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Abstract: In raining days, the water drops can enter the compressor and cause security problems. However, there is still 
no appropriate numerical method for simulating the interaction between water drops and solid wall. The Euler-Lagrange 
(EL) method is usually regarded as the best solution for this problem, but it considers each water drop as a fluid particle 
and cannot allow the simulation of deformation. We propose to combine the Smoothed Particle Hydrodynamics (SPH) 
method with the EL method, which is named as SPH-EL method. In this contribution we introduce the idea of SPH-EL 
method as well as two key techniques: tracking the particle deformation and regrouping the distorted particles. Finally we 
present a 2D simulation with SPH method and will apply the SPH-EL method to improve the simulation in the future. 
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1. INTRODUCTION 

In raining days, the water drops can enter the 
compressor and cause security problems, and accurate 
prediction is therefore necessary. In general, water 
drops can reduce the efficiency of compressor, and 
sometimes can even lead to flameout [1-5]. However 
there are also experiments showing that in some cases 
the water drops may increase the efficiency [6]. 
Currently experiments are always needed to evaluate 
the effect of water drops, but the related cost is quite 
expensive. In this case, an accurate numerical 
simulation of the interaction between water drops and 
solid wall would be important. 

There are already many studies on this topic of 
numerical method. The group of Murthy has been 
working on simulating the water-wall interaction for 
over 30 years with the program WINCOF-I and 
simplified models [7-9]. In this century, researchers 
have become interested on the flow details, which 
cannot be predicted using these models. Recently 
Nikolaidis and Plidis performed a RANS (Reynolds 
Averaged Navier-Stokes) simulation under the Euler-
Lagrange (EL) framework by using a commercial 
software CFX [5]. The air flow was calculated by RANS 
in the Eulerian framework, and every water drop was 
considered as a fluid particle, which is tracked under 
the Lagrangian view. However, the water drop and 
water film are treated separately by using different 
models, which may lead to inconsistency. Indeed, we 
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would like to remark on the problems of present 
numerical methods in the following. 

(1) For the tracking technique of water drops, the 
present EL method considers each drop as a 
fluid particle. As commented in Ref. [5], this 
technique cannot consider the deformation, split 
or merge of water drops. In addition, in the 
present method the effect from water drops to 
the air flow is not considered, thus if the process 
of evaporation is calculated, the conservation of 
mass and momentum cannot be guaranteed. 

(2) For the calculation method of water film, the 
present studies often use simplified 
assumptions. For instance, in Ref. [5] the 
governing equation of film height was derived as 
the basic equation. Indeed, this equation is not 
consistent with the calculation of water drops. In 
particular, the conservation of momentum is 
difficult to be guaranteed. In addition, the 
phenomenon of “water rivulets” [6] is also difficult 
to be simulated. 

(3) For the conclusions, there are also conflictions. 
For instance, Multhy and Mullican concluded that 
even a little water (about 1%) can affect much 
the efficiency of compressors [8], but Williams 
and Freeman argued that the effect is negligible 
[6]. In brief, more precise numerical simulation is 
required. 

In this case, it would be necessary to develop new 
numerical methods to simulate the problem of water-
wall interaction. In the following, we will introduce our 
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idea of the SPH-EL method, as well as two key 
techniques: tracking the particle deformation and 
regrouping the distorted particles. Finally we present a 
2D simulation with SPH (Smoothed Particle 
Hydrodynamics) method to show the future objective of 
the SPH-EL development. 

2. IDEA OF THE SPH-EL METHOD 

As stated above, the present EL method cannot 
precisely simulate the interaction between water drops 
and solid wall. Instead, we propose to combine the 
SPH method together with the EL method. This 
concept of SPH-EL can be described as follows: 

(1) The EL method is employed to combine the 
calculation of air and water. An Eulerian view is 
used for calculating the air flow, while a 
Lagrangian view is applied for the evaluation of 
liquid phase. 

(2) Distinct from the traditional EL method, the SPH 
method is applied to simulate the behaviour of 
water drops and water film. It means that, every 
water drop should be calculated with many fluid 
particles instead of one particle. The interaction 
of these particles can then be considered 
appropriately. In addition, the water drops and 
water film can be simulated consistently. 

This concept of SPH-EL method is proposed above, 
however, currently we have not implemented all the 
details in practice. Indeed, it is found that the traditional 
SPH method has great problem in considering the 
problem of particle deformation. Therefore in the 
following two sections we will focus on solving this 
problem, which would be important in the future SPH-
EL implementation. 

3. METHOD FOR TRACKING THE DEFORMATION 
OF FLUID PARTICLES 

There are already several studies on tracking the 
deformation of fluid particles [10, 11], but they are not 
simple to be applied in practical problems. In this 
contribution we propose an alternative method to 
tracking the deformation of fluid particles, and present 
two applications in numerical practice. 

A Cartesian coordinate system is defined in 2D 
plane as A with its basis 
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The elliptic fluid particle is a suitable model with a 
favorable criterion for the deformation: the ratio of 
lengths between the major axis and the minor axis. The 
ellipse can be represented in a quadratic form. For 
example, we establish a reference frame E using the 
major axis  and the minor axis  of an ellipse (see 
Figure 1). We suppose A = 1/ a
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I is the inertial coordinate system and the velocity of 
flow is 
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decomposed into a symmetric tensor sij and an anti-
symmetric tensor aij. The tensor sij is diagonalizable 
and its two eigenvectors s1, s2 are the principal axes of 
strain: 
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where U
I

I  is an orthogonal matrix. Along the two axes 
of the orthonormal coordinate system S, the strain 
tensor sij becomes a pure stretch with no shear 
component (see Figure 1a). The frame E rotates to the 
frame S with an angle 
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After a time step of dt, the ellipse is stretched by the 
tensor sij (see Figure 1b) and then rotates like a rigid 
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body under the influence of the tensor aij (see Figure 1c). 
This stretch effect corresponds to a linear mapping s in 
2D plane which can be expressed as a diagonal matrix 
M

S

S
s( ) . Then the ellipse rotates !"dt  in 2D plane, 

regardless of reference frame. We note that this 
rotation can be realized by relative motion: the frame 
(here we suppose the frame S) rotates !"dt while the 
ellipse is fixed.  
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After calculating Eq.(3) and (4), we are able to solve 
the eigenvalue problem in Eq.(7). Then the new 
equation of new ellipse (green ellipse) in reference 
frame N is obtained as µ
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of lengths between the major axis and the minor axis 
can be calculated. 

4. METHOD FOR REGROUPING THE DISTORTED 
FLUID PARTICLES 

Although this method has great advantages on the 
surface simulation, the particle distortion is always an 
obvious problem and has never been fully solved [12]. 
For instance, the Taylor-Green Vortex will lead to 
inhomogeneous particle distribution and divergence 
(see Figure 2b). Traditional method usually uses the 
remeshing method [13], but this involves too strong 
numerical dissipation. Moreover, it is difficult to apply 
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can be found in the last section), its unit direction 
vector of short axis a = a

x
,a

y( ) , and its unit direction 

vector of long axis b = bx ,by( ) . We may also define its 
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. For simplicity, the 

particle is considered as a rectangle. In order to handle 
the problem of deformation efficiently, the particles are 
classified into two types, the ordinarily deformed 
particles whose rate of deformation is greater than c

1
, 

and the extraordinarily deformed particles of which the 
rate of deformation is greater than c

2
. In this paper, we 
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= 4.6 . 

This method is only adapted to the ordinarily 
deformed particles. Two ordinarily deformed particles 
marked (1) and (2) are taken into account, and after the 
regrouping, two new particles marked (3) and (4) are 
obtained eventually. This transformation is illustrated in 
Figure 3. 

A new open-source program “SPHturb” of 2D/3D 
SPH simulation for homogeneous isotropic turbulence, 
inspired by the formulation of Gingold and Monaghan, 
is developed as a platform for the present work. Here 
we focus on the Taylor-Green vortex in two 
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where F t( ) = e!2vt . At time t = 0,F t( ) = 1 . Boundary 
conditions are considered as periodic with a period L. 
In this case, we choose A = 1, C = -1, and the 
kinematic viscosity of the fluid v = 0. In the flowing 
simulation, the problem domain is a square with side 
length L = 1m, and the number of the particles is 
100 ! 100. The time step is 10-4s. 

 
       (a)          (b) 

Figure 2: Distribution of the particles for the 2D Taylor Green vortex simulation at step 2000. (a) with regrouping and (b) without 
regrouping. 

 
Figure 3: Illustration of two particles’ regrouping. 
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To demonstrate the effectiveness of these methods, 
we compare the simulation of the Taylor-Green vortex 
with regrouping to the one without it. It is shown in 
Figure 2 that, at the same time, the distribution of 
particles with regrouping is much more ordered than 
the one without it. This fact results in the numerical 
stability of the test case with local regrouping. 

5. TWO-DIMENSIONAL SPH SIMULATION OF 
WATER DROPS AND SOLID WALL 

In order to illustrate the idea of SPH-EL, here we 
perform a two-dimensional SPH simulation on the 
interaction between water drops and solid wall. The 
open-source program SPHysics [15] is employed for 
this calculation. Figure 4 shows the process from water 
drops to water film. Although the process is already 
simulated, the details are not analyzed yet. In 
particular, the techniques of tracking deformation and 
regrouping, which are introduced in the last two 
sections, have not been implemented in this case. This 
implementation will be performed in the near future, 
illustrating the possibility of employing the SPH concept 
to improve the EL method. 

6. CONCLUSION 

In this contribution, the concept of SPH-EL method 
is introduced as a possible improvement of the 
simulation of the interaction between water drops and 
solid wall. Two key techniques, that is, tracking the 
particle deformation and regrouping the distorted 
particles, are then developed. A test case of the Taylor-
Green vortex shows the performance of the new 
techniques. In addition, we present a 2D simulation 
with SPH method and will apply the SPH-EL method to 
improve the simulation in the future. 
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