Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 6 (2019)

Analysis of EXAFS Spectra of Crystalline Copper using Classical Anharmonic Correlated Einstein Model

DOI
https://doi.org/10.31875/2410-4701.2019.06.15
Submitted
October 31, 2019
Published
2019-10-31

Abstract

In this work, the temperature dependence of extended X-ray absorption fine structure (EXAFS) of the crystalline copper structure was calculated and analyzed using the anharmonic correlated Einstein model and the classical statistical theory. The thermodynamic parameters of a system are derived from an anharmonic effective potential that has taken into account the influence of all nearest neighbors of absorbing and backscattering atoms in the crystal lattice with thermal vibrations, where the Morse potential is assumed to characterize the interactions between each pair of atoms and the function of anharmonic EXAFS spectra presented in terms of the cumulant expansion up to the fourth-order. Analytical expressions for the first four cumulants and their contribution to amplitude reduction and phase shift obtained in the simple form of the mean-square relative displacement or the correlated Einstein frequency. The numerical results for crystalline copper were in good agreement with those obtained by the other theoretical procedures and experiments at several temperatures. The analytical results show that this calculation model is useful to reduce measurement and data analysis of experimental EXAFS spectra.

References

  1. Lytle FW, Sayers DE, Stern EA. Phys Rev B 1975; 11: 4825.https://doi.org/10.1103/PhysRevB.11.4825
  2. Beni G, Platzman PM. Phys Rev B 1976; 14: 1514.https://doi.org/10.1103/PhysRevB.14.1514
  3. Eisenberger P, Brown GS. Solid State Commun 1979; 29: 481.https://doi.org/10.1016/0038-1098(79)90790-7
  4. Greegor RB, Lytle FW. Phys Rev B 1979; 20: 4902.https://doi.org/10.1103/PhysRevB.20.4902
  5. Stern EA, Bunker BA, Heald SM. Phys Rev B 1980; 21: 5521.https://doi.org/10.1103/PhysRevB.21.5521
  6. Lee PA, Citrin PH, Eisenberger P, Kincaid BM. Rev Mod Phys 1981;53: 769.https://doi.org/10.1103/RevModPhys.53.769
  7. Bunker G. Nucl Instrum Methods 1983; 207: 437. https://doi.org/10.1016/0167-5087(83)90655-5
  8. Rehr JJ, Albers RC. Rev Mod Phys 2000; 72: 621.https://doi.org/10.1103/RevModPhys.72.621
  9. Tranquada JM, Ingalls R. Phys Rev B 1983; 28: 3520. https://doi.org/10.1103/PhysRevB.28.3520
  10. Crozier ED, Rehr JJ, Ingalls R. X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, edited by D.C. Koningsberger & R. Prins (John Wiley & Sons, New York), 1988; Chap. 9.
  11. Hung NV, Hung LH, Tien TS, Frahm RR. Int J Mod Phys B 2008; 22: 5155. https://doi.org/10.1142/S0217979208049285
  12. Hung NV, Fornasini P. J Phys Soc Jpn 2007; 76: 084601. https://doi.org/10.1143/JPSJ.76.084601
  13. Hung NV, Thang CS, Duc NB, Vuong DQ, Tien TS. Physica B 2017; 521: 198. https://doi.org/10.1016/j.physb.2017.06.027
  14. Hung NV, Thang CS, Duc NB, Vuong DQ, Tien TS. Eur Phys J B 2017; 90: 256. https://doi.org/10.1140/epjb/e2017-803831
  15. Hung NV, Duc NB, Vuong DQ, Toan NC, Tien TS. Vacuum 2019; 169: 108872. https://doi.org/10.1016/j.vacuum.2019.108872
  16. Fornasini P, Grisenti R, Dapiaggi M, Agostini G, Miyanaga T. J Chem Phys 2017; 147: 044503. https://doi.org/10.1063/1.4995435
  17. Kubo R. J Phys Soc Jpn 1962; 17:1100. https://doi.org/10.1143/JPSJ.17.1100
  18. Hung NV, Rehr JJ. Phys Rev B 1997; 56: 43. https://doi.org/10.1103/PhysRevB.56.43
  19. Tröger L, Yokoyama T, Arvanitis D, Lederer T, Tischer M, Baberschke K. Phys Rev B 1994; 49: 888. https://doi.org/10.1103/PhysRevB.49.888
  20. Dalba G, Fornasini P, Grazioli M. Phys Rev B 1995; 76: 11034. https://doi.org/10.1103/PhysRevB.52.11034
  21. Dalba G, Fornasini P. J Synchrotron Radiat 1997; 4: 243. https://doi.org/10.1107/S0909049597006900
  22. Dalba G, Fornasini P, Grisenti R, Pasqualini D, Diop D, Monti F. Phys Rev B 1998; 58: 4793. https://doi.org/10.1103/PhysRevB.58.4793
  23. Yokoyama T, Ohta T, Sato H.Phys Rev B 1997; 55: 11329. https://doi.org/10.1103/PhysRevB.55.11320
  24. Soldo Y, Hazemann JL, Aberdam D, Inui M, Tamura K, Raoux D, Pernot E, Jal JF, Philon JD. Phys Rev B 1998; 57: 258. https://doi.org/10.1103/PhysRevB.57.258
  25. Bus E,Miller JT, Kropf AJ,Prins R, Bokhoven JAV. Phys Chem Chem Phys 2006; 8: 3248. https://doi.org/10.1039/b605248g
  26. Vaccari M, Grisenti R, Fornasini P, Rocca F, Sanson A.Phys Rev B 2007; 75: 184307. https://doi.org/10.1103/PhysRevB.75.184307
  27. Ahmed SI, Dalba G, Fornasini P, Vaccari M, Rocca F, Sanson A, Li J, Sleight AW. Phys Rev B 2009; 79:104302. https://doi.org/10.1103/PhysRevB.79.104302
  28. Miyanaga T, Fujikawa T. J Phys Soc Jpn 1994; 63: 3683. https://doi.org/10.1143/JPSJ.63.3683
  29. Yokoyama T. Phys Rev B 1998; 57: 3423. https://doi.org/10.1103/PhysRevB.57.3423
  30. Yokoyama T. J Synchrotron Radiat 1999; 6:323. https://doi.org/10.1107/S0909049599001521
  31. Poiarkova AV, Rehr JJ. Phys Rev B 1999; 59: 948. https://doi.org/10.1103/PhysRevB.59.948
  32. Beccara SA, Dalba G, Fornasini P, Grisenti R, Pederiva F, Sanson A, Diop D, Rocca F. Phys Rev B 2003; 68: 140301. https://doi.org/10.1103/PhysRevB.68.140301
  33. Beccara SA, Fornasini P. Phys Rev B 2008; 77: 172304. https://doi.org/10.1103/PhysRevB.77.172304
  34. Vila FD, Rehr JJ, Rossner HH, Krappe HJ. Phys Rev B 2007; 76:014301. https://doi.org/10.1103/PhysRevB.76.014301
  35. Vila FD, Lindahl VE, Rehr JJ. Phys Rev B 2012; 85: 024303. https://doi.org/10.1103/PhysRevB.85.024303
  36. Hung NV, Trung NB, Kirchner B. Physica B 2010; 405: 2519. https://doi.org/10.1016/j.physb.2010.03.013
  37. Stern EA, Livins P, Zhang Z. Phys Rev B 1991; 43: 8850. https://doi.org/10.1103/PhysRevB.43.8850
  38. Pirog IV, Nedoseikina TI, Zarubin IA, Shuvaev AT. J Phys Condens Matter 2002; 14: 1825. https://doi.org/10.1088/0953-8984/14/8/311
  39. Pirog IV, Nedoseikina TI. Physica B 2003; 334: 123. https://doi.org/10.1016/S0921-4526(03)00034-6
  40. Vlasenko VG, Podsukhina SS, Kozinkin AV, Zubavichus YaV. Phys Solid State 2016; 58: 421. https://doi.org/10.1134/S1063783416020335
  41. Frenkel AI, Rehr JJ. Phys Rev B 1993; 48: 585. https://doi.org/10.1103/PhysRevB.48.585
  42. Miyanaga T, Fujikawa T. J Phys Soc Jpn 1994; 63: 1036. https://doi.org/10.1143/JPSJ.63.1036
  43. Hung NV, Tien TS, Duc NB, Vuong DQ. Mod Phys Lett B 2014; 28: 1450174. https://doi.org/10.1142/S0217984914501747
  44. Tien TS, Hung NV, Tuan NT, Nam NV, An NQ, Thuy NTM, Lien VTK, Nghia NV. J Phys Chem Solids 2019; 134: 307. https://doi.org/10.1016/j.jpcs.2019.06.020
  45. Rehr JJ, Zabinsky SI, Ankudinov A, Albers RC. Physica B 1995; 208 & 209: 23. https://doi.org/10.1016/0921-4526(94)00623-4
  46. Sevillano E, Meuth H, Rehr JJ. Phys Rev B 1979; 20: 4908. https://doi.org/10.1103/PhysRevB.20.4908
  47. Duc NB, Tho NQ. Physica B 2019; 552: 1. https://doi.org/10.1016/j.physb.2018.09.038
  48. Vuong DQ, Hung NV. J Mod Phys Lett B 2019; 33: 1950078. https://doi.org/10.1142/S0217984919500787
  49. Fornasini P, Beccara SA, Dalba G, Grisenti R, Sanson A, Vaccari M, Rocca F. Phys Rev B 2004; 70: 174301. https://doi.org/10.1103/PhysRevB.70.174301[50]Yokoyama T, Kobayashi K, Ohta T, Ugawa A. Phys Rev B 1996; 53: 6111. https://doi.org/10.1103/PhysRevB.53.6111
  50. Freund J, Ingalls R, Crozier ED.Phys Rev 1989; 39: 12537. https://doi.org/10.1103/PhysRevB.39.12537
  51. Comaschi T, Balerna A, Mobilio S. J Phys Condens Matter 2009; 21:325404. https://doi.org/10.1088/0953-8984/21/32/325404
  52. Dalba G, Fornasini P, Rocca E. Phys Rev B 1993; 47: 8502. https://doi.org/10.1103/PhysRevB.47.8502
  53. Morse PM. Phys Rev 1929; 34: 57. https://doi.org/10.1103/PhysRev.34.57
  54. Girifalco LA, Weizer VG. Phys Rev 1959; 114: 687. https://doi.org/10.1103/PhysRev.114.687