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Abstract: This work considers existing formulation of a recent problem introduced in the literature and involves flow 
through a transition porous layer, whose solution has been found in terms of Airy’s functions and evaluated using 
asymptotic series. Ascending series expressions are derived in this work and used in the computations of the solution, 
namely the computations of Airy’s functions and the recently introduced Nield-Kuznetsov function that arises in the 
solution to inhomogeneous Airy’s equation. Ascending series expressions developed in this work represent a viable 
methodology in analyzing flow through the variable permeability transition layer, and are shown to produce results as 
accurate as the asymptotic series results available in the literature. Both thin and fat transition layers are considered in 
this work which compares friction factors, velocity profiles, and mean velocities in the two types of layers, Flow through a 
channel over a Darcy porous layer is also considered in this work and the computed results agree with known results. 
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1. INTRODUCTION 

Brinkman’s equation has received considerable 
attention in the literature of flow through a fluid channel 
over a porous layer due to the compatibility of this 
equation with the Navier-Stokes equations. Interfacial 
conditions of velocity and shear stress continuity [1-4]. 
Served as an alternative to the Beavers and Joseph 
slip hypothesis [5]. However, Brinkman’s equation with 
constant permeability and constant effective viscosity 
has received its share of criticism regarding its validity 
in describing flow through porous media [6]. Recent 
work, however, suggests the usefulness of Brinkman’s 
equation with variable permeability in describing flow 
through a transition layer between a fluid channel and a 
porous medium of constant permeability porous layer 
the flow through which is governed by Brinkman’s 
equation. This problem was first introduced by Nield, 
[7], and has been gaining popularity in the porous 
media literature, [8-10]. In fact, Nield and Kuznetsov, 
[11], have recently considered this exact problem of 
flow through a Brinkman layer of constant permeability 
bounded by a fluid layer with a transition layer 
sandwiched between the channel and the porous 
medium. Flow in the transition layer is governed by 
variable permeability Brinkman equation. 

Nield and Kuznetsov, [11], selected a permeability 
distribution in the transition layer that resulted in 
reducing Brinkman’s equation to an Airy’s 
inhomogeneous differential equation. In their process 
of analysis, they introduced a new integral function that 
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continues to be studied due to its many useful 
mathematical features and potential other applications, 
[12]. This function has been referred to as the Nield-
Kuznetsov function, and its evaluation has been 
through the asymptotic approximations of the Airy’s 
functions. In fact, the results obtained in [11] have been 
based on asymptotic expressions of the Nield-
Kuznetsov and Airy’s functions. The objective of the 
current work is to consider the same problem 
introduced in [11], and to provide analysis based on 
ascending series approximations of the Airy’s functions 
and the Nield-Kuznetsov function. Ascending series 
expressions for the Nield-Kuznetsov function are 
derived and use is made of the Cauchy product in its 
computation. Results obtained in this work are 
compared with those obtained by Nield and 
Kuznetsov [11]. 

2. PROBLEM FORMULATION AND SOLUTION 

2.1. Problem Formulation 

Following Nield and Kuznetsov, [11], flow through 
the three-layer configuration of thickness H, shown in 
Figure 1, is considered. The transition Brinkman layer 
is sandwiched between the fluid layer and the constant 
porosity porous layer, and spans the vertical dimension 
such that !H < y

*
< "H . 

Permeability distribution, )( *
yKK = , is chosen as 

follows. 

Layer 1: 

1 / K = 0  for 0 < y* < !H .       (1a) 
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Layer 2: 

1

K
=

y
* ! "H

K0 (# ! ")H
 for !H < y

*
< "H .      (1b) 

Layer 3:  

K = K0  for !H < y
*
< H ,       (1c) 

where K0  is a constant permeability. 

Assuming there is a uniform and common constant 
negative pressure gradient G = !Px throughout the 
domain and that the Brinkman model is employed in 
each porous layer and Navier-Stokes equations in the 
fluid layer, the equations governing the flow in the three 
layers are as follows: 

µ
d
2
u1
*

dy
*2

+G = 0 ; 0 < y* < !H ,       (2a) 

µe2
d
2
u2
*

dy
*2

!
µ

K2
u2
*
+G = 0 ; !H < y

*
< "H ,      (2b) 

and 

µe3
d
2
u3
*

dy
*2

!
µ

K3
u3
*
+G = 0 ;!H < y

*
< H ,      (2c) 

where in µ  is the base fluid viscosity, µe2  and µe3  are 
effective viscosities of the fluid in layers 2 and 3, 
respectively, and u1

* , u2
* , and u3

*  are the tangential 
velocity components in layers 1, 2 and 3, respectively. 

Introducing the dimensionless variables y =
y
*

H
, 

u =
µu*

GH
2

, and defining the Darcy number as 

Da =
K0

H
2
Da , and denoting the viscosity ratios M2  

and M3  by M2 =
µe2

µ
, M3 =

µe3

µ
, governing equations 

2(a, b, c), take the following forms respectively: 

d
2
u1

dy
2

+1 = 0 ; 0 < y < ! ,        (3a) 

M2

d
2
u2

dy
2

!
1

Da

y ! "
# ! "

$
%&

'
()
u2 +1 = 0  for ! < y < " ,          (3b) 

and 

M3

d
2
u3

dy
2

!
u3

Da
+1 = 0 ; ! < y < 1 .       (3c) 

Equations 3(a, b, c) are to be solved subject to no-
slip boundary conditions on solid walls (y=0 and y=1), 
and the matching conditions of velocity and shear 
stress continuity at the interfaces ( !=y  and !=y ) 
between layers, namely; 

u1 = 0  at y = 0 ,         (4a) 

u3 = 0  at y = 1 ,         (4b) 

u1 = u2  at y = ! ,         (4c) 

u2 = u3  at y = ! ,        (4d) 

du1

dy
=
du2

dy
 at y = ! ,         (4e)  

and 

du2

dy
=
du3

dy
 at y = ! .         (4f) 

Now, defining; 

!2 =
1

M2Da " # $( )%& '(
1/3

,         (5)  

!3 =
1

M3Da( )
1/2

,
          (6)

 

 
!y = !2 y " #( ) ,           (7) 

and writing; 

 
u2 y( ) !U2 !y( ) ,            (8) 

equations (3a), (3b), and (3c) are re-written as; 

d
2
u1

dy
2

+1 = 0 ; 0 < y < ! ,        (9a)
 

 
 

d
2
U2

d!y
2

! !yU2 +
1

M2"2
2
= 0  for; 

 
0 < !y < !2 " # $( ) ,        (9b) 

and 

d
2
u3

dy
2

! "3
2
u3 +

1

M3

= 0 ; ! < y < 1 .      (9c) 
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2.2. Velocity Expressions 

Equations (9a) and (9c) possess the following 
general solutions, respectively; 

u1 =
!y
2

2
+ c1y + d1 ,        (10) 

u3 = c3 exp !3y( ) + d3 exp "!3y( ) +
1

M3!3
2

.      (11) 

Equation (9b) is recognized as Airy; s 
inhomogeneous differential equation. The 
homogeneous part of (9b) possesses the 
complementary solution 

 
U2 = c2Ai !y( ) + d2Bi !y( ) ,        (12) 

where 
 
Ai !y( )  and 

 
Bi !y( )  are Airy’s functions of the first 

and second kind, respectively [12]. 

The Wronskian of Ai y( )  and Bi y( )  is given by:  

 
Ai !y( ) !Bi !y( ) " Bi !y( ) !Ai !y( ) = 1 /#        (13) 

and the particular solution of (9b) is obtained by the 
method of Variation of Parameters as; 

 

Up =
!

M2"2
2
Ni !y( ) ,         (14) 

where; 

 
Ni !y( )  = 

 

Ai !y( ) Bi (t)dt

0

!y

! " Bi !y( ) Ai (t)dt

0

!y

!       (15) 

is the Nield-Kuznetsov function whose derivative is 
given by 

 
!Ni !y( )  = 

 

!Ai !y( ) Bi (t)dt

0

!y

" # !Bi !y( ) Ai (t)dt

0

!y

"       (16) 

and the values at zero are Ni 0( ) = !Ni 0( ) = 0 . 

The general solution to equation (9b) is expressed 
with the help of (8) as: 

 

 

u2 (y) =U2 ( !y) = c2Ai !y( ) + d2Bi !y( )

+
!

M2"2
2
Ni !y( )

.      (17) 

Using (7) in (17), the following equation is obtained: 

u2 = c2Ai !2 y " #( )( ) + d2Bi !2 y " #( )( )

+
$

M2!2
2
Ni !2 y " #( )( )

.      (18) 

2.3. Shear Stress Expressions 

Shear stress terms across the layers are obtained 
from equations (10), (11) and (18), respectively, and 
take the following forms: 

!u1(y) = "y + c1 ,         (19) 

!u3(y) = c3"3 exp "3y( ) # d3"3 exp #"3y( ) ,      (20) 

and 

!u2 (y) = c2"2 !Ai "2 y # $( )( ) + d2"2 !Bi "2 y # $( )( )

+
%

M2"2
2
"2 !Ni "2 y # $( )( )

,     (21) 

where “prime” notation denotes differentiation with 
respect to the argument. 

2.4. Mean Velocity Expressions 

A measure of the overall volume flux through the 
channel is the dimensionless mean velocity u  defined 
by; 

u = u1dy

0

!

" + u2dy

!

#

" + u3dy

#

1

" .        (22)
 

Using equations (10), (11) and (18) in (22) results in: 

u =
1

2
c1!

2
+ d1! "

1

6
!3 +

c2

#2
Ai t( )dt

0

#
2
$"!( )

%

+
d2

#2
Bi t( )dt

0

#
2
$"!( )

% +
&

M2#2
2

Ni t( )dt
0

#
2
$"!( )

%

+
c3

#3
exp #3( ) " exp #3$( )( )

"
d3

#3
exp "#3( ) " exp "#3$( )( ) +

1"$

M3#3
2

.     (23) 

2.5. Friction Factor Expression 

A further quantity of interest is the value of the friction 
factor, c f , define as !du1 / dy  at y = ! . This represents 
the dimensionless frictional stress in the fluid at the 
interface between the fluid and the porous medium, 
and takes the form; 
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c f = ! " c1 .         (24) 

2.6. Matrix Expression for the Arbitrary Constants 

In order to determine the arbitrary constants in 
equations (10), (11) and (18), conditions 4(a-f) used, 
and the resulting linear equations are cast in the 
following matrix-vector form: 

 M
!
x =
!
c           (25) 

where M is the coefficient matrix given by;  

0 1 0 0 0 0

! 1 "Ai 0( ) "Bi 0( ) 0 0

1 0 "#2 $Ai 0( ) "#2 $Bi 0( ) 0 0

0 0 Ai#2 % " !( ) Bi#2 % " !( ) "e#3% "e"#3%

0 0 #2 $Ai#2 % " !( ) #2 $Bi#2 % " !( ) "#3e
#
3
% #3e

"#
3
%

0 0 0 0 e
#
3 e

"#
3

 (26) 

 

!
x =

c1

d1

c2

d2

c3

d3

!

"

#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&

         (27) 

and 

 

!
c =

0

!2 / 2

! +
"

M2#2
$Ni 0( )

1

M3#3
2
%

"
M2#2

Ni #2 & % !( )'( )*

%
"

M2#2
$Ni #2 & % !( )'( )*

%1 /M3#3
2

'

(

+
+
+
+
+
+
+
+
+
+
+
+
+

)

*

,
,
,
,
,
,
,
,
,
,
,
,
,

.      (28) 

2.7. Computation and Evaluation of Special 
Functions 

Determining the arbitrary constants in (25), and 
evaluation of solution (18), necessitates evaluating 
Airy’s functions and the Nield-Kuznetsov function, [12]. 
Two popular methods of evaluation are the asymptotic 
series and the ascending series methods. In their 
analysis, Nield and Kuznetsov, [11], used asymptotic 
 

series, valid for large arguments, to evaluate the said 
functions. In the current work, solutions are expressed 
in terms of the following ascending series. 

Letting a1 = Ai (0) ! 0.3550280538878172  and 
a2 = ! "Ai (0) # 0.2588194037928067 , and letting (b)k  be 
the Pochhammer symbol, [12], given by: 

(b)k =
!(b + k)

!(b)

= b(b +1)(b + 2)...(b + k "1); k > 0

,       (29) 

with 1)( 0 =b , Airy’s functions, their derivatives and 
integrals can be expressed as:  

Ai (x) = a1
1

3

!
"#

$
%&
k

3
k
x
3k

(3k)!
k=0

'

( ) a2
2

3

!
"#

$
%&
k

3
k
x
3k+1

(3k +1)!
k=0

'

(      (30) 

!Ai (x) = a1
1

3

"
#$

%
&'
k

3
k
x
3k(1

(3k (1)!
k=0

)

* ( a2
2

3

"
#$

%
&'
k

3
k
x
3k

(3k)!
k=0

)

*      (31) 

Ai (t)dt

0

x

! = a1

1

3

"
#$

%
&'
k

3
k
x
3k+1

(3k +1)!
k=0

(

)

*a2
2

3

"
#$

%
&'
k

3
k
x
3k+2

(3k + 2)!
k=0

(

)
       (32) 

Bi (x) = 3a1
1

3

!
"#

$
%&
k

3
k
x
3k

(3k)!
k=0

'

(

+ 3a2
2

3

!
"#

$
%&
k

3
k
x
3k+1

(3k +1)!
k=0

'

(
       (33) 

!Bi (x) = 3a1
1

3

"
#$

%
&'
k

3
k
x
3k(1

(3k (1)!
k=0

)

*

+ 3a2
2

3

"
#$

%
&'
k

3
k
x
3k

(3k)!
k=0

)

*
       (34)  

Bi (t)dt

0

x

! = 3a1
1

3

"
#$

%
&'
k

3
k
x
3k+1

(3k +1)!
k=0

(

)

+ 3a2
2

3

"
#$

%
&'
k

3
k
x
3k+2

(3k + 2)!
k=0

(

)
.      (35) 

Using definitions (15) and (16), and making use of 
(29) to (35), the following expressions for Ni (x)  and 

!Ni (x) are obtained, respectively: 
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Ni (x) = 2 3a1a2

1

3

!
"#

$
%&
k

3
k
x
3k

(3k)!
k=0

'

(
)
*
+

,+

-
.
+

/+

2

3

!
"#

$
%&
k

3
k
x
3k+2

(3k + 2)!
k=0

'

(
)
*
+

,+

-
.
+

/+

0
2

3

!
"#

$
%&
k

3
k
x
3k+1

(3k +1)!
k=0

'

(
)
*
+

,+

-
.
+

/+

1

3

!
"#

$
%&
k

3
k
x
3k+1

(3k +1)!
k=0

'

(
)
*
+

,+

-
.
+

/+

1

2

3
3
3
3
3
3
3
3
3
3
3
3
3

4

5

6
6
6
6
6
6
6
6
6
6
6
6
6

      (36) 

!Ni (x) = 2 3a1a2

1

3

"
#$

%
&'
k

3
k
x
3k(1

(3k (1)!
k=0

)

*
+
,
-

.-

/
0
-

1-

2

3

"
#$

%
&'
k

3
k
x
3k+2

(3k + 2)!
k=0

)

*
+
,
-

.-

/
0
-

1-

(
2

3

"
#$

%
&'
k

3
k
x
3k

(3k)!
k=0

)

*
+
,
-

.-

/
0
-

1-

1

3

"
#$

%
&'
k

3
k
x
3k+1

(3k +1)!
k=0

)

*
+
,
-

.-

/
0
-

1-

2

3

4
4
4
4
4
4
4
4
4
4
4
4
4

5

6

7
7
7
7
7
7
7
7
7
7
7
7
7

.      (37) 

In order to evaluate expressions (36) and (37), and 

to find Ni (t)dt

0

x

! , use is made of the Cauchy product to 

express (36) and (37), respectively as; 

Ni x( ) = 2 3a1a2

3
k

1

3

!
"#

$
%&
l

2

3

!
"#

$
%&
k'l

*

'3k + 6l '1
(3l +1)!(3(k ' l) + 2)!

!
"#

$
%&

l=0

k

(

!

"

#
#
#
#

$

%

&
&
&
&

x
3k+2

k=0

)

(
      (38) 

and 

!Ni x( ) = 2 3a1a2

3
k
(3k + 2)

1

3

"
#$

%
&'
l

2

3

"
#$

%
&'
k(l

*

(3k + 6l (1
(3l +1)!(3(k ( l) + 2)!

"
#$

%
&'

l=0

k

)

"

#

$
$
$
$

%

&

'
'
'
'

x
3k+1

k=0

*

)
     (39) 

and from (38), the following integral is obtained: 

Ni t( )
0

x

! dt = 2 3a1a2

3
k

1

3

"
#$

%
&'
l

2

3

"
#$

%
&'
k(l

*

(3k + 6l (1
(3l +1)!(3(k ( l) + 2)!

"
#$

%
&'

l=0

k

)

"

#

$
$
$
$

%

&

'
'
'
'

x
3k+3

3k + 3
k=0

*

)
.                 (40) 

2.8. Computational Algorithm 

Computations to render the stated problem 
completely solved proceed according to the following 
algorithm: 

1. Select Darcy number, Da, and the boundaries of 
the transition layer, y = !  and y = ! . 

2. Select viscosity ratio M2  and M3 . 

3. Calculate !2  and !3  using equations (5) and 
(6), respectively. 

4. Using the ascending series expressions, derived 
above, calculate entries in the coefficient matrix 
(26) and the right-hand-side vector (28). 

5. Using Maple, solve the matrix equation (25) for 
the arbitrary constants appearing in equations 
equations (10), (11) and (18). With the values of 
the arbitrary constants known, the velocity 
profiles (10), (11) and (18) are completely 
determined. 

6. Calculate the shear stress in each layer given in 
equations (19), (20) and (21). 

7. Calculate the mean velocity in equation (23) and 
the friction factor in equation (24). 

3. TWO-LAYER, DARCY FLOW MODEL WITH 
BEAVERS-JOSEPH CONDITION 

For the sake of comparison, the current work also 
considers the second situation treated by Nield and 
Kuznetsov [11], namely where a Darcy-type porous 
layer terminates a clear fluid channel and the Beavers–
Joseph boundary condition [5] is imposed at the 
interface between layers. The governing equations are: 

In the clear fluid channel; 

d
2
uD1

dy
2

+1 = 0 ; 0 < y < ! .       (41) 

In the Darcy layer; 

!
uD2

Da
+1 = 0 ; ! < y < 1 .         (42) 

Boundary and matching conditions are: 

uD1 = 0  at y = 0,        (43) 
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duD1

dy
= !"(uD1 ! uD2 )  at y = ! ,       (44) 

where ! =
"

Da

 and !  is the Beavers–Joseph slip 

parameter. 

The velocity distribution in the channel is the 
solution to (41) satisfying the given boundary 
conditions, and takes the form; 

uD1 =

! +
1

2
"!2 + "Da

(1+ "!)
y #

1

2
y
2        (45) 

and the Darcy velocity in the porous layer is the 
uniform velocity; 

uD2 = Da
.         (46) 

The mean velocity across the two layers is given by; 

uD = uD1dy

0

!

" + uD2dy

!

1

" =

! +
1

2
#!2 + #Da

(1+ #!)
y $

1

2
y
2

%

&

'
'
'

(

)

*
*
*
dy

0

!

" + Dady

!

1

"

      (47) 

or 

uD =
1

12(1+ !")
[4"3 + !"4

+(12 #12" +12!" # 6!"2 )Da]

,       (48) 

and the friction coefficient is given by; 

c fD = !
duD1

dy
y="

=
#"2 ! 2#Da

2(1+ #")
.       (49) 

4. RESULTS AND DISCUSSION 

For the flow in the triple layer, Figure 1, Results 
have been obtained for the range of Darcy number,  
Da = 1.0, Da = 0.1, Da = 0.01, Da =0.0006,  
Da = 0.0005 and Da=0.0004. The value of Da = 0.0004 
is the lowest value used, while computed results are 
accurate using Maple. Nield and Kuznetsov, [11], 
reported results for Da as low as 0.0002 using 
Mathematica. Computations were carried out for thin 
transition layer (! = 0.49  and ! = 0.51 ) and fat (thick) 
transition layer (! = 1 / 3  and ! = 2 / 3 ). 

In the absence of accurate values for the effective 
viscosity, viscosity ratios have been chosen as 
M2 = M3 = 1 . However, for the flow in the channel 
bounded by Darcy layer, we use Da = 0.0002. 

Values of the arbitrary constants appearing in 
equations (10), (11) and (18), and computed through 
the matrix-vector equation (25), are listed in Table 1 for 
different values of Da and the two transition layer 
thicknesses employed. The arbitrary constants were 
computed using 16 digits and used in their full accuracy 
in the computation of velocity profiles, mean velocities, 
and friction factors. However, in Table 1(a, b), we list 5 
decimal places of accuracy. 

Table 1(a): Values of 
 
c1 ,d1 ,c2 ,d2 ,c3 ,d3 , for 

Different Darcy Number and Layer Thicknesses 

Da Da = 1 Da = 0.1 

c1  0.48715 0.41311 

d1  0 0 

c2  -0.05558 0.06609 

d2  0.20582 0.09543 

c3  -0.27103 -0.00428 

! = 1 / 3

! = 2 / 3  

d3  -0.71560 0.02997 

c1  0.48771 0.41841 

d1  0 0 

c2  0.16869 0.137099 

d2  0.09601 0.05903 

c3  -0.27095 -0.00428 

! = 0.49

! = 0.51  

d3  -0.71625 0.02434 

 
Figure 1: Representative Sketch. 
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Table 1(b): Values of 
 
c1 ,d1 ,c2 ,d2 ,c3 ,d3 , for 

Different Darcy Number and Layer Thicknesses 

Da Da = 0.01 Da = 0.0006 

c1 0.28391 0.20965 

d1  0 0 

c2 0.06930 0.03415 

d2  0.02354 0.00358 

c3  -4.5988 ! 10-7 -1.1172 ! 10-21 

! = 1 / 3

! = 2 / 3  

d3  2.8554 1.6951 ! 107 

c1  0.30797 0.26223 

d1  0 0 

c2  0.06402 0.02196 

d2  0.01322 0.00105 

c3  -4.5985 !  10-7 -1.1172 ! 10-21 

! = 0.49

! = 0.51  

d3  2.8353 4.1707 ! 106 

Values of the mean velocity across the three-
layered configuration, u , together with the friction 
factor c f , and the mean velocity across the channel 

bounded by Darcy layer, uD , together with the 
associated friction factor, c fD , are listed in  
Table 2(a, b).  

Table 2(a): Values of Mean Velocity u  and Friction 
Coefficient c f for Various Da, for Fat and Thin 
Transition Layers 

Da = 1 Da = 0.1 
 

Fat Thin Fat Thin 

u  0.0794 
  0.0794* 

0.0794 
  0.0794* 0.0569 0.0574 

uD  0.7184 
0.6145 

0.6201 
  0.6146* 0.0828 0.0872 

c f  -0.1538 
-0.153* 

0.0023 
0.002* -0.0798 0.0716 

c fD  -0.7082 
-0.583* 

-0.5906 
-0.583* -0.0684 0.0249 

* Nield and Kuznetsov Results, [11]. 

 

In the Darcy configuration, we used ! = 1 , chosen 
as a representative value. Values computed in this 
work are compared with those reported in [11]. Table 2 
shows that there is exact agreement in the values of 
u and c f  (up to within the number of significant digits 
reported) between the current computations that use 

ascending series representations, and Nield and 
Kuznetsov’s results, obtained using asymptotic series 
approximations, [11]. For the values of uD  and c fD , 
Table 2 shows a slight discrepancy between the 
current results and those obtained in [11], (even though 
current computations are based on their solutions for 
the Darcy case). The behavior of uD  and c fD  
computed here is a mirror image of the corresponding 
behavior they reported. This behavior is illustrated in 
Figure 2 and 3, below, produced when Da = 0.0002. 
Figure 2 shows the decrease of the mean velocity, uD , 
with increasing !  (along a curve that resembles a 
rectangular hyperbola), while Figure 3 shows a sharp 
and rapid increase in c fD  with a slight increase in ! . 

The c fD curve flattens with further increase in ! . 

Table 2(b): Values of Mean Velocity u  and Friction 
Coefficient c f for Various Da, for Fat and Thin 
Transition Layers 

Da = 0.01 Da = 0.0006 
 

Fat Thin Fat Thin 

u  0.0207 
 0.0207* 

0.0236 
 0.0236* 0.0068 0.0142 

uD  0.0132 
 0.0227* 

0.0219 
 0.0227* 0.0042 0.0117 

c f  0.0494 
0.049* 

0.1820 
0.182* 0.1237 0.2278 

c fD  0.1051 
0.192* 

0.1865 
0.192* 0.1536 0.2322 

* Nield and Kuznetsov Results, [11]. 

 

 
Figure 2: Mean velocity uD  as a function of the slip 
parameter ! . Da=0.0002. 
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Figure 3: Friction factor c fD  as a function of the slip 
parameter ! . Da=0.0002. 

Velocity profiles in the channel sandwiching the 
transition layer are shown in Figures 4 to 9 to illustrate 
the effects of the transition layer thickness and the 
effects of Darcy number. For the case of Da = 1,  
Figure 4 shows that the profile across the channel is 
not affected by the transition layer thickness. For both 
thin and fat layers, the velocity profiles are the same 
(graphically) and are parabolic-like. This is an expected 
behavior since for Da = 1, the permeability approaches 
infinity and flow in the three-layered channel resembles 
the Navier-Stokes’ Poiseuielle flow. This is in 
agreement with the profiles reported in [11]. 

 
Figure 4: Velocity profile in the triple-layered configuration for 
thin and fat transition layers. Da = 1. 

As Da decreases, the velocity profiles across the 
channel start deviating from the parabolic-like behavior 

and the thin layer profiles velocity increases, as 
compared with the fat layer case. How the velocity 
profiles progress for decreasing Da is illustrated in 
Figures 5, 6, and 7, which show that the thin layer 
velocity becomes more pronounced, and increases 
relative to the fat transition layer profiles. This is the 
same behavior reported in [11], and may be interpreted 
in terms of the greater influence and higher momentum 
transfer the Navier-Stokes channel has on the thin 
transition layer for lower Da, thus increasing the 
velocity in the porous layers. 

 
Figure 5: Velocity profile in the triple-layered configuration for 
thin and fat transition layers. Da = 0.1. 

 

 
Figure 6: Velocity profile in the triple-layered configuration for 
thin and fat transition layers. Da = 0.01. 
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Figure 7: Velocity profile in the triple-layered configuration for 
thin and fat transition layers. Da = 0.0005. 

The effects of changing Da on the velocity profiles 
for thin and fat layers are illustrated in Figures 8 and 9. 
In Figure 8, effects of Da are illustrated for the thick 
transition layer and show the increase in velocity with 
increasing Da. A similar behavior is illustrated for the 
thin layer, and shown in Figure 9. This expected 
behavior is interpreted to be due to the greater flow 
rate for larger Da, equivalently higher permeability. 

CONCLUSION 

In this work, ascending series expressions for the 
Nield-Koznetsov function were developed and 

implemented in the study of the transition zone 
problem. The derived expressions produce highly 
accurate results, as has been discussed when an 
existing transition layer problem has been analyzed. 
Thin and fat transition layers have been considered 
and the velocity profiles show the increase in the thin 
layer velocity, relative to the thick layer, as a result of 
the greater momentum transfer from the channel to the 
fluid in the thin layer. The effects of increasing Darcy 
number on the velocity profile have been analyzed for 
thin and fat layers, and show the expected increase in 
the fluid velocity with increasing Darcy number. The 
flow through the channel over a Darcy layer has also 
been analyzed with the main conclusion that the mean 
Darcy velocity is a decreasing function of the slip 
parameter. 
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Figure 8: Velocity profile in the triple-layered configuration for 
a fat transition layer for different Da. 

 

Figure 9: Velocity profile in the triple-layered configuration for 
a thin transition layer for different Da. 
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