Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 6 (2019)

Coupled Modelling of ZrO2/α-Zr(O) Layers Growth under Thermal and Mechanical Gradients

DOI
https://doi.org/10.31875/2410-4701.2019.06.2
Submitted
October 31, 2019
Published
2019-10-31

Abstract

The oxidation process of a nuclear reactor fuel rod clad made of zirconium is simulated. It is assumed that the oxygen is transported by anionic diffusion in the zirconia layer (ZrO2). Part of this oxygen reacts at the interface between the zirconia layer and the metal, while the rest diffuses in the oxygen-enriched metal volume (a-Zr(O)) to the core of the metal by an interstitial mechanism. The model is based on the thermodynamics of irreversible processes and takes into account the influence of driving forces on the oxygen migration in the metal such as the oxygen concentration gradient, the temperature gradient [1] and the mechanical stress gradient [2]. The growth of both ZrO2 and a-Zr(O) layers are simulated using the finite element software CAST3M. This model has been applied on an axisymmetric geometry by imposing a heat flow on the fuel side and a constant temperature on the waterside of the clad. The differences obtained in the inner and outer sides of the nuclear clad concerning the oxidation kinetics and oxygen distribution are related to some coupling parameters. Several values of those parameters are used in the simulations to highlight their influence on the oxidation behavior. Thus, we show that negative values for the heat of transport, which relates the gradient of ocncentration and the gradient of temperature, give coherent results with experimental observations on oxidation kinetics for both sides of the clad.

References

  1. Vogel DL, Rieck GD. Thermotransport of nitrogen and oxygen in b-zirconium. Acta Metallurgica 1971; 19: 233-245. https://doi.org/10.1016/0001-6160(71)90151-9
  2. Minne J-B. Contribution à la modélisation du couplage mécanique/chimique de l’évolution de l’interface pastillegaine sous irradiation, PhD Thesis, Université de Bourgogne 2013.
  3. Bouineau V, Ambard A, Bénier G, Pêcheur D, Godlewki J, Fayette L, Duverneix T. A new model to predict the oxidation kinetics of zirconium alloys in a pressurized water reactor. Journal of ASTM International 2008; 5(5): 1-23. https://doi.org/10.1520/JAI101312
  4. Billot P, Beslu P, Giordano A, Thomazet J. Development of a mechanistic model to assess the external corrosion of the Zircaloy claddings in PWRs, 8th International Symposium on Zirconium in the Nuclear Industry. ASTM STP 1989; 1023: 165-186. https://doi.org/10.1520/STP18864S
  5. Favergeon J, Montesin T, Bertrand G. Mechano-chemical aspects of high temperature oxidation: a mesoscopic model applied to zirconium alloys. Oxidation of Metals 2005; 64: 253-279. https://doi.org/10.1007/s11085-005-6563-7
  6. Desgranges L. Internal corrosion layer in PWR fuel, Seminar Proceedings on Thermal Performance of High Burn-Up LWR Fuel. OECD 1998; 187-196.
  7. Tremblay M, Roy C. Elastic parameters of single crystal Zr-O alloys. Materials Science and Engineering 1973; 12: 235- 243. https://doi.org/10.1016/0025-5416(73)90034-7
  8. Nakatsuka M. Elastic anisotropy of zirconium alloy fuel cladding. Nuclear Engineering and Design 1981; 65: 103- 112. https://doi.org/10.1016/0029-5493(81)90124-2
  9. Parise M, Sicardy O, Cailletaud G. Modelling of the mechanical behavior of the metal-oxide system during Zr alloy oxidation. Journal of Nuclear Materials 1998; 256: 35- 46. https://doi.org/10.1016/S0022-3115(98)00045-2
  10. MATPRO - A Library of Materials Properties for Light-WaterReactor Accident Analysis, NUREG/CR-6150, Vol. 4, Rev. 2 2001.
  11. Goldak J, Lloyd LT, Barrett CS. Lattice parameters, thermal expansions and Grüneisen coefficients of zirconium, 4.2 to 1130 K. Physical Review 1966; 144: 478-484. https://doi.org/10.1103/PhysRev.144.478
  12. Holmberg B, Dagerhamn T. X-ray studies on solid solutions of oxygen in alpha-zirconium. Acta Chemica Scandinavica 1961; 15: 919-925. https://doi.org/10.3891/acta.chem.scand.15-0919
  13. Debuigne J. Contribution à l’étude de l’oxydation du zirconium et de la diffusion de l’oxygène dans l’oxyde et dans le métal, PhD Thesis, Université de Paris 1966.
  14. Bunnell LR, Bates JL, Mellinger GB. Some high-temperature properties of Zircaloy-oxygen alloys. Journal of Nuclear Materials 1983; 116: 219-232. https://doi.org/10.1016/0022-3115(83)90106-X
  15. Ahlgren EO, Poulsen FW. Thermoelectric power of stabilized zirconia. Solid State Ionics 1995; 82: 193-201. https://doi.org/10.1016/0167-2738(95)00201-3
  16. Mathuni J, Kirchheim R, Fromm E. Thermotransport of oxygen in tantalum base alloys. Acta Metallurgica 1979; 27: 1665-1669. https://doi.org/10.1016/0001-6160(79)90048-8