluster with the largest cumulative 
reward value is the highest, and the similarity with the 
cluster with the smallest cumulative reward value is the 
lowest. To make greater use of the knowledge stored in 
the Q-table, the greedy coefficient is set to a dynamic 
value that increases with the number of iterations. The 
method of greedy coefficient changing with the number 
of iterations is as follows. !! represents the number of 
behaviors in the Q-table that have not been selected, 
and !! represents the total number of behaviors in 
the Q-table. 

ε = !!
!!

         (4) 

Operation process of the algorithm. Firstly, the 
required initialization parameters are input before the 
algorithm is operated. In the operation stage of the 
algorithm, all agents randomly select a behavior in the 

discrete behavior set during the first iteration, and the 
agents (clients) who choose the same behavior are 
grouped into a cluster; at the same time, the intra-class 
distance of each cluster is calculated and recorded. 
Starting from the second iteration, each Agent selects 
behaviors according to the ε-greedy strategy and 
calculates a new intra-class distance, which is 
compared with the intra-class distance obtained in the 
previous iteration. If the intra-class distance decreases, 
a reward signal is given to all agents in the cluster. If 
the intra-class distance increases, all Agents in the 
cluster are given punishment signals, and each Agent 
updates the cumulative reward of each behavior in the 
Q-table according to the type of reinforcement signal 
obtained until the change of the intra-class distance is 
less than the threshold or the algorithm stops iterating. 
Finally, the clients are outputted under each behavior 
(category). The entire algorithm process is described in 
Algorithm 2. 

4. EXPERIMENTS 

In the part of algorithm design in the previous 
section, this section mainly verifies the algorithm on the 
federated few-shot learning task of each step in the 
defect detection task is verified by experiments and 
compared with related algorithms. 

4.1. Data Preparation 

The dataset used in this chapter is taken from the 
public PCB dataset commonly used in the field of 
defect detection, which is widely used in defect 
detection research in the manufacturing industry. 

PCB defect dataset. It is a public synthetic PCB 
dataset published by Peking University, which contains 
1386 images and 6 kinds of defects (missing holes, 
mouse bites, open circuits, short circuits, stray, and 
fake copper) for detection, classification, and 
registration tasks. In this paper, we selected 693 
images that are suitable for the detection task, 
randomly selected 593 images as the training set, and 
100 images as the verification set. 

In addition to the above datasets, to verify the 
effectiveness of the improvement, this experiment also 
used the Deep-PCB defect dataset for the ablation 
experiment, and all the images in this dataset were 
obtained from linear scanning CCD. The dataset is 
divided into a training set and a verification set, in 
which the training set contains 700 pictures and the 
verification set contains 250 pictures. Each image has 
a resolution of 640×640 and contains 8 to 15 defect 
detection targets. 



Few-Shot Defect Detection Algorithm Based on Federated Learning International Journal of Robotics and Automation Technology, 2024, Vol. 11  103 

4.2. Experimental Setup 

To simulate the heterogeneous scene of the data 
domain in federated learning, we follow the popular 
strategy [39, 40], distribute samples to all clients 
according to Dirichlet distribution, and set the 
concentration parameter to 1.0. The experimental 
setup conditions used are shown in Table 2. 

Table 2: Experimental Condition Setting 

Condition Type Experimental Setup 

Batch size 4 

Training epochs 100 

optimizer Adam 

Learning rate 0.0015 

Weight decay 0.05 

Input size 640×640 

Confidence threshold 0.5 

4.3. Evaluating Indicator 

To evaluate the effectiveness of the improved 
network structure, this paper uses the following 
indicators to evaluate the model: mean average 
accuracy rate (AP), accuracy rate (Precision), and 
Recall rate. The mean average accuracy rate 
comprehensively considers the average accuracy rate 
of different categories, which can comprehensively 
evaluate the performance of multi-category target 
detection tasks. Accuracy (P) indicates the proportion 
of samples with positive prediction, while recall (R) 
indicates the proportion of positive samples with 
correct prediction. In the multi-class target detection 
task, a comprehensive performance evaluation index 
mAP is obtained by calculating the average accuracy 
rate (AP) of each class and taking the average value. 
The specific formula is as follows: 

 



104  International Journal of Robotics and Automation Technology, 2024, Vol. 11 Yufeng Xiong 

!" = !(!)!"!
!         (5) 

!"#$%&%'(   =    !"
!"!!"

       (6) 

!"#$%%   =    !"
!"!!"

        (7) 

!"# =    !"!
!
!!!
!

        (8) 

Among them, TP stands for True Positive, that is, 
the number of samples correctly predicted by the 
model is positive; FN represents False Negative, that is, 
the number of samples that the model failed to 
correctly predict as positive; FP stands for false 
positive, that is, the number of samples with positive 
model error prediction; mAP is the average accuracy of 
all categories; K is the number of categories. These 
indicators can comprehensively evaluate the 
performance of the model in the target detection task. 

4.4. Ablation Experiment 

In this part, we conducted ablation studies on the 
proposed federal few-shot model framework to validate 
the effectiveness of key designs in the framework. We 
use 20% of the data as the training set, and refer to 
Table 2 for other experimental settings. First, we get rid 
of the strategy of optimizing the local model by contrast 
learning, and we call this variant F1. Secondly, we 
remove the federated learning module so that the client 
model can't use the global knowledge in the server 
model to learn similar knowledge. We call this variant 
F2. The results of overall ablation research are shown 
in Table 3 and Table 4. From the results, we observe 
that this method is superior to all variants, which 
verifies the effectiveness of the design in this method. 

Table 3: Ablation Experiment Based on Dataset PCB 

Model mAP@0.5 Precision/% Recall/% 

this method 0.79 0.74 0.72 

F1 0.62 0.60 0.59 

F2 0.72 0.70 0.66 

 
Table 4: Ablation Experiment Based on Deep-PCB 

Dataset 

Model mAP@0.5 Precision/% Recall/% 

this method 0.79 0.75 0.78 

F1 0.61 0.61 0.64 

F2 0.72 0.70 0.72 

 
4.5. Contrast Experiment 

We train the model on the constructed PCB training 
set and evaluate its performance on the corresponding 
validation set. Simultaneously, we introduce several 
single-stage and two-stage object detection algorithms, 
including SPP-Net [41], Faster-RCNN, SSD, and 
YOLO-V5 [42], to compare their performance on 
few-shot tasks. Importantly, all comparison models are 
initialized with random weights, while the methods 
proposed in this chapter leverage weights pre-trained 
on ImageNet, a widely-used image dataset. The 
specific results are shown in Table 5. With a full training 
set, our method exhibits a slight advantage over all 
other target detection algorithms in terms of mAP. As 
the number of training samples decreases, the 
performance of all models declines, emphasizing that 
fewer samples result in each sample contributing more 

Table 5: Contrast Experiment Based on PCB Dataset 

Proportion Performance index 
Detection algorithm 

SPP-Net Faster-RCNN SSD YOLO-V5 Ours 

100% 

mAP@0.5 0.62 0.87 0.77 0.88 0.90 

Precision/% 0.67 0.88 0.79 0.91 0.89 

Recall/% 0.66 0.85 0.77 0.89 0.90 

FPS 11 15 45 55 14 

20% 

mAP@0.5 0.47 0.63 0.60 0.72 0.79 

Precision/% 0.60 0.62 0.61 0.68 0.74 

Recall/% 0.61 0.65 0.65 0.67 0.68 

FPS 11 15 45 55 14 

5% 

mAP@0.5 0.19 0.33 0.47 0.42 0.53 

Precision/% 0.40 0.56 0.52 0.50 0.56 

Recall/% 0.42 0.51 0.50 0.51 0.51 

FPS 11 15 45 55 14 

 



Few-Shot Defect Detection Algorithm Based on Federated Learning International Journal of Robotics and Automation Technology, 2024, Vol. 11  105 

significantly to the model’s performance, thereby 
causing a more considerable performance drop. Under 
few-shot conditions, our algorithm shows distinct 
advantages, particularly with 20% and 5% of the 
training samples. Furthermore, compared to other 
detection algorithms, our method demonstrates the 
smallest performance decline as the number of training 
samples reduces, highlighting its superior capability in 
handling few-shot learning tasks. 

Figure 5 shows the performance of the improved 
algorithm in dealing with different defects, such as 
mouse bite and short circuit. The results show that the 
improved algorithm can more accurately capture the 
missed targets detected by the original algorithm in the 
detection process and significantly improve the 
problem of missing detection of small target defects by 
the original algorithm. In addition, for the targets that 
can be detected by both models, the improved 
algorithm also shows a higher level of confidence, 
which shows that the improved algorithm has 
significantly improved the detection accuracy of small 
targets in the same complex background. 

Generally speaking, through this visual analysis, it 
is confirmed that the algorithm has obviously improved 
the accuracy of PCB defect identification and detection 
in complex backgrounds, which further verifies the 
effectiveness and substantial improvement of the 
improved algorithm. 

5. CONCLUSION 

In this paper, the problem of federated few-shot 
learning is studied, and its purpose is to learn a 
federated few-shot model that can obtain satisfactory 
performance in new tasks under the condition of limited 

labeled samples. However, due to the challenges of 
global data differences and insufficient local data, 
federated few-shot learning is still difficult to achieve. 
To address these challenges, we propose a new 
federated few-shot learning framework. Especially, we 
use reinforcement learning-based clustering algorithms 
to aggregate clients with similar tasks and then perform 
model aggregation on models belonging to the same 
cluster, greatly avoiding the problems caused by client 
data heterogeneity. Then, we utilized contrastive 
learning to identify candidate boxes that belong to 
similar categories to the labels further, alleviating the 
problem of misclassification. We conducted extensive 
experiments on few-shot learning datasets in a 
federated scenario, and the experimental results 
further validated that our framework outperforms other 
state-of-the-art baselines. 
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