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Abstract: This paper investigates the similarity solutions of the steady two-dimensional flow of a stream of viscous fluid 
with far field viscosity past a vertical plate. The variable viscosity, thermal conductivity and heat sink in momentum and 
energy equations are incorporated. The governing system of equations are transformed into dimensionless equations 
and solved numerically by using Maple-13 software for different boundary conditions and for various values of 
parameters. The effects of different values of physical parameters on the velocity and temperature profiles as well as on 
the skin-friction coefficient and Nusselt number are discussed. 
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1. INTRODUCTION 

The flow and heat transfer of a thin film determining 
the coating process, chemical processing equipment’s 
and heat exchangers design. It is having other applica-
tions include food stuff processing, wire and fibre 
coating and transpiration cooling etc. The plasma 
optical emission from various distance from graphite 
surface moving with temperature varied from the plas-
ma plume have been explained by Diamant et al. [1].  

For the case of flow without heat transfer the non-
dimensionalized thermal equation depends on the 
viscosity parameter, dimensionless temperature and 
the equation depends on the thermal conductivity, 
Prandtl number and dimensionless temperature 
Reynolds Number and hence all physical realizations of 
the related experiment will have the same value of non-
dimensionalized variables for the same Reynolds 
Number. Arunachalam and Rajappa [2] studied forced 
convection in liquid metal with variable thermal 
conductivity and obtained explicit analytical solutions in 
closed form. Carey and Mollendorf [3] investigated heat 
transfer in fluid flow of low Prandtl number with variable 
thermal conductivity. Fluid flow and heat transfer 
characteristics of a stretching sheet with variable 
temperature condition was investigated by Grubka and 
Bobba [4]. Effect of variable viscosity and the thermal 
diffusivity on mixed convection flow along vertical 
isothermal plate have been reported by Seddeek and 
Salem [4]. 
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Mahanti and Gaur [6] studied the effects of linearly 
varying viscosity and thermal conductivity on steady 
free convective flow and heat transfer along an 
isothermal vertical plate in the presence of heat sink. 
Mohammad Rashidi et al. [7] applied one parameter 
continuous group method to investigate magneto-
hydrodynamics (MHD) heat and mass transfer flow of a 
viscous incompressible fluid over a flat plate. 

The aim of the present work is twofold: firstly to 
derive systematically the similarity transformation under 
similarity requirement for the governing equations, 
secondly the highly nonlinear PDE's governing the 
particular fluid flow of boundary layer theory is 
transformed into an ODE by searching the group of 
transformation subject to the similarity requirement. 
The reduced non-linear ODE-BVP is numerically 
solved by Runge-Kutta shooting method using MAPLE 
13 computational algorithm. 

2. PROBLEM FORMULATION  

We consider steady two dimensional flow of a thin 
layer (boundary layer) of incompressible fluid past a 
vertical plate along the x -axis. We incorporate heat 
sink in the energy equation. The x -axis is taken along 
the plate and y -axis is normal to the plate. The 
physical model and the coordinate system are shown in 
Figure 1.  

Under the Buossinesq approximation, the governing 
continuity, momentum and energy equations are 
written as, 
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Figure 1: Physical and Coordinate system. 

Energy Equation 
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Where u  and v  are the velocity components in the 
x  and y  directions respectively. T  is the fluid 
temperature, v  is the kinematic viscosity, !  is the fluid 
density. ue ( x ) is the velocity at the edge of boundary 
layer, g  is the acceleration due to gravity, !  is the co 
efficient of thermal expansion, Tw  is the wall 

temperature,  T! is the ambient temperature, cp  is the 
specific heat, k *  is the variable thermal conductivity. 

Subjected to the boundary conditions are,  

u = 0, v = 0, w = 0, T = Tw at y = 0
u! ue x( ) = u"x, T !T" as y!"
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we may take the following suitable similarity variables 
as discussed by Darji and Timol [8]. 
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K* = k[1+ !" ]  

µ* = µ[1+ !(" # 1
2
)]  

Q = S{k(Tw !T" ) / x
2 (Gr / 4)1/2 (T !T" )}  

where L  is the reference Length, u! (x)  is the velocity 
of main stream, v  is the kinematic viscosity, Re  is the 
Reynolds number. 

The boundary layer equations (1-3) reduces to, 
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The above equations can be reduced to a system of 
ordinary differential equations by defining new 
variables solved by Rashidi et al. [7]. 
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Using mathematical manipulations, we can write the 
transformed momentum and energy equations for two 
dimensional incompressible thin layer flow as,  
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Equations (4) are subject to the following boundary 
conditions,  
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In the above prime denote differentiation with 
respect to ! . Where Grashof number is defined as 

Gr =
g!L Tw "T#( )

u#
2

 and Heat sink parameter is defined 

as S = QL
!cp Tw "T#( )

 

From the engineering point of view the important 
characteristics of the flow and the skin friction co 
efficient and the Nusselt number respectively. 

Skin friction co efficient: 
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Since (v << u) , therefore the skin friction coefficient 
as the non dimensional wall shear stress given by 
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The rate of heat transfer in terms of the Nusselt 
number at plate may be written as:  
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3. NUMERICAL RESULTS AND DISCUSSION 

The coupled system of equations (9) - (10) subject 
to boundary conditions in (11) were solved numerically 
by RungeKutta-Fhelberg method along with shooting 
technique using Maple-13 software, see Aziz [9]. The 
asymptotic boundary conditions given by (11) were 
replaced by using a value of 6 for the similarity variable 

 !max  as follows: 

!max = 6, "f 6( ) = u# = 0.5,$ 6( ) = 0   

The choice of  !max  = 6 confirms that the far field 
boundary conditions satisfy correctly. It is worth 
mentioning that a uniform grid of !" = 0.01  was found 
to be satisfactory for convergence criterion of 10-6 is all 
most all the cases. Solutions for a range of !,Gr,",Pr  
and S are however useful since they illustrate the main 
features of the response boundary layers.  

We can demonstrate the variation of velocity, temp 
profile shapes and the missing slopes ( !!f 0( ) , !" 0( ) ) 
near the plate. 

The values of !!f 0( ) , !" 0( )  for different values of 
!,Pr,S  and !  are tabulated in Table 1 as these are 
used for the evaluation of skin friction and Nusselt 
number. It is observed from this table that the velocity 
and the temperature of the fluid decrease with an 
increase in Prandtl number.  

Figure 2 shows the corresponding velocity profiles 
for several values of the Prandlt number Pr =1,7,10 
with Gr = 1, u∞ = 0.5,  = -0.4, S = 0, ε = 0.1 when 
Pr>>1 (heavy, high viscosity oils) the velocity boundary 
layer is very much thicker. 

The temperature profiles in Figure 3 are for a 
vertical plate with fluids of different Prandtl number 
where u∞ = 0.5, Gr = 1,  = -0.4, S = 0, ε = 0. The 
profile thickness is greatly affected by the Prandtl 
number, but the effect on profile shape is rather smaller 
at higher values. 

Figures 4-5 shows the Grashof number (Gr = 
1,1.5,2) results obtained with u∞ = 0.5, Pr =1, S = 0.0, 
 = -0.4, ε = 0.3. It is seen that the velocity profile 
increases with increasing Gr and the temperature 
profile decreases with increasing Gr. 

Figures 6-7 depict the effects of  = -0.4,0, 0.4 with 
u∞ = 0.5, Pr = 1, S = 0.0, Gr = 1, ε = 0.3 as might be 
expected the higher values of γ with corresponding 
decrease of velocity fluid flow and increase of 
temperature fluid flow.  

Figures 8-9 present the influence of S = 0, 0.2, 0.5 
with u∞ = 0.5, Gr = 1,  = -0.4, Pr = 1, ε = 0.1 on the 
velocity and temperature profiles. It is seen that the 
velocity flow profile is accelerating with the increase of 
S as it moves away from the vertex. On the 
temperature of fluid first accelerating and then 
decelerating due to increasing S. 
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Table 1: Missing Slopes of !!f (0)  and !" '(0)  for Different Values of !,Pr,S  and !  

 ! = "0.4  ! = 0.0  ! = 0.4  

S=0.0 
Pr = 1 

!!f (0)  !" '(0)  !!f (0)  !" '(0)  !!f (0)  !" '(0)  

!= 0.0  0.875777 0.384717 0.753160 0.377660 0.665743 0.371659 

!= 0.1  0.884052 0.363770 0.761043 0.357162 0.673253 0.351534 

!= 0.3  0.898691 0.330512 0.774964 0.324631 0.686502 0.319610 

S=0.0  
Pr = 7 

      

!= 0.0  0.656103 0.772291 0.555777 0.753062 0.485388 0.737263 

!= 0.1  0.664478 0.732947 0.563347 0.714670 0.492547 0.699635 

!= 0.3  0.679631 0.670694 0.577383 0.653971 0.505460 0.640186 

S=0.1 
Pr = 7 

      

!= 0.0  0.664463 0.724870 0.563862 0.704375 0.493274 0.687457 

!= 0.1  0.672656 0.688873 0.571397 0.669429 0.500233 0.653362 

!= 0.3  0.687488 0.631849 0.585007 0.614115 0.512286 0.599434 

S=0.2 
Pr = 7 

      

!= 0.0  0.673074 0.676073 0.572244 0.654188 0.501395 0.636031 

!= 0.1  0.681074 0.643543 0.579597 0.622820 0.508230 0.605614 

!= 0.3  0.695564 0.591932 0.592886 0.573095 0.520560 0.557430 

S=0.2  
Pr = 10 

      

!= 0.0  0.618393 0.765630 0.533015 0.755851 0.461646 0.723136 

!= 0.1  0.636858 0.742959 0.540222 0.719448 0.468622 0.687394 

!= 0.3  0.651166 0.683288 0.553279 0.661829 0.480168 0.633012 

 
S=0.0 

!= 0.3  
Pr = 1 

!!f (0)  !" '(0)  !!f (0)  !" '(0)  !!f (0)  !" '(0)  

Gr = 1 1.227487 0.437548 1.046749 0.426792 0.918317 0.417720 

Gr = 1.5 1.554203 0.469785 1.325511 0.458246 1.163067 0.448538 

Gr = 2 1.859452 0.496465 1.585957 0.484278 1.391731 0.474042 

 

Figures 10-11 show the corresponding velocity and 
temperature profiles for various values of ε = 0, 0.1, 0.3 
with u∞ = 0.5, Pr = 1, G r = 1,  = -0.4, S = 0.0. 

The profiles in Figure 11 show that ε has some 
effect on the temperature profiles but much less than 

on the velocity profiles (Figure 10). Of course this effect 
is exerted via changes in the velocity profile, ε as such 
does not appear in the momentum equation for 
incompressible flow, equation (10) with the increase in 
the value of ε, the temperature of fluid increases. The 
temperature profile thickness is greatly affected by ε.  
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Figure 2: The dimensionless velocity f '  as a factor of η for 
various values of Pr. 

 

 
Figure 3: The dimensionless temperature θ as a factor of η 
for various values of Pr. 

 

 
Figure 4: The dimensionless velocity f '  as a factor of η for 
various values of Gr. 

 
Figure 5: The dimensionless temperature θ as a factor of η 
for various values of Gr. 

 

 
Figure 6: The dimensionless velocity f '  as a factor of η for 
various values of ! . 

 

 
Figure 7: The dimensionless temperature θ as a factor of η 
for various values of ! . 
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Figure 8: The dimensionless velocity f '  as a factor of η for 
various values of S. 

 

 
Figure 9: The dimensionless temperature θ as a factor of η 
for various values of S. 

 

 
Figure 10: The dimensionless velocity f '  as a factor of η for 
various values of ε. 

 
Figure 11: The dimensionless temperature θ as a factor of η 
for various values of ε. 

4. CONCLUSION 

In the present work we have transformed the highly 
nonlinear PDEs governing the particular fluid flow of 
boundary layer theory into an ODE by searching the 
group of transformation subject to the similarity 
requirement. The reduced non-linear ODE-BVP is 
numerically solved by Runge-Kutta shooting 
methodusing MAPLE 13 computational algorithm. It 
has been shown that: 

1. The velocity and the temperature of the fluid 
decrease with the increase in Prandlt number. 

2. As the Prandlt number increases, the velocity 
and the thermal boundary layers thickness 
decrease. 

3. With the decrease in heat sink parameter S, the 
velocity and the temperature of the fluid 
decrease. 

4. The velocity and the thermal boundary layers 
thickness decrease with decrease in heat sink 
parameter S. 

5. The increase in thermal conductivity parameter ε 
increase the velocity and temperature of fluid 
irrespective of value of heat sink parameter S. 

6. The increase in viscosity parameter γ decrease 
the velocity of fluid near the plate however the 
effect of viscosity parameter  is negligible on 
the temperature of the fluid. 
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7. Skin –friction co-efficient increase, while the rate 
of heat transfer increase with the increase in 
thermal parameter conductivity parameter.  
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