Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 6 (2019)

GC-MS Analysis and Characterization of Bio-Oil from Sweet Potato Peel - A Putative Bio-Fuel

DOI
https://doi.org/10.31875/2410-4701.2019.06.12
Submitted
October 31, 2019
Published
2019-10-31

Abstract

Due to the excessive oil consumption alongside with its possible depletion and the need to find new sources of products with reduced ecological footprint, urges to conduct the research towards to new processes using biomass, especially residues, as sources of raw materials. The acid liquefaction catalyzed by the p-toluene sulfonic acid of sweet potato peel waste was conducted under mild conditions leading to a bio-oil with a conversion of 85 %. The products were analyzed by ATR-FTIR, SEM, GC-MS and elemental analysis. The results have demonstrated the liquefaction of sweet potato peel is achievable and affords a high carbon content bio-oil composed mainly by carbohydrate compounds and esters showing that the liquefied products can be envisaged as a chemical platform for several uses, in particular as biofuel due to its esters content.

References

  1. Arapoglou D, Varzakas T, Vlyssides A, Israilides C. Ethanol production from potato peel waste (PPW). Waste Management [Internet] 2010; 30(10): 1898-902. https://doi.org/10.1016/j.wasman.2010.04.017
  2. Rosendahl L. Direct Thermochemical Liquefaction for Energy Applications [Internet]. Lasse Rosendahl, editor. Direct Thermochemical Liquefaction for Energy Applications. Elsevier; 2018 [cited 2019 Apr 6]. 380 p. Available from: https://linkinghub.elsevier.com/retrieve/pii/C20150060129
  3. Vale M, Mateus MM, Galhano dos Santos R, Nieto de Castro C, de Schrijver A, Bordado JC, et al. Replacement of petroleum-derived diols by sustainable biopolyols in one component polyurethane foams. Journal of Cleaner Production [Internet]. 2019 Dec 10 [cited 2018 Dec 13]; 212: 1036-43. https://doi.org/10.1016/j.jclepro.2018.12.088
  4. Esteves B, Dulyanska Y, Costa C, Vicente J, Domingos I, Pereira H, et al. Cork liquefaction for Polyurethane foam production. BioResources 2017; 12(2): 2339-53. https://doi.org/10.15376/biores.12.2.2339-2353
  5. Briones R, Serrano L, Labidi J. Valorization of some lignocellulosic agro-industrial residues to obtain biopolyols. Journal of Chemical Technology and Biotechnology 2012; 87(2): 244-9. https://doi.org/10.1002/jctb.2706
  6. Jasiukaitytė-Grojzdek E, Kunaver M, Crestini C. Lignin Structural Changes During Liquefaction in Acidified Ethylene Glycol. Journal of Wood Chemistry and Technology [Internet] 2012; 32(4): 342-60. https://doi.org/10.1080/02773813.2012.698690
  7. Kunaver M, Jasiukaitytė E, Čuk N. Ultrasonically assisted liquefaction of lignocellulosic materials. Bioresource Technology [Internet] 2012; 103(1): 360-6. https://doi.org/10.1016/j.biortech.2011.09.051
  8. Mateus MM, Acero NF, Bordado JC, dos Santos RG. Sonication as a foremost tool to improve cork liquefaction. Industrial Crops and Products [Internet]. 2015 Nov [cited 2019 Oct 3]; 74: 9-13. https://doi.org/10.1016/j.indcrop.2015.04.063
  9. Mateus MM, Bordado JC, dos Santos RG. Potential biofuel from liquefied cork – Higher heating value comparison. Fuel [Internet]. 2016 Jun [cited 2016 May 1]; 174: 114-7. https://doi.org/10.1016/j.fuel.2016.01.081
  10. Galhano dos Santos R, Bordado JC, Mateus MM. Potential biofuels from liquefied industrial wastes – Preliminary evaluation of heats of combustion and van Krevelen correlations. Journal of Cleaner Production 2016; 137: 195-9. https://doi.org/10.1016/j.jclepro.2016.07.082
  11. Zhang S, Yang X, Zhang H, Chu C, Zheng K, Ju M, et al. Liquefaction of biomass and upgrading of bio-oil: A review. Vol. 24, Molecules. MDPI AG; 2019. https://doi.org/10.3390/molecules24122250
  12. Yoshimoto M, Kido M, Kurata R, Kibayasi T. Antibacterial Activity of Sweetpotato (Ipomoea batatas L.) Fiber on Food Hygienic Bacteria. 吉元誠, 木戸めぐみ, 倉田理恵, 小林透, ヨシモトマコト, キドメグミ, et al., editors. Bull Inst Minami-Kyûshû Reg Sci [Internet]. 2011;27:5–17. Available from: http://id.nii.ac.jp/0296/00000346
  13. Senanayake SA, Ranaweera KKDS, Gunaratne A, Bamunuarachchi A. Comparative analysis of nutritional quality of five different cultivars of sweet potatoes (Ipomea batatas (L) Lam) in Sri Lanka. Food Science & Nutrition [Internet] 2013; 1(4): 284-91. https://doi.org/10.1002/fsn3.38
  14. Walter W, Schadel WE. Structure and composition of normal skin (periderm) and wound tissue from cured sweet potatoes. J Amer Soc Hort Sci [Internet]. 1983 [cited 2017 Mar 26]; 108: 909-14.
  15. Flannelly T, Dooley S, Leahy JJ. Reaction Pathway Analysis of Ethyl Levulinate and 5-Ethoxymethylfurfural from d -Fructose Acid Hydrolysis in Ethanol. Energy and Fuels [Internet]. 2015 Nov 19 [cited 2018 Jul 5]; 29(11): 7554-65. https://doi.org/10.1021/acs.energyfuels.5b01481
  16. Galhano dos Santos R, Ventura P, Bordado JC, Mateus MM. Direct and efficient liquefaction of potato peel into bio-oil. Environmental Chemistry Letters [Internet]. 2017 Mar 24 [cited 2017 Mar 26]; 15(3): 453-8. https://doi.org/10.1007/s10311-017-0620-8
  17. Grilc M, Veryasov G, Likozar B, Jesih A, Levec J. Hydrodeoxygenation of solvolysed lignocellulosic biomass by unsupported MoS2, MoO2, Mo2C and WS2 catalysts. Applied Catalysis B: Environmental 2015; 163: 467-77. https://doi.org/10.1016/j.apcatb.2014.08.032
  18. Peng F, Ren J-L, Xu F, Bian J, Peng P, Sun R-C. Comparative Study of Hemicelluloses Obtained by Graded Ethanol Precipitation from Sugarcane Bagasse. Journal of Agricultural and Food Chemistry [Internet] 2009 Jul 22 [cited 2017 Mar 27]; 57(14): 6305-17. https://doi.org/10.1021/jf900986b
  19. Cordeiro N, Belgacem MN, Silvestre AJD, Neto CP, Gandini A. Cork suberin as a new source of chemicals. 1. Isolation and chemical characterization of its composition. International Journal of Biological Macromolecules 1998; 22(2): 71-80. https://doi.org/10.1016/S0141-8130(97)00090-1
  20. Bizani D, Motta AS, Morrissy JAC, Terra RMS, Souto AA, Brandelli A. Antibacterial activity of cerein 8A, a bacteriocin-like peptide produced by Bacillus cereus. International microbiology: the official journal of the Spanish Society for Microbiology [Internet]. 2005 Jun [cited 2017 Mar 27]; 8(2): 125-31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/ 16052461
  21. Yona AMC, Budija F, Kričej B, Kutnar A, Pavlič M, Pori P, et al. Production of biomaterials from cork: Liquefaction in polyhydric alcohols at moderate temperatures. Industrial Crops and Products [Internet] 2014; 54(0): 296-301. https://doi.org/10.1016/j.indcrop.2014.01.027
  22. Mohebby B. Application of ATR Infrared Spectroscopy in Wood Acetylation. Journal of Agricultural Science and Technology [Internet]. 2010;10(Number 3):253–9. Available from: http://jast.modares.ac.ir/article_4418_935.html
  23. Xiao B, Sun XF, Sun R. Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polymer Degradation and Stability [Internet] 2001; 74(2): 307-19. https://doi.org/10.1016/S0141-3910(01)00163-X
  24. Zhou G, Taylor G, Polle A. FTIR-ATR-based prediction and modelling of lignin and energy contents reveals independent intra-specific variation of these traits in bioenergy poplars. Plant Methods [Internet] 2011; 7(1): 1-10. https://doi.org/10.1186/1746-4811-7-9
  25. Kizil R, Irudayaraj J, Seetharaman K. Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. J Agric Food Chem 2002/06/27 2002; 50(14): 3912-8. https://doi.org/10.1021/jf011652p
  26. Sekkal M, Dincq V, Legrand P, Huvenne JP. Investigation of the glycosidic linkages in several oligosaccharides using FT-R and FT Raman spectroscopies. Journal of Molecular Structure [Internet] 1995; 349(0): 349-52.https://doi.org/10.1016/0022-2860(95)08781-P
  27. Xiao W, Han L, Zhao Y. Comparative study of conventional and microwave-assisted liquefaction of corn stover in ethylene glycol. Industrial Crops and Products [Internet] 2011; 34(3): 1602-6. https://doi.org/10.1016/j.indcrop.2011.05.024