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Abstract. Phase shifting interferometry is an optical metrology with a high precision, but it usually requires the expensive 
high precision phase shifter. Therefore, low cost methods of extracting phase from a single shot interferogram were very 
valuable, but available algorithms are usually effective only in a limited conditions. To solve these problems, a novel 
method is presented in this work. Based on this method, the interference fringe is retrieved to a wrapped phase and 
divided into different regions and the index of the pixel is calculated. The pixels in the same region have the same parity 
and the PSF’s gravity center of part wavefront so as to solve the sign ambiguity. The theoretical simulation results 
indicate that the PV of wavefront error is 0.00054λ and the rms is 0.000125λ,which is much better than the results from 
the Fast Fourier Transformation method. The experimentally measured interferogram is also used to validate the 
method. It has the advantages of simplicity, high precision and effective for both open and closed interferometer fringes. 
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1. INTRODUCTION 

The optical interferometry is widely used for 
precision measurements, surface diagnostics, 
astrophysics, seismology, quantum information, etc [1]. 
According to their data processing algorithms, they can 
be divided into two types. One is to measure the 
variation of the interference fringe or the optical path 
difference at a specified point on the interference field 
to obtain the sample parameters, such as size, 
displacement, material micro-deformation and 
refractive index. The other is to obtain surface shape, 
sample geometry or fluid density distribution by 
measuring the interference fringes generated by the 
measured wavefront and the reference standard 
wavefront. Surface shape measurement is the classic 
applications of the optical interferometry.  

Generally, there are mainly two algorithms used to 
extract phase from interference fringes. The first is the 
phase shifting method as used in many optical 
interferometers [1-4]. It requires a high-precision phase 
shifter that is used to produce several interferograms 
with fixed phase step in sequence, or uses complex 
optical layout to generate interferograms with fixed 
phase differences in different sub-areas of CCD. 
Therefore, high phase demodulation accuracy can be 
obtained. But it can only be used in static or quasi- 
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static situations. In order to overcome the problem, 
real-time phase shifting interference technology has 
been investigated [5, 6], but the presented optical 
system is complex and costly, which limits its 
application. 

The second is to extract the phase from a single 
shot interferometer fringe, for example, wavelet 
analysis [6-9], Hilbert transform [10-15], fast Fourier 
transform [16-19], regularized phase tracing method 
[20-22] and the energy minimization method [23-25] 
and so on. Compared with the phase shifting method, it 
does not require precise phase shifting devices and 
multiple interference fringes, and the phase distribution 
can be recovered by single shot interference fringe, 
and it is valuable for the study of transient or dynamic 
problems.  

The above methods for single shot interferogram is 
effective to solve the global ambiguity. However, to 
solve the sign ambiguity, these methods need prior 
knowledge. For example, the interferometric image will 
show dry areas for breaking up tear film where phase is 
the absolutely zero [24]. The prior knowledge is key for 
the measurement. And the monotonous characteristics 
because of a carrier frequency is also very important as 
the valuable prior knowledge to solve the sign 
ambiguity [16].  

In addition, among these methods, the most popular 
is the fast Fourier transform method (FFT), which 
realizes the demodulation of interference fringes by 
adding large tilt to the interference fringe to be 
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measured. In order to improve the phase extraction 
accuracy, reasonable parameters of the carrier 
frequency and window function are very important, but 
also resulting in complicated calculation. In addition, it 
is easy to generate unreasonable phase truncation and 
spectral aliasing for closed fringes, which limits its 
application.  

In the paper, a simple and effective data processing 
method is presented to solve the global sign ambiguity. 
The basic idea is to calculate the wrapped phase 
according to the relationship between fringe intensity 
and phase, then extract the unwrapped phase 
according to the odd or even regions. Theoretical 
simulation with our method and experimental cases are 
presented in detail. It is simple and effective to 
calculate the wavefront with high precision, and does 
not require a carrier frequency function, a Fourier 
transform or a Hilbert transform.  

In this research, we propose a parity method to 
extract the phase from a single fringe pattern 
theoretically and experimentally. In section 2, the 
principle and specific steps of the method are 
presented. In section 3, the phase extraction accuracy 
of the method are theoretically investigated and 
compared with those of FFT method. Finally, section 4 
summarizes this research. 

2. THE THEORETICAL FOUNDATION 

In the classic Michelson interferometer, the 
aberration of the optical surface to be measured, or its 
certain inclination angle relative to reference mirror, will 
cause the optical path difference between the reflected 
light beams on the interferometer’s two surfaces. It will 
make the interference fringes bent or change their 
density. The intensity of light or interference fringe 
acquired by the camera can be described as  

  
I = I
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Where I1 and I2 are the light intensities of the two 
beams of the interferometer, respectively; �Δφ is the 
phase difference between the surface to be measured 
and the reference plane. It should be noted that 
considering the reflection mode of the interferometer, 
the phase in the cosine function is twice of the actual 
wavefront. In general, when the light intensity of the 
two beams is the same as I0, the light intensity can be 
computed from equation (1) as:  

  
I = 2I
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Generally, the light field distribution in experiments 
is filtered and normalized to improve the sign noise 
ratio (SNR) to extract the phase [26]. According to 
equation (2), we define a normalized intensity Inorm at 
point (x,y) as: 
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Where, the value of normalized intensity Inorm obtained 
by equation (3) is ranged from 0 to 1. For a 8-bit CCD, 
we could define a monotonous relationship between 
the normalized light intensity Inorm and the gray level 
Ilinear as follows : 

  
I
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Where 0≤Ilinear ≤ 255, and the normalized light intensity 
is equal to cos(Δφ). Therefore, the phase as a function 
of the light intensity Ilinear according to equations (3) and 
(4) is computed as: 
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It should be noted that the phase obtained from 
equation (5) is ranged from 0 to π. For the 8-bit camera 
with a maximum light intensity of 255, the gray level as 
a function of the phase corresponding to the light 
intensity Ilinear is shown in Figure 1. The abscissa is the 
gray value of the fringe with 8-bit. The maximum gray 
value is 255 and the minimum is 0, and the phase in Y-
axis is ranged from 0 to π. Using the data of Figure 1, a 
look-up table (LUT) including phase and light intensity 
can be used to compute the wrapped phase from a 
normalized single fringe pattern. 

 

Figure 1: Relationship between phase and gray level. 

A classic Michelson interferometer is shown in 
Figure 2(a). And a simple fringe pattern as an example 
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is generated based on the Zernike polynomial on the 
unit circle as shown in Figure 2(b), and the coefficients 
of simulated Zernike tip and tilt terms is -1.4λ, and 
λ=635nm. Correspondingly, its PV and RMS of 
wavefront are 6.23λand 1.56λ, respectively. The 
simulated interference fringe pattern with a grid number 
of 256x256 is shown in Figure 2. The black area 
corresponds to the zero gray level and the white one 
corresponds to the gray level of 255. Therefore, from 
the interferogram, we can calculate its phase Δφπ 
according to equation (5).  

In order to obtain the wrapped phase from 0 to 2π 
from the phase Δφπ, we could use the following data 
processing steps: First, define a matrix ni,j that is used 
to record the characteristic values of every pixels of the 
fringe pattern, i and j are the row and column number 
of the fringe pattern, respectively; Second, find the 
locally darkest and brightest pixels from the fringe 
pattern, and then set ni,j to -1 and 1, respectively, and 
the rest pixel’s values are set to zero. The obtained ni,j 
is shown in Figure 3. Therefore, the fringe pattern could 
be divided into different areas according to the lines in 
Figure 3. 

 
   (a)   (b) 

Figure 2: (a) Schematic diagram of optical layout, M1: 
reference mirror; M2: mirror to be measured; BS: beam 
splitter; (b) simulated interference fringe pattern. 

 

Figure 3: The obtained ni,j, the brightest(yellow) and darkest 
(blue) part of the fringe pattern are for 1 and -1, respectively. 

Additionally, set a value mi,j to every pixel in the unit 
circle from left to right and bottom to top: 

  
m
i,j

= p
i
+ k

i,j            (6) 

Where pi is the value of the first pixel of every row in 
the unit circle. And it is zero for the first pixel of the first 
row in the unit circle, and when it passes a peak or 
valley for the first pixel of the i-th row in the unit circle 
from bottom to top of Figure 3, pi increases by one. ki,j 
is zero for the first pixel of every rows in the unit circle 
shown in Figure 3, and then ki,j increases by one when 
a peak or valley is passed from left to right on the basis 
of pi for the next pixels of every rows in the unit circle. 
Therefore, according to equation (6), it will be obvious 
that mi,j for the pixels in the area between the adjacent 
peak and valley lines as shown in Figure 3 will be the 
same parity. 

With the mi,j value of each pixel according to 
equation (6), phase Δφπ could be transformed to 
wrapped phase Δφ2π as follows: 
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Where Δφ2π is ranged from 0 to 2π. Since any two 
adjacent points usually have a continuous phase and 
their phase difference is smaller. A phase shift of 2π is 
added when their phase difference is larger than π. 
Then, we obtain the unwrapped phase according to the 
phase difference between the two adjacent pixels, 
which solve the ambiguity. After that, the unwrapped 
phase usually may have errors especially for some 
points with large phase difference. Therefore, we have 
to fit the result with Zernike polynomial to improve the 
accuracy of phase recovery. The used Zernike 
polynomial is defined as follow [27]: 
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Where both the radial order n and the angular order m 
are integers, and m≦n and (n-|m|) is even. Arbitrary 
wavefront can be as follows: 
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Where Ci is the coefficient of the i-th Zernike mode Zi; 
the total number of Zernike modes fitted is M; the total 
number of grid points is K; And the first term of Zernike 
polynomials, piston, is not considered. The above 
formula can be written as follows: 

     (10) 

Therefore, the coefficient vector C could be 
calculated as follow: 

 
C = ! " pinv Z( )         (11) 

Where C and Z are the coefficient vector and the 
Zernike mode matrix in equation (10), respectively. 
Therefore, the fitted wavefront is obtained from the 
unwrapped phase as follow: 
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Considering the reflective structure of the 
interferometer, the wavefront to be measured should 
be half of the result from the above formula: 
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In fact, when calculating the simulated interference 
fringes, taking the Michelson interferometer structure, 
the amplitude of the reflected wavefront is twice that of 
the shape to be measured.  

To solve the sign ambiguity, we could use a part of 
the reconstructed wavefront to estimate its PSF(point 
spread function, PSF). Then, its centers along x and y 
axis are calculated and compared with the measured 
one, which is used as the prior knowledge to solve the 
sign ambiguity. In the simulation, we could use the up 
left circular area with its center in the center of the up 
left quarter of the whole area and its diameter is half of 
the whole one. Different global tilt and tip in the 
selected circular area will make the gravity center of 
estimated PSF have different positions, which could be 
used as the prior knowledge to solve the global sign 
ambiguity. Experimentally, we could use a hole and a 
lens in Figure 2(a) and remove M1 as shown in Figure 
4. If there are obvious differences between the gravity 
center positions of the measured one and the 
estimated one, the local tilt and tip of the selected part 
in estimated wavefront is in a wrong direction, which 
will be used as a prior knowledge to solve the global 

sign ambiguity. In fact, during the large aperture 
aspheric surface processing, their surface is 
continuously changed and it is not necessary to judge 
the global sign as shown in Figure 4 every time. 

 

Figure 4: PSF measurement of selected part surface of M2, 
M2: mirror to be measured; BS: beam splitter; H: hole; L: 
lens. 

3. SIMULATION AND DISCUSSION 

In Section 2, we use the tilt term to introduce the 
data processing procedure in detail. The main 
procedure is also described in section 2. We find the 
peak or vale trace of the fringe pattern, and then set 
the index pi,j to every pixel according to equation (6). In 
addition, we further improve the accuracy of phase 
recovery by Zernike polynomials fitting. Finally, we 
verify the presented method by a theoretical simulation. 
To evaluate the precision of restoring the phase from a 
single fringe, we calculate the residual wavefront as: 

  
!"
err

= !"
origin

# !"
meas

       (14) 

Where Δφorigin and Δφmeas are the original wavefront 
and the measured one, respectively.  

 
            (a)   (b) 

Figure 5: Parity of pi,j in different regions in the interferogram: 
(a) single shot fringe pattern and (b) ni,j and parts of pi,j. 

Instead of pure tilt and tip terms, we use another 
aberration dominated by tilt-tip and coma as an 
example as shown in Figure 5. Figure 5(a) shows the 
single shot fringe pattern corresponding to the 
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aberration, and Figure 5(b) shows the calculated value 
of ni,j and parts of typical pi,j. For every pixel on the 
fringe pattern as shown in Figure 5(a), its pi,j is 
calculated according to equation (6) from left to right 
and from bottom to top as described in section 2. It is 
obvious that the parity of pi,j is the same in the same 
region, that is ,they are odd or even in the same area. 
We have carried out a number of fringe pattern 
simulations. This parity property is suitable for their 
fringe patterns, such as closed and /or open fringe 
patterns. 

Correspondingly, Figure 6 shows the simulation 
results, and wavefront is in unit of rad. Figure 6(a) 
shows the original wavefront. Δφπ calculated from 
Figure 5(a) is shown in Figure 6(b). PV and rms of the 

original wavefront are 1.01l and 0.211l, respectively. 
After the data processing, the extracted wavefront is 
obtained as shown in Figure 6(c). And its PV and rms 
are 1.01l and 0.211l, respectively. According to 
equation (14), the calculated wavefront error is shown 
in Figure 6(d). And PV and rms of the residual 
wavefront are 0.00054l and 0.000125l, respectively. 
Therefore, the precision of the wavefront recovery is 
theoretically very high compared to the original 
wavefront, and the simulated error rms is less than one 
thousandth of a wavelength.  

As a comparison, the results obtained with FFT(fast 
fourier transformation, FFT) method [28] are also 
shown in the Figure 7. An optimized spatial frequency 
were added and correspondent Fourier spectra were 

 

Figure 6: Single shot interferogram and its extracted phase: (a) original wavefront, (b)Δφπ, (c) extracted wavefront and (d) 
wavefront error, unit: rad. 

 
              (a)             (b) 

Figure 7: Results of FFT method: (a) Fourier spectra and (b) extracted wavefront, unit: rad. 
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shown in Figure 7(a). And only left side peak is used 
for phase extraction. It should be noted that the tilt and 
tip components in the original wavefront can’t be 
extracted with FFT method. Therefore, only high order 
aberrations without tilt and tip were computed as 
shown in Figure 7(b). In addition, removing the 
opposite phase is necessary because of the direction 
uncertainty to calculate the accurate error. Compared 
the extracted wavefront with the original one with our 
tilt and tip terms, we could obtain the error wavefront. 
And its error PV and rms are 0.5516l and 0.0169l, 
respectively. Obviously, our method has a much higher 
precision. 

In fact, there are two main factors that will 
deteriorate the precision of phase extraction. First, it is 
the noise in fringe patterns. It should be noted that the 
fringe patterns used in theoretical simulation do not 
include noise. Therefore, it will be very easy to find the 
peak and vale traces in the fringe pattern. Noise will 
lead to some fake peak or vale points, which will make 
the peak and vale trace very complex. Therefore, 
filtering is necessary for a experimental fringe pattern. 
Second, it is easy to introduce error at the pixels on the 
peak or vale trace as shown in Figure 5(b). Therefore, 
Zernike polynomials fitting is valuable to decrease the 
error.  

4. EXPERIMENTAL INTERFERENCE FRINGES AND 
PHASE RECOVERY 

The interferogram acquired in lab is shown in Figure 
8(a). In the experimental interference fringe, data 
processing is important because of the noise in the 
fringe data as shown in Figure 8(a). Therefore, it is 
necessary to do an image processing including filtering 
and normalization process of the fringe pattern so that 
the processed fringe pattern has a high signal to noise 

ratio(SNR). A high SNR image is key to improve the 
accuracy of phase extracting. To find the peak and vale 
traces accurately in the interference fringe pattern, 
which is very crucial to calculate ni,j for each pixel. 
From the interference fringe in Figure 8(a), the 
wavefront to be measured is calculated as shown in 
Figure 8(b). The unit in the wave is radians, and 
correspondingly PV(peak to vally, PV) and rms(root of 
mean square, rms) are 4.47l and 1.15l, respectively.  

5. CONCLUSION 

In the paper, we presented a simple and effective 
method theoretically and experimentally to recover the 
wavefront of an optical element to be tested based on a 
single shot fringe pattern. The theoretical simulation 
results show that the error is very small with PV of 
0.00054λ, and rms of 0.000125λ, which are much 
better than those obtained with FFT method. Therefore, 
the accuracy of the wavefront recovery is very high. We 
also use the method in the experimentally measured 
interference fringe and estimate the shape of the 
optical component to be tested. During large aperture 
aspheric surface processing and testing, we could use 
the optical layout as shown in Figure 4 to get the prior 
knowledge. Then, it will be helpful for us to solve the 
global sign ambiguity and determine the reasonable 
and accurate wavefront of the optical element. In this 
case, the inclination direction of the final surface to be 
tested or the concave and convex direction of the 
curved surface can be judged reasonably. The 
proposed method has the following advantages: First, 
the hardware requirements are low: no expensive, and 
high precision phase shifter in the traditional phase 
shifting interferometer is necessary; Secondly, the 
calculation is simple. Complex calculations such as 

 
      (a)        (b) 

Figure 8: Interferogram obtained by experimental measurement and recovered wavefront: (a) interference fringe, (b) wavefront, 
unit: rad. 
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Fourier transform and Hilbert transform are not used; 
Finally, it is effective for a wide range of conditions in 
many applications. On the contrary, the Fourier 
transform method requires carrier frequency. The 
Hilbert transform method requires special processing 
for a close the interference fringe pattern. Our method 
does not have these limitations and is effective for 
complex interferogram with closed and/or open fringe 
patterns in applications.  
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