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Abstract: New energy vehicles (NEVs) have become a fundamental part of transportation system. Performance of an 
NEV is hugely determined by batteries, motors, and embedded electric control units. In this paper, a comprehensive 
study that covers all these key components is presented. Mechanisms and characterizations of failures are given in 
detail. On top of these, algorithms for fault diagnosis are established based on big data of real-world NEVs with joint 
considerations of design flaws, usage behaviors, and environmental conditions. In this way, multiple types of faults can 
be detected ahead of time to avoid accident. Proposed methods have been verified by real-world operational data, 
indicating effectiveness while providing insights for NEV design optimization. 
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1. INTRODUCTION 

In recent years, pollution and shortage in fuel supply 
have become increasingly serious, leading to a global 
consensus to develop new energy vehicles (NEV). In 
2020, 3.125 million NEVs have been sold worldwide, 
increased by 41% over the previous year, and the total 
number of NEVs exceeded 10 million. Meanwhile, 
major automobile countries, including United States, 
Germany and Japan, have proposed national 
strategies of gradually replacing traditional fuel vehicles 
with NEVs in 15-20 year.  

Unfortunately, due to design and manufacturing 
imperfections as well as complicated operational and 
environmental conditions, faults and malfunctions such 
as spontaneous fire and loss of power have been 
frequently reported, which has aroused concerns about 
safety and reliability of NEVs. Take electric cars as an 
example, according to an annual report from China, 
power batteries, automotive electronics, and motors 
account for more than 90% of the total faults. 
Therefore, fault diagnosis of the power battery, drive 
motor and electronic control system are critical to 
ensure safety and reliability [1]. 

Detailed analysis shows internal short circuit, 
overheating, overcharging, and poor consistency are 
the major causes for battery thermal runaway [2]. For 
motors, inter-turn short circuit is the major electrical 
fault mode, which leads to considerable amount of heat 
generation in motor winding that could eventually burn  
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a motor, posing great threats to driving safety. 
Electronic control systems are considered as the brains 
of NEVs, where any software or hardware failure may 
lead to serious accidents such as loss of power or 
control. This paper presents a comprehensive study for 
fault diagnosis and health evaluation for key 
components in NEVs mostly using artificial intelligence 
and statistical analysis methods. Establishment and 
validations of algorithms are based on real-world 
vehicle operation data. Results show effectiveness  
of the proposed methods play a positive role in 
improving the safety of NEVs, which also contributes in 
improvements in vehicle design.  

The rest of the paper is organized as follows. 
Section II provides basic information of the national big 
data platform of NEVs in China that serves as the data 
sources in this work. Section III presents detailed 
analysis of fault diagnosis method of lithium-ion 
batteries. Research on motor temperature prediction 
and over-temperature diagnosis is introduced in 
Section IV. Section V focuses on health assessment 
method for electronic control system on top of 
statistical analysis. In the end, Section VI concludes the 
paper.  

2. DATA SOURCE 

Data used in this paper is from the National Big 
Data Platform of Electric Vehicles in China, which 
collects data from NEVs in a real-time fashion. By 
November 2021, over 6 million NEVs from 331 
manufactures have been connected in. Roughly two 
types of data are collected. The first type is related to 
basic information of vehicles, such as vehicle type, 
manufacturer, mileage, speed, and so forth. Whereas 
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the second type involves operational data, including 
current, voltage, state of charge (SOC) of batteries, 
motor speed, torque, temperature, DC-DC alarm 
status, and so forth. In this work, data from more than 
1000 vehicles were extracted and preprocessed for 
algorithm design and validation purposes.  

Due to complexity in vehicle operational conditions, 
differences in usage behaviors, and instability in signal 
transmission, the data uploaded to the platform may 
contains noise or suffer from package lose. To solve 
these problems, data pre-processing is performed to 
ensure quality of data before algorithm establishment 
and verification. 

3. BATTERY  

In this work, we propose a novel method for battery 
fault diagnosis that covers sub-model selection, factor 
extraction and model fusion. 

3.1. Sub-models for Battery Fault Diagnosis 

In this work, sub-models refer to the models that 
could detect certain type of battery fault under a given 
condition. Three sub-models adopted for model fusion 
are introduced below. 

(1) Entropy-based model  

As indicated by its name, this model is established 
on top of entropy of battery voltage curves from the 
perspective of information theory. By combining 
Shannon entropy and Z-score, hidden information can 
be extracted so that numerical outlier and 
inconsistency among cells can be identified [3]. 
Together with safety threshold obtained through 
statistical analysis using big data, early warning of 
faults can be realized [4].  

(2) Voltage fluctuation based model 

This method detects faults through identification of 
fluctuations in output voltage. During charging and 
discharging of a battery pack, deviations in voltage 
curves with irregular fluctuations can be spotted due to 
inconsistencies among cells, which could be enlarged 
through daily usage, and eventually causes liquid 
leakage, seal failure, or even thermal run away.  

(3) Voltage drop consistency based model 

By comparing the voltage responses among cells 
before and after excited by electrochemical or 
mechanical stress, models of this type capture short-
time transient characteristics. In this way, the so called 
"diving" of a battery cell results from sudden increase 

 

Figure 1: Overall structure of the system. 
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of internal resistance can be detected to avoid internal 
short circuit by the end of battery life. 

3.2. Factor Extraction  

All three models in 3.1 have fault diagnosis 
capabilities, but the characteristics and application 
scenario of each model are different. Entropy based 
model can effectively identify risks caused by 
inconsistencies among cells. Voltage fluctuation based 
model can accurately quantify changes in voltage 
fluctuation to realize effective early warning in case of 
changes in inner structure of cells. Voltage drop based 
model performs well in capturing abnormal short-term 
transient effect of power battery. In this paper, the 
proposed fault diagnosis method is established on top 
of fusion of multiple models, which realizes fault 
detection on vehicle level with improved capability for a 
variety of application scenarios.  

3.2.1. Input Feature Acquisition  

In total, 82 parameters are directly available from 
the national platform, which can be divided into the 
following three types. The first type is related to 
extreme operating conditions of NEVs, such as 
exceedingly high temperature that may directly lead to 
thermal runaway or accelerated aging. The second 
type of parameters characterize performance decline of 
batteries, including state of health (SOH). The third 
type of parameters deal with faulty cells, such as the 
number of abnormal cells diagnosed by the three 
models, which provides an intuitive understanding of 
the safety status of the battery pack.  

3.2.2. Characteristic Parameter Screening 

In practice, parameters carry different amount of 
information. Meanwhile, redundancy exists because of 

overlap among parameters. In this sub-section, 
Pearson correlation coefficient is used for screening 
[5], where parameters strongly correlated with faults 
are selected. According to information theory, the 
amount of information can be expressed by covariance 
[6]. In this work, parameters with covariance value 
below 0.1 are filtered. Eventually, 11 characteristic 
parameters are screened out, as given in Table 1.  

3.3. Model Fusion 

In this part, 11 characteristic parameters are fused 
by linear weighting, where weighting is done to ensure 
diagnostic accuracy using Random Forest-Analytic 
Hierarchy Process (RF-AHP) algorithm. In this way, 
vehicle risk level can be evaluated, where a score can 
be assigned to each vehicle. Detailed process is as 
follows.  

(1) Score the importance of each parameter 

Analytic Hierarchy Process (AHP) is a method that 
combines qualitative and quantitative methods to 
calculate weights [7]. The key step of this method is to 
score the importance of each parameter based on 
expert experience to construct a judgment matrix with 
certain subjectivity. To ease establishment of AHP, 
Random Forest (RF) is adopted to score parameters. 

RF takes decision tree as the base learner and uses 
bagging principle, which is also known as bootstrap 
aggregation, to process training data sets. There are 
two ways to measure the importance of features in a 
random forest algorithm. The first one is to use Gini 
index as the partition function to calculate Gini 
importance of features. The second way, which is 
adopted in this work, is to use out-of-bag observation. 
The samples that are not selected after self-service 
sample aggregation are called ‘out of bag (OOB)’ [8]. 
OOB also adopts a verification set and can be used to 
verify the generalization error of the random forest G, 
calculated as  

  
Eoob G( ) = 1

N
err yn ,Gn

! xn( )( )n=1

N"  

where, 
 
Gn

! xn( ) is a decision tree that only includes  xn  
as OOB.  

Essentially, to use OOB data to measure the 
importance of feature vectors is to reorder the features 
on OOB samples, where feature ranking can be 
performed by calculating permutation importance. In 
this work, permutation importance is used to replaces 

Table 1: The Selected Features and Definitions 

Selected features	   Definition	  

Output from entropy 
model	  

For faulty vehicles detected by Shannon 
entropy model, record maximum, mean 

and variance of the abnormity coefficient.	  

Processed data 
based on outputs 
from sub-models	  

Average error rate of battery cells 
indicated by sub-models	  

Frequent high-power discharging and 
charging.	  

Fast charging in high SOC range.	  Risky operational 
scenarios	  

Operation under high temperature and 
high SOC scenarios.	  
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xn, j{ }  in the original characteristic OOB sample with 

randomly rearranged 
  

xn, j{ }
n=1

N
 to form a new OOB 

sample. 
 
VI t( ) x j( )  is recorded as the importance of the 

characteristic variable 
 
x j  obtained from the decision 

tree  gt , so we have 

 
VI t( ) x j( ) = Eoob G( )! Eoob

P( ) G( )  

where, 
 
Eoob

P( ) G( )  is the error of re-randomly arranged 
OOB-sample.  

Finally, the importance score of each feature is the 
mathematic expectation of all trees. 

  
VI x j( ) = VI t( ) x j( )t=1

ntree!
ntree

 

(2) Construct AHP discrimination matrix 

The relative importance of each parameter can be 
obtained from step 1 to construct the judgment matrix 
of the 11 characteristic parameters screened in 3.2.2. 
The judgment matrix is constructed by Saaty's 1-9 
scale method [9], where larger value means greater 
difference in importance between two parameters. 

(3) Consistency test 

Consistency tests are needed for error detection. 
The sufficient and necessary condition for the 
consistency of n-order matrix is the maximum 
eigenvalue λmax=n, so we have 

 

where A is the judgment matrix, λ is the set of 
eigenvalues, w denotes eigenvectors.  

In practice, slight inconsistency in the judgment 
matrix is inevitable, but inconsistency above a certain 
threshold is not acceptable. Specific threshold values 
are given as in Table 2. And consistency judgment is 
performed using consistency indicators (CI) as 

 

where, λmax is the maximum eigenvalue, n is the 
dimension of the judgment matrix. Similarly, RI is the 
average random consistency index, and its value is 
shown in Table 2.  

Table 2: Value of RI [9] 

n	   4	   5	   6	   7	   8	   9	   10	   11	  

RI	   0.90	   1.12	   1.24	   1.32	   1.41	   1.45	   1.49	   1.51	  

 
In this way, consistency ratio (CR) is calculated as 

 

A CR value smaller than 0.1 is considered within the 
allowable range, where normalized eigenvector can be 
used as the weight vector. Modifications are needed on 
judgment matrix for the cases with CR larger than 0.1.  

(4) Weight calculation  

Weight vectors are obtained by eigenvalue method, 
and are normalized to get the weight of each 
parameter. 

(5) Risk decision  

a. The risk value of each vehicle is calculated by 
linear weighting combined with the parameters and 
corresponding weights;  

b. Sort the sample set vehicles based on their risk 
levels;  

c. Top 10% vehicles are labeled as extremely high-
risk vehicles.  

3.4. Model Validation and Result Analysis  

5 faulty vehicles and 100 normal vehicles of the 
same model are selected to verify the proposed 
method. Scores of vehicles are shown in Figure 2, 
where 4 faulty vehicles are identified as vehicles with 
high-risk level. And the detection rate of faulty vehicles 
reached 80%, which met the expectation. The 
proposed method failed to capture one faulty vehicle, 
which suffered from traffic accident as indicated from 
police report. As can be seen, misjudge rate of the 
proposed method is 6%. Whether the misjudged 
vehicles are in high risk level is part of future work. 

Through further analysis, it can be found that 
among the 11 parameters, the weights of two 
parameters that characterize over temperature and 
high SOC accounts for more than 40% of total weights. 
This indicates failures of vehicles are strongly related to 
SOC and thermal conditions. By referring to accident 
analysis reports, the major failure mode is identified as 
thermal runaway. Retrospective historical data shows 
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that excessive temperature difference occurs frequently 
in those battery packs, and the maximum temperature 
difference is almost 10℃ . This is consistent with the 
model diagnosis results. Through the above analysis, 
the effectiveness and rationality of the model are 
verified.  

 

Figure 2: The risk value of each vehicle. 

4. MOTOR 

In this part, permanent magnet synchronous motors 
are selected as research objectives. Studies are 
carried out from two aspects, namely motor 
temperature prediction and over temperature fault 
diagnosis [10].  

4.1. Motor Temperature Prediction  

Real-time monitoring and accurate prediction of 
motor temperature are the foundation of fault 
diagnosis, which is critical to ensure safe operation of 
NEVs. During vehicle operation, the state parameters 
of the motor system are non-linear and time-varying, so 
it is difficult for modeling accurately through 
experimental and mathematical methods. Fortunately, 
most of the difficulties can be avoided by combining 
historical vehicle operational data with environmental 
information. Temperature prediction is essentially a 
time series forecasting problem. In this paper, Long 
Short-Term Memory (LSTM) is adopted as the 
mathematic tool to solve this problem [11]. Detailed 
work, including determination of model input 
parameters, model super parameter optimization, 
model training and verification, are giving as following. 

4.1.1. Identification of Input Parameters 

Parameters related to motor temperature obtained 
from the national platform mainly include vehicle 

speed, motor speed, torque, motor input current, motor 
input voltage, input power and output power. According 
to location of the buses in this study, corresponding 
meteorological information is also included and 
integrated with vehicle operational data.  

In the training process of a LSTM model, more input 
parameters may lead to worse performance. Basically, 
parameters with weaker correlation could contribute 
negative, producing opposite training effect while 
increasing chances of over fitting. Therefore, the first 
step is to extract parameters with strong influences, 
which can be done through calculation of Pearson 
correlation as shown in Figure 3.  

As an illustrative example, the correlation between 
torque and motor temperature is only 0.143, whereas 
much stronger correlation can be observed between 
vehicle speed and motor speed. In this way, motor 
speed, input current, input voltage; motor temperature, 
air temperature and precipitation are selected as inputs 
to LSTM model. 

 

Figure 3: Pearson correlation matrix heatmap. 

4.1.2. Optimization of the Hyper-Parameters 

With selected parameters, the batch size (BS), 
sliding window length (SWL), number of iterations and 
other key hyper-parameters of the model need to be 
optimized before a LSTM model can be trained 
properly. Correct choice of BS is to find the best 
balance between memory efficiency and capacity. 
Adopting a sliding window provides flexibility to reach 
an optimal tradeoff between learning and historical 
information remembering. Using appropriate number of 
iterations helps to obtain better accuracy with 
reasonable training time while avoiding over fitting. In 
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this work, control variable method is used to optimize 
these hyper-parameters, and results are evaluated 
based on mean relative error (MRE) expressed as 

  
MRE = 1

n
P̂i ! Pi

Pi

"100%
i=1

n

#  

where, n is the number of training samples or test 
samples,    and    represent the predicted value 
and the actual value, respectively.  

The effect of BS on the predictive performance of 
the model is shown in Figure 4 (a). It can be seen that 
when BS=16, the MRE is the lowest, which means that 
the predictive performance is at its optimum. 

Figure 4 (b) shows the trend of increasing MRE with 
the increase of SWL. Ideally, a smaller SWL means 
more historical information remembered, but smaller 
SWL also means higher requirement on computational 
power and longer training time. In this specific case, we 
found error at SWL=6 is very close to that at SWL=1. 
This also means the learning ability at SWL=6 is similar 
to that at SWL=1, so the SWS parameter equal to 6 is 
selected. Figure 4 (c) shows that the loss function 
value of model training has begun to converge when 
the number of iterations reaches 15. 

 

Figure 4: Prediction results of different hyper-parameters. 

4.1.3. Model Training and Verification 

In this sub-section, we take operational data of bus 
A in 2019 as the training set to establish a LSTM 
network, which consists of six layers, including one 
input layer, two hidden layers (80 neurons per layer), 
one linearly activated fully connected hidden layer and 
one output layer. Predictive performance of the model 
is validated with part of the driving data of vehicle A in 
2020.  

As can be seen in Figure 5, the predicted values 
and measured values match well when the driving 
patterns are relatively mild (e.g. constant speed driving 
state). The forecast bias increases when driving 
conditions become wild (e.g. repeated speed up and 
break). This discrepancy is partially attributes to the 
long data acquisition interval compared with changes in 
dynamic real-world driving behaviors, which makes it 
impossible to fully record the change process in 
training set. Overall, the maximum deviation does not 
exceed 10℃ and is still within acceptable range. In 
addition, in more than 88.3% of the scenarios, the error 
does not exceed 5℃. 

 

Figure 5: Comparison between measured temperature and 
model predicted temperature. 

4.2. Motor Over-temperature Diagnosis 

In this part, we take PMSM as the research object 
to introduce a fault diagnosis model for over-
temperature. Model building, model training and 
verification are covered. 

4.2.1. Parameter Selection and Data Preparation  

Parameters with strong correlation are given in 
Figure 3, including motor speed, input current, input 
voltage, motor temperature and air temperature. 1200 
cases of motor over-temperature are chosen to 
establish and verify the proposed model. Samples of 
both normal and faulty driving cycles are included at 
10s sampling interval. The ratio of faulty samples to 
normal samples is 1:100, which constitutes the sample 
database for model training. For validation purposes, 
samples are randomly divided into training set and test 
set based on the ratio of 8:2.  
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4.2.2. Back Propagation Neural Network (BPNN)  

Compared with other artificial intelligence methods, 
neural network has several favorable features, 
including high adaptability, strong self-learning ability, 
fault tolerance, as well as parallel processing capability, 
thus suitable for NEV applications [12]. In this work, 
BPNN is used to identify and diagnose motor over-
temperature fault as shown in Figure 6.  

 

Figure 6: Schematic diagram of motor over-temperature 
diagnosis neural network model. 

4.2.3 Model Training and Verification 

In this work, the established BP neural network has 
2 hidden layers with 100 neurons per layer, learning 
rate and number of iterations are set as 0.01 and 500, 
respectively.  

The training process of the model is divided into 
three steps. Firstly, the input and output values of each 
layer are calculated in sequence from the input layer, 
and the output values are passed to a SoftMax 
classifier. Secondly, the cross error function is used to 
calculate the loss of the target result and the output 
from the SoftMax classifier. Finally, gradient descent 
algorithm is used to adjust the connection weight 
between neurons in each layer so that the loss function 
changes in the direction of reduction. Steps given 
above are repeated until model accuracy meets the 
requirements. Loss function values and accuracy 
changes during training are shown in Figure 7.  

 

Figure 7: Changes in loss and accuracy during model 
training. 

In validation phase, samples with motor over-
temperature fault are defined as positive examples, 
whereas those without fault are defined as negative 
examples. For verification, true positives indicate the 
number of samples that are actually positive and 
identified as positive. A false positive is the case where 
a sample is actually negative but misjudged as positive. 
Similar rule also applies for true negative and false 
negatives. In this way, accuracy, precision and recall 
rate can be calculated as 

  
=99.67% 

  
=85.77% 

  =80.41% 

As can be seen, accuracy, precision, and recall rate 
are 99.67%, 85.77% and 80.41%, respectively, which 
indicate that the model has good over-temperature fault 
diagnosis ability. 

5. ELECTRONIC CONTROL SYSTEM  

Electric control system is the brain of NEVs. 
Fortunately, failure rate of a control system is much 

Table 3: Test Set and Prediction Results 

 Pred1 Pred0 ∑ 

Real1 TP=193 FN=47  N+ =240 

Real0 FP=32 TN=23968  N! =24000 

∑  =225  =24015 N=24240 
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lower than that of a battery system. Furthermore, 
comprehensive study of electric control systems 
requires detailed data directly from controllers such as 
CAN bus signals, which is not available from the 
national platform. For these two reasons, in this part, 
unlike deterministic methods for batteries and motors, 
we establish a supplementary model for fault diagnosis 
that provides suggestion on whether electronic control 
systems are in proper condition.  

5.1. Model Input Characteristic Parameters and 
Data Preprocessing  

Through data screening on national platform, four 
parameters are identified to be related safety of the 
electronic control systems, namely insulation 
resistance alarm, DC/DC temperature alarm, DC/DC 
status alarm and hazardous voltage interlock loop 
alarm. In practice, false alarm can be generated during 
information collection and transmission, which has 
serious impact for model accuracy. In this work, false 
alarms are identified and filtered based on frequency 
and duration as shown in Figure 8.  

 

Figure 8: True and false alarm data statistics. 

 

Figure 9: Diagram of health status classification of electrical 
control system. 

5.2. Health Eigenvalue Calculation  

Frequency and duration of alarms are further 
processed through Z-score standardization, where 
dimensions of the two characteristic parameters are 
unified and integrated into health state eigenvalues, 
expressed as 

 

 

 

where ti  and Ci  stand for alarm duration and 
frequency from the ith vehicle, µt  and µc  are mean 
values whereas ! c  and ! t  denote standard 
deviations. In the end, Ei  is the calculated health state 
eigenvalue.  

5.3. Quantification of Electronic Control System 
Health  

Health status of electrical control systems are 
classified in a statistical method, where three states are 
defined, namely normal state, sub-health state and 
unhealth state. Two boundaries shall be defined among 
the three states. The value of the boundary between 
sub-health and unhealth is determined by the Laida 
criterion, given as 

  Boundary1 = µE + 3!" E  

where µE  is the mean value of samples 
Ei i = 1,2,3,...,80( ) , and ! E  is the standard deviation of 

sample Ei i = 1,2,3,...,80( ) . In this case,   Boundary1  

equals to 3 2 . 

The second boundary is between normal state and 
sub-healthy state, and is calculated by means of Box-
plot as [13] 

  IQR = Q3 !Q1  

  Boundary2 = Q3 +1.5* IQR  

where Q3  and Q1  is the upper and lower quartile of 
sample Ei i = 1,2,3,...,80( ) , and IQR is the interquartile 
range. In this way,   Boundary2 is equal to 2.0415.  

5.4. Results and Analysis 

Evaluations are performed over 80 vehicles, where 
the probability density distribution of electrical control 
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health is given in Figure 10. As can be seen in Figure 
11, the health status statistics of the electronic control 
system show that 86.25% of the total samples are in 
normal state, 6.25% in sub-healthy state and 7.5% in 
unhealthy state.  

 

Figure 10: Probability density distribution curve of Ei . 

 

 

Figure 11: Health status statistics of the electronic control 
system. 

6. CONCLUSION  

In this work, we proposed a system of methods that 
can diagnose faults in key components of NEVs. 
Validity and practicability of models are verified by real-
world operational data. Results show the proposed 
framework contributes in improving overall safety level. 
In current stage of study, due to limitations in 
measurable variables and relatively poor quality of 

data, there are still some flaws or compromises in 
model establishment. In the follow-up study, 
experiments shall be done as the compensation to 
further improve accuracy of each subsystem model. 
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