Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 6 (2019)

Initial Stages of Metal Films Growth on a SiO2-Cristobalite Surface

DOI
https://doi.org/10.31875/2410-4701.2019.06.3
Submitted
October 31, 2019
Published
2019-10-31

Abstract

Using the density functional theory approach and pseudopotentials we studied energetics and electron structures of metal layers (Al, Cu, Ni, and Cr) deposited on a cristobalite surface. We have found that the properties of the first adsorbed layers decide by interaction of metal atoms with oxygen atoms of a substrate surface. Aluminum as an easily oxidized metal, is characterized by the high adhesion, it is followed by nickel and chromium, and copper closes the studied group of metals. Further plating is characterized by significant reduction of binding energy; the properties of films tend to properties of bulk metals

References

  1. Marcia H. Grabow and George H. Gilmer. Thin film growth modes, wetting and cluster nucleation. Surf Sci 1988; 94: 333-346. https://doi.org/10.1016/0039-6028(88)90858-8
  2. Kaiser N. Review of the fundamentals of thin-film growth. Applied Optics 2002; 41(16): 3053-3060. https://doi.org/10.1364/AO.41.003053
  3. Stavale F. Fundamental aspects on thin film growth. http://www.fhi-berlin.mpg.de/acnew/department/pages/ teaching/pages/teaching__wintersemester__2012_2013/fern ando_stavale__thinfilm_growth__121130.pdf.
  4. Cooley KA, Alsaadi R, Gurunathan RL, Domask AC, Kerstetter L, Saidib WA, Mohneya SE. Room-temperature epitaxy of metal thin films on tungsten diselenide. J Crystal Growth 2019; 505: 44-51. https://doi.org/10.1016/j.jcrysgro.2018.09.040
  5. Lluscà M, Antony A, Bertomeu J. Growth and properties of ZnO:Al on textured glass for thin film solar cells. Int J Photoenergy 2014; ID 406495. https://doi.org/10.1155/2014/406495
  6. Satoa Y, Suzuki T, Mogami H, Otake F, Hatori H, Igarashi S. Solid phase growth of some metal and metal oxide thin films on sapphire and quartz glass substrates. Materials Sci Forum 2013; 753: 505-509. https://doi.org/10.4028/www.scientific.net/MSF.753.505
  7. Ino S, Watanabe D, Ogawa S. Epitaxial growth of metals on rocksalt faces cleaved in vacuum. J Phys Soc Japan 1964; 19(6): 881-891. https://doi.org/10.1143/JPSJ.19.881
  8. Roberts S, Dobson PJ. Evidence for reaction at the AI-SiO, interface. J Phys D: Appl Phys 1981; 14: L17-22. https://doi.org/10.1088/0022-3727/14/3/001
  9. Zhu H, Dong K, Huang J, Li J, Wang G, Xie Z. Reaction mechanism and mechanical properties of an aluminumbased composite fabricated in-situ from Al-SiO2 system. Materials Chem Phys 2014; 145: 334-341. https://doi.org/10.1016/j.matchemphys.2014.02.020
  10. Bauer RS, Bachrach RZ, Brillson LJ. Au and Al interface reactions with SiO2. Appl Phys Lett 1980; 37: 1006-1008. https://doi.org/10.1063/1.91720
  11. Hohenberg H, Kohn W. Inhomogeneous electron gas. Phys Rev 1964; 136: B864-B871. https://doi.org/10.1103/PhysRev.136.B864
  12. Kohn W, Sham JL. Self-consistent equations including exchange and correlation effects. Phys Rev 1965; 140: A1133-A1138. https://doi.org/10.1103/PhysRev.140.A1133
  13. Cohen ML, Heine V. Pseudopotential theory of cohesion and structure. In: Ehrenreich H, Seitz F, Turnbull D, editors. Solid State Physics, New York: Academic Press 1970; 24: 38-249. https://doi.org/10.1016/S0081-1947(08)60071-5
  14. Beckstedte M, Kley A, Neugebauer J, Scheffler M. Density functional theory calculations for poly-atomic systems: electronic structure, static and elastic properties and ab initio molecular dynamic. Comput Phys Commun 1997; 107: 187- 205. https://doi.org/10.1016/S0010-4655(97)00117-3
  15. Fuchs M, Scheffler M. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density functional theory. Comput Phys Commun 1999; 119: 67-165. https://doi.org/10.1016/S0010-4655(98)00201-X
  16. Perdew JP, Wang Y. Accurate and simple density functional for the electronic exchange energy. Phys Rev B 1986; 33: 8800-8802. https://doi.org/10.1103/PhysRevB.33.8800
  17. Cottrell TL. The Strengths of Chemical Bonds, 2d ed., Butterworth, London 1958.
  18. De B, Darwent B. National Standard Reference Data Series, National Bureau of Standards, No. 31, Washington 1970.
  19. Benson SW. Bond energies. J Chem Educ 1965; 42(9): 502- 518. https://doi.org/10.1021/ed042p502
  20. Kerr JA. Bond dissociation energies by kinetic methods. Chem Rev 1966; 66(5): 465-500. https://doi.org/10.1021/cr60243a001
  21. Kittel Ch. Introduction to Solid State Physics, 8th edition. Hoboken, NJ: John Wiley & Sons, Inc, 2005.