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Vibro-Acoustic Formulation of Elastically Restrained Shear 
Deformable Orthotropic Plates Using a Simple Shear Deformation 
Theory 

A. Nayan and T.Y. Kam* 

Mechanical Engineering Department, National Chiao Tung University, Hsin Chu 300, Taiwan 
Abstract: A method is presented for vibro-acoustic analysis of elastically restrained orthotropic shear deformable plates 
subjected to excitation forces at different locations. The vibration of the shear deformable plate is formulated on the basis 
of the Ritz method and a simple first-order shear deformation theory in which 4 rather than 5 displacement components 
are used to simulate the deformation of the plate. The accuracy of the modal characteristics (natural frequency and 
mode shape) of an orthotropic plate predicted using the proposed method is verified by those obtained using other 
methods. The vibration responses of the plate are used in the first Rayleigh integral to construct the sound pressure level 
(SPL) curves of the plate subjected to excitation forces at different locations. The suitability of the present method for 
sound radiation analysis is validated by comparing the SPL curve obtained using the present method with those obtained 
using the other methods. The effects of different system parameters on the SPL curve of the plate are studied by means 
of several numerical examples. It has been shown that excitation location has significant effects on the smoothness of 
the SPL curve. 
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1. INTRODUCTION 

Recently, composite plates have found many 
applications in the engineering field. In particular, 
composite plates have been used in different industries 
such as aero-space, aircraft, automobile, and audio 
industries to fabricate structures or sound radiators of 
high performance and reliability. In general, these 
plates are flexibly restrained at their edges or 
connected at their edges to members which can be 
treated as elastic restraints. Since the vibration of a 
plate is susceptible to sound radiation, the vibro-
acoustic behavior of plate structures has thus become 
an important topic of research. Recently, many papers 
[1-10] have been devoted to the vibro-acoustics of 
plates with regular boundary conditions subjected to 
various loads. Since, in practical applications, 
elastically restrained plates are important structural 
parts, a number of researchers have formulated some 
general methods for the vibro-acoustic analysis of 
elastically restrained rectangular thin isotropic plates 
[11-15]. Regarding the plate theories for the analysis of 
moderately thick plates, the traditional First-Order 
Shear Deformation Theory (FSDT), which considers 5 
displacement components, introduced by Reissner [16] 
and Mindlin [17] has been widely used to study the 
deflection of plates. Kamand his associates have used 
this plate theory to study the vibro-acoustics of 
 

 

*Address correspondence to this author at the Mechanical Engineering 
Department, National Chiao Tung University, Hsin Chu 300, Taiwan; 
Tel: +886-3-5712121; Fax: +886-3-6125057; E-mail: tykam@mail.nctu.edu.tw 

composite plates [18,19]. Recently, a simple FSDT 
(termed SFSDT), which considers 4 displacement 
components, has been developed by Thai and Choi 
[20, 21] for bending and vibration analyses of laminated 
plates. The SFSDT, which can simplify the deflection 
analysis of moderate thick plates, may find applications 
insolving the iterative problems such as, for instance, 
optimal design, nonlinear analysis, and reliability 
analysis of plate structures. Therefore, it is worthy to 
explore the possible applications of the SFSDT in 
studying the vibro-acoustics of plates used for sound 
radiation. 

In this paper, the vibro-acoustics, especially, the 
SPL curves of elastically restrained shear deformable 
orthotropic plates are studied using a method 
formulated on the basis of the SFSDT, the Ritz method, 
and the first Rayleigh integral. The modal 
characteristics (frequency and mode shape) as well as 
the SPL curves of a number of elastically restrained 
shear deformable orthotropic plates are determined 
using the proposed method. The effects of several 
system parameters on the SPL curves of the plates are 
also studied using the proposed method.  

2. PLATE VIBRATION FORMULATION 

The rectangular orthotropic plate of size a (length) × 
b (width) ×hp (thickness) is elastically restrained along 
the plate periphery by distributed springs with 
translational and rotational spring constant intensities 
KLi and KRi, respectively, and at the center by a spring 
of spring constant Kc as shown in Figure 1. The x-y 
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plane of the reference coordinate is located at the mid-
plane of the plate. Herein, the displacement of the plate 
is modeled based on the SFSDT. The displacement 
field of the plate is expressed as 

 
Figure 1: Orthotropic sound radiation plate. 
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where up, vp, and wp are the displacements in x, y, and 
z directions, respectively; uop, vop are mid-plane 
displacements in x and y directions, respectively; wB, 
wS are mid-plane displacements in z direction due to 
bending and shear deformation, respectively. The 
strain-displacement relations of the plate are expressed 
as 
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The stress-strain relations of the orthotropic plate are 
given as [22] 
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where Qij is reduced stiffness constant, Ei is Young’s 
modulus in the ith direction, νij is Poisson’s ratio, and 
Gij is shear modulus. 

The strain energy, Up, of the plate is 
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In view of the relations given in eqns (1)-(4), eqn (5) 
can be rewritten as 
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where Kp is shear correction factor which is generally 
assumed to be 0.85. 

The kinetic energy, Tp, of the plate is 
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where ρp is plate mass density. In view of eqn (1), the 
above equation can be rewritten as 
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The strain energy, US, stored in the elastic restraints is 
written as 

   

U
S

=
K

L1

2
w2

0

b

! x=0
dy +

K
L2

2
w2

0

b

! x=0
dy +

K
L3

2
w2

0

b

! x=0
dy

+
K

L4

2
w2

0

b

! x=0
dy +

K
R1

2

"w

"x0

b

! x=0
dy +

K
R2

2

"w

"x0

b

! x=0
dy

+
K

R3

2

"w

" y0

b

! x=0
dy +

K
R4

2

"w

" y0

b

! x=0
dy + K

C
w

a

2
,
b

2

#

$
%%%%

&

'
((((

2

(9) 

The total strain energy U of the elastically restrained 
plate is the sum of Up and Us. 

The Rayleigh-Ritz method is used to study the free 
vibration of the elastically restrained stiffened plate. 
The displacements of the plate are expressed as 
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with 
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where Cij are unknown constants;   Â, B̂, Ĉ, D̂, Î, Ĵ, M̂, N̂  
denote the numbers of terms in the series. Legendre’s 
polynomials are used to represent the characteristic 
functions, φ and ψ. Let ξ=2x/a-1 and η=2y/b-1. The 
normalized characteristic functions, for instance, φi(ξ), 
are given as 

!1(") = 1,

!2 (") = ",  
!1" # " 1         (12) 

for n≥3, 

!
n
(") = [(2n # 3)" $ !

n#1(") # (n # 2) $!n#2 (")] / (n #1)  

with the satisfaction of the following orthogonality 
condition: 

  

!
n
(")!

m#1

1

$ (")d" =

0

2
2n #1

, if n % m

,if n = m

&
'
(

)(
      (13) 

Extremization of the functional Π=T–U gives the 
following eigenvalue problem. 

[K –ω2M]C = 0         (14) 

where K and M are structural stiffness and mass 
matrices; ω is circular frequency. The solution of the 
above eigenvalue problem can lead to the 
determination of the natural frequencies and mode 
shapes of the plate. The terms in K and M are listed in 
the appendix. 

3. PLATE SOUND RADIATION ANALYSIS 

The modal characteristics obtained in the previous 
section can be used to study the force vibration and 
sound radiation of the elastically restrained plate. For a 
sound radiation panel excited by an electro-magnetic 
transducer with a cylindrical voice coil of radius rc, the 
harmonic driving force F(t) = Fo sinωt acting on the 
bottom surface of the plate is distributed uniformly 
around a circle of radius rc. 

The equations of motion for the sound radiation 
plate subjected to forced vibration can be expressed as 

  
M !!C + D !C + KC = F         (15) 

where F is the force vector containing the following 
terms 
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It is noted that the contributions of 
 
w

B
and w

S
 to the 

work done by the applied force have been considered 
in deriving the above equation. The damping matrix D 
is 

  
[D] = ![M]+ "[K]         (17) 
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with α=ζω, β=2ζ/ω where ζ is damping ratio at the 
first resonant frequency of the elastically restrained 
plate. Equation (17) can be solved using the modal 
analysis method. Consider the case in which the plate 
is excited by line loads oriented in the x-direction. For a 
line load of length Lf and constant intensity located at 
the central area of the plate with y = b/2, the terms in F 
are expressed as 
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and for two line loads in parallel toward the x direction, 
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Referring to the baffled plate with area S shown in 
Figure 2, if the effects of air loading on the plate 
vibration are neglected, the sound pressure p(r, t) 
resulting from the vibration of the plate can be 
determined using the first Rayleigh integral. 
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Figure 2: Sound pressure measurement of baffled plate. 

where ρ0 is air density; k is wave number (  =! / c ) with 
c being speed of sound; r is the distance between the 
plate center and the point of measurement; 
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point and the position of the surface element at rs; θ is 

phase angle; 
  
j = !1 . For air at 20oC and standard 

atmospheric pressure, 
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0
= 1.2 kg / m3  and 

   c = 344 m / s . The SPL produced by the plate is 
calculated as 
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It is noted that both eqns (19) and (21) are solved 
numerically. 

Table 1: Properties of Orthotropic Plate 

Material constants Plate Surround 

E1 (GPa) 
E2 (GPa) 

ν12 

ν23 

ν13 

G12 (GPa) 

G23 (GPa) 

G13 (GPa) 
ρ(kg/m3) 
KC (N/m2) 
KL (N/m2) 

KR (N) 

3.7 
0.055 
0.03 
0.2 

0.03 
0.05 

0.05/6 
0.05 
300 

 

 
 
 
 
 
 
 
 
 

1654.4 
4744.7 

0 

4. RESULTS AND DISCUSSIONS 

The proposed vibration formulation is first applied to 
analyze the free vibration of an elastically restrained 
orthotropic plate of size 26.5 mm × 20.5 mm × 1 mm. 
The properties of the plate, spring constant intensity of 
the surround, and spring constant of the central support 
are listed in Table 1. For comparison purpose, the plate 
is also analyzed using two other methods, namely, the 
finite element code ANSYS [23] and the method 
formulated based on the conventional FSDT [24]. In the 
ANSYS finite element analysis, Shell99 elements and 
Combin14 elements are used to simulate the plate and 
springs, respectively. In the Rayleigh-Ritz methods 
based on the conventional FSDT and SFSDT, 10 terms 
for each displacement characteristic function are used 
in the free vibration analysis. The modal characteristics 
(frequency and mode shape) of the first 5 modes 
determined using different methods are tabulated in 
Table 2 for comparison. It is noted that all the results 
are in good agreement. In particular, the largest 
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percentage discrepancy between the fourth natural 
frequency determined from the finite element method 
and that from the SFSDT is only 2.88%. The sound 
radiation of the orthotropic plate is also studied using 
the present method. The SPL curves constructed using 
the vibration responses determined from different 
methods are shown in Figure 3 for comparison. It is 
noted that the fact of the SPL curves being almost the 

same, especially in the frequency range from 20 Hz to 
4 kHz, has demonstrated the suitability of the present 
method for sound radiation analysis of panel-form 
sound radiators. It is also worthy to note that the SPL 
dip at around 1.5 kHz is induced by the first vibration 
mode shape of the plate. 

Next, study how the system parameters such as 
plate thickness, elastic modulus ratio, and excitation 

Table 2: Mode Shape and Natural Frequency of Orthotropic Sound Radiating Plate 

Mode no. 
Method 

1 2 3 4 5 

Mode shape 

     

ANSYS 

Natural Freq.(Hz) 354.80 511.5 541.12 1073.4 1339.2 

Mode shape 
 

     

Natural Freq.(Hz) 354.6 509.9 541.2 1071 1333 

FSDT [24] 

Difference (%)* 0.06% 0.31% 0.01% 0.22% 0.47% 

Mode shape 

     

Natural Freq.(Hz) 354.9 510.8 542.4 1100 1351 

SFSDT 

Difference (%)* 0.03% 0.14% 0.24% 2.48% 0.88% 

*Difference (%) = 100x (ANSYS value - other value)/ANSYS value %. 

 

Figure 3: SPL curves of orthotropic plate (h = 1 mm) determined using different methods. 
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location affect the SPL curve, especially the first SPL 
dip of an orthotropic flat-panel sound radiator. Consider 
the above orthotropic plate of aspect ratio a/b = 2.92 
with a = 76 mm, b = 26 mm. The SPL curves of the 
plate with different thicknesses (hp), ie, 1.3 mm, 1.5 
mm, and 2 mm are determined using the present 
method as shown in Figure 4. It is noted that the plate 
thickness has a direct effect on the magnitude of the 
SPL curve, i.e, the thicker the plate, the lower the SPL. 
It is also noted that the first SPL dip frequencies for the 
plate thicknesses of 1.3, 1.5, and 2 mm are 900, 1100, 
and 1500 Hz, respectively. Therefore, the increase in 
plate thickness can increase the plate stiffness which in 
turn makes the first SPL dip frequency higher. The 
effects of the elastic modulus ratio, E1/E2 on the plate 
SPL curve are to be studied. Setting E2 = 0.055GPa, 
the SPL curves for E1/E2 = 1, 2, and 3 are shown in 
Figure 5 for comparison. The small variations of the 
SPL curves in the audible frequency range for these 
cases have demonstrated the fact that E1/E2 has 
negligible effects on the SPL curve behavior. Finally, 
the effects of excitation location on the SPL curve of 
the plate are studied using the present method. The 
SPL curves of the plate excited by, respectively, a 
circular force of radius rc = 9.35 mm at the plate center, 
one-line load, and two-line load are shown in Figure 6. 
The total force Fo for the three cases is 0.58415 N. For 
the one-line load case, the load with length Lf = 18.7 
mm is acting at the central area of the plate. The two 
line loads with length Lf = 18.7 mm are oriented in the 
x-direction and located at the central area of the plate 
with y- coordinates y1 = -9.35mm and y2 = 9.35 mm, 
respectively. As shown in Figure 6, the first SPL dip 
frequencies of the three cases are around 1.35kHz but 

the SPL dip magnitude of the one-line load case is 
much larger than those of the circular load and two-line 
load cases. The vibration mode shape for the first SPL 
dip frequency is shown in Table 2. Beyond the first SPL 
dip frequency, the SPL curve of the circular load case 
is very smooth while both the SPL curves of the one-
line and two-line load cases have an other SPL dips at 
around 5889 Hz. The vibration shapes of the plate at 
the second SPL dip frequency for different load cases 
are shown in Figure 7 for comparison. It is noted that in 
view of the vibration shapes of the load cases, the 
shape of the circular load case has the smallest 
opposite phase area which can thus lead to the 
smoothness of the SPL curve in that frequency range. 
Therefore, for this orthotropic flat-panel sound radiator, 
the location of the circular load case can produce the 
best SPL curve. In view of the above SPL curves of the 
plate obtained using different system parameters, it is 
clear that the excitation location may have significant 
beneficial effects on the SPL curve of the plate. 
Therefore, it is worthy to study the optimal excitation 
locations for different composite flat-panel sound 
radiators in the future. 

5. CONCLUSION 

A method based on the Rayleigh-Ritz method and 
the Rayleigh first integral has been developed for the 
vibro-acoustic analysis of elastically restrained shear 
deformable orthotropic rectangular plates. The simple 
FSDT composed of 4 displacement components has 
been used to formulate the vibration of the shear 
deformable plate. The accuracy of the proposed 
method in predicting the modal characteristics and SPL 
curve of an elastically restrained orthotropic plate of

 
Figure 4: SPL curves of orthotropic plate with different thicknesses (a/b = 2.92). 
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Figure 5: SPL curves of orthotropic plate with different E1/E2 ratios (a/b = 1.25, E2 = 0.055 GPa). 

 

 
Figure 6: SPL curves produced by excitation force at different locations. 

 

   
   (a) Circular load    (b) One-line Load   (c) Two-line load 

Figure 7: Vibration shape at the second SPL dip frequency (5889 Hz). 
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aspect ratio a/b = 1.3 has been verified by those 
obtained using other methods. The effects of thickness, 
Young’s modulus ratio E1/E2, and excitation location on 
the SPL curve of an elastically restrained rectangular 
orthotropic plate of aspect ratio a/b = 2.92 have been 
studied using the proposed method. It has been found 
that the increase in plate thickness can decrease the 
SPL and slightly increase the first SPL dip frequency, 
the effects of Young’s modulus ratio on the SPL curve 
of the plate is negligible, and the location of excitation 
force may have significant beneficial effects on the SPL 
curve of the plate.  
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where 
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