Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 7 (2020)

Theoretical Study Oxygen Reduction Activity of Phosphorus-doped Graphene Nanoribbons

DOI
https://doi.org/10.31875/2410-4701.2020.07.03
Submitted
March 27, 2020
Published
2020-03-27

Abstract

Phosphorus-doped graphene is known to exhibit good electrocatalytic activity for oxygen reduction reaction (ORR). While the ORR activity of P-doped graphene nanoribbons (PGNR) is still unclear. Taking the common graphene nanoribbons with the edges of armchair as an example in this study, we research the mechanistic investigation of ORR on the PGNR under acidic electrolytic conditions by density functional theory (DFT). Based on the keen observation of the atomic charge distribution and adsorption energy at different sites, P atom in PGNR is considered to be the strongest adsorption site with oxygen. Detailed ORR mechanistic was deduced by the investigation of reaction heat, reaction barrier for each possible step and molecular dynamics (MD) simulation. Based on our calculations, when the contribution of the intermediate product to the ORR activity is not considered, PGNR does not possess the property as an ORR catalyst due to several high reaction barriers and some endothermic reactions for ORR path.

References

  1. I. Dincer, C. Acar, Review and evaluation of hydrogen production methods for better sustainability, Int. J. Hydrogen Energ. 40(34) (2015) 11094-11111. https://doi.org/10.1016/j.ijhydene.2014.12.035
  2. Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions, Chem. Soc. Rev. 44(8) (2015) 2060- 2086. https://doi.org/10.1039/C4CS00470A
  3. H.A. Gasteiger, N.M. Marković, Just a dream-or future reality?, Science 324(5923) (2009) 48-49. https://doi.org/10.1126/science.1172083
  4. M. Shao, Q. Chang, J.P. Dodelet, R. Chenitz, Recent Advances in Electrocatalysts for Oxygen Reduction Reaction, Chem. Rev. 116(6) (2016) 3594-657. https://doi.org/10.1021/acs.chemrev.5b00462
  5. Y. Nie, L. Li, Z. Wei, Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction, Chem. Soc. Rev. 44(8) (2015) 2168-201. https://doi.org/10.1039/C4CS00484A
  6. C. Hu, L. Dai, Doping of Carbon Materials for Metal-Free Electrocatalysis, Adv. Mater. 31(7) (2019) 1804672. https://doi.org/10.1002/adma.201804672
  7. Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Origin of the Electrocatalytic Oxygen Reduction Activity of GrapheneBased Catalysts: A Roadmap to Achieve the Best Performance, J. Am. Chem. Soc. 136(11) (2014) 4394-4403. https://doi.org/10.1021/ja500432h
  8. Y. Cheng, C. Xu, L. Jia, J.D. Gale, L. Zhang, C. Liu, P.K. Shen, S.P. Jiang, Pristine carbon nanotubes as non-metal electrocatalysts for oxygen evolution reaction of water splitting, Appl. Catal. B: Environ. 163 (2015) 96-104. https://doi.org/10.1016/j.apcatb.2014.07.049
  9. M.D. Esrafili, E. Vessally, N2O + CO reaction over single Ga or Ge atom embedded graphene: A DFT study, Surf. Sci. 667 (2018) 105-111. https://doi.org/10.1016/j.susc.2017.10.001
  10. J.Y. Cheon, J.H. Kim, J.H. Kim, K.C. Goddeti, J.Y. Park, S.H. Joo, Intrinsic relationship between enhanced oxygen reduction reaction activity and nanoscale work function of doped carbons, J. Am. Chem. Soc. 136(25) (2014) 8875-8. https://doi.org/10.1021/ja503557x
  11. Z. Xie, M. Chen, S.G. Peera, C. Liu, H. Yang, X. Qi, U.P. Kumar, T. Liang, Theoretical Study on a Nitrogen-Doped Graphene Nanoribbon with Edge Defects as the Electrocatalyst for Oxygen Reduction Reaction, ACS Omega 5(10) (2020) 5142-5149. https://doi.org/10.1021/acsomega.9b04146
  12. Z. Liang, M. Luo, M. Chen, C. Liu, S.G. Peera, X. Qi, J. Liu, U.P. Kumar, T.L.T. Liang, Evaluating the catalytic activity of transition metal dimers for the oxygen reduction reaction, J. Colloid Interf. Sci. 568 (2020) 54-62. https://doi.org/10.1016/j.jcis.2020.02.034
  13. S. Geng, J. Liu, C. Wang, L. Dong, T. Liang, Experimental analysis and theoretical studies by density functional theory of aminopropyl-modified ordered mesoporous carbon, Appl. Surf. Sci. 351 (2015) 911-919. https://doi.org/10.1016/j.apsusc.2015.06.034
  14. J. Liu, C. Wang, L. Dong, T. Liang, Study on the Recycling of Nuclear Graphite after Micro-Oxidation, Nucl. Eng. Technol. 48(1) (2016) 182-188. https://doi.org/10.1016/j.net.2015.08.007
  15. L. Dai, Y. Xue, L. Qu, H.-J. Choi, J.-B. Baek, Metal-free catalysts for oxygen reduction reaction, Chem. Rev. 115(11) (2015) 4823-92. https://doi.org/10.1021/cr5003563
  16. S.G. Peera, A.K. Sahu, A. Arunchander, S.D. Bhat, J. Karthikeyan, P. Murugan, Nitrogen and fluorine co-doped graphite nanofibers as high durable oxygen reduction catalyst in acidic media for polymer electrolyte fuel cells, Carbon 93 (2015) 130-142. https://doi.org/10.1016/j.carbon.2015.05.002
  17. S. Agnoli, M. Favaro, Doping graphene with boron: a review of synthesis methods, physicochemical characterization, and emerging applications, J. Mater. Chem. A 4(14) (2016) 5002- 5025. https://doi.org/10.1039/C5TA10599D
  18. D.Y. Yeom, W. Jeon, N.D. Tu, S.Y. Yeo, S.S. Lee, B.J. Sung, H. Chang, J.A. Lim, H. Kim, High-concentration boron doping of graphene nanoplatelets by simple thermal annealing and their supercapacitive properties, Sci. Rep. 5 (2015) 9817. https://doi.org/10.1038/srep09817
  19. R. Vishwakarma, G. Kalita, S.M. Shinde, Y. Yaakob, C. Takahashi, M. Tanemura, Structure of nitrogen-doped graphene synthesized by combination of imidazole and melamine solid precursors, Mater. Lett. 177 (2016) 89-93. https://doi.org/10.1016/j.matlet.2016.04.155
  20. A. Arunchander, S.G. Peera, S.K. Panda, S. Chellammal, A.K. Sahu, Simultaneous co-doping of N and S by a facile insitu polymerization of 6-N,N-dibutylamine-1,3,5-triazine-2,4- dithiol on graphene framework: An efficient and durable oxygen reduction catalyst in alkaline medium, Carbon 118 (2017) 531-544. https://doi.org/10.1016/j.carbon.2017.03.093
  21. J. Wu, C. Jin, Z. Yang, J. Tian, R. Yang, Synthesis of phosphorus-doped carbon hollow spheres as efficient metalfree electrocatalysts for oxygen reduction, Carbon 82 (2015) 562-571. https://doi.org/10.1016/j.carbon.2014.11.008
  22. M. Klingele, C. Pham, K.R. Vuyyuru, B. Britton, S. Holdcroft, A. Fischer, S. Thiele, Sulfur doped reduced graphene oxide as metal-free catalyst for the oxygen reduction reaction in anion and proton exchange fuel cells, Electrochem. Commun. 77 (2017) 71-75. https://doi.org/10.1016/j.elecom.2017.02.015
  23. J.J. Spivey, K.S. Krishna, C.S.S.R. Kumar, K.M. Dooley, J.C. Flake, L.H. Haber, Y. Xu, M.J. Janik, S.B. Sinnott, Y.-T. Cheng, T. Liang, D.S. Sholl, T.A. Manz, U. Diebold, G.S. Parkinson, D.A. Bruce, P. de Jongh, Synthesis, Characterization, and Computation of Catalysts at the Center for Atomic-Level Catalyst Design, J. Phys. Chem. C 118(35) (2014) 20043-20069. https://doi.org/10.1021/jp502556u
  24. S.H. Noh, C. Kwon, J. Hwang, T. Ohsaka, B.-J. Kim, T.-Y. Kim, Y.-G. Yoon, Z. Chen, M.H. Seo, B. Han, Self-assembled nitrogen-doped fullerenes and their catalysis for fuel cell and rechargeable metal–air battery applications, Nanoscale 9(22) (2017) 7373-7379. https://doi.org/10.1039/C7NR00930E
  25. X. Hou, Q. Hu, P. Zhang, J. Mi, Oxygen reduction reaction on nitrogen-doped graphene nanoribbons: A density functional theory study, Chem. Phys. Lett. 663 (2016) 123-127. https://doi.org/10.1016/j.cplett.2016.10.003
  26. M.D. Esrafili, Nitrogen-doped (6,0) carbon nanotubes: A comparative DFT study based on surface reactivity descriptors, Comput. Theor. Chem. 1015(7) (2013) 1-7. https://doi.org/10.1016/j.comptc.2013.04.003
  27. L. Zhang, J. Niu, L. Dai, Z. Xia, Effect of Microstructure of Nitrogen-Doped Graphene on Oxygen Reduction Activity in Fuel Cells, Langmuir 28(19) (2012) 7542-7550. https://doi.org/10.1021/la2043262
  28. X.H. Zheng, L.F. Huang, X.L. Wang, J. Lan, Z. Zeng, Band gap engineering in armchair-edged graphene nanoribbons by edge dihydrogenation, Comp. Mater. Sci. 62 (2012) 93- 98. https://doi.org/10.1016/j.commatsci.2012.05.022
  29. L. Zhang, Z. Xia, Mechanisms of Oxygen Reduction Reaction on Nitrogen-Doped Graphene for Fuel Cells, J. Phys. Chem. C 115(22) (2011) 11170-11176. https://doi.org/10.1021/jp201991j
  30. Y. Wang, J. Mao, X. Meng, L. Yu, D. Deng, X. Bao, Catalysis with Two-Dimensional Materials Confining Single Atoms: Concept, Design, and Applications, Chem. Rev. 119(3) (2019) 1806-1854. https://doi.org/10.1021/acs.chemrev.8b00501
  31. K.V. Bets, B.I. Yakobson, Spontaneous Twist and Intrinsic Instabilities of Pristine Graphene Nanoribbons, Nano Res. 2(2) (2009) 161-166. https://doi.org/10.1007/s12274-009-9015-x
  32. H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff, Y. Jiao, Y. Zheng, S.Z. Qiao, Emerging Two-Dimensional Nanomaterials for Electrocatalysis, Chem. Rev. 118(13) (2018) 6337-6408. https://doi.org/10.1021/acs.chemrev.7b00689
  33. B. Delley, From molecules to solids with the DMol3 approach, J. Chem. Phys. 113(18) (2000) 7756-7764. https://doi.org/10.1063/1.1316015
  34. B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules, J. Chem. Phys. 92(1) (1990) 508-517. https://doi.org/10.1063/1.458452
  35. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77(18) (1996) 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  36. S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27(15) (2006) 1787-99. https://doi.org/10.1002/jcc.20495
  37. A. Klamt, G. Schüürmann, COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient, J. Chem. Soc., Perkin Trans. 2 (5) (1993) 799-805. https://doi.org/10.1039/P29930000799
  38. B. Delley, The conductor-like screening model for polymers and surfaces, Mol. Simulat. 32(2) (2006) 117-123. https://doi.org/10.1080/08927020600589684
  39. R.S. Mulliken, Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I, J. Chem. Phys. 23(10) (1955) 1833-1840. https://doi.org/10.1063/1.1740588
  40. T. A.Halgren, W. N.Lipscomb, The synchronous-transit method for determining reaction pathways and locating molecular transition states, Chem. Phys. Lett. 49(2) (1997) 225-232. https://doi.org/10.1016/0009-2614(77)80574-5
  41. A. Sahu, G. Selvarani, S. Bhat, S. Pitchumani, P. Sridhar, A. Shukla, N. Narayanan, A. Banerjee, N. Chandrakumar, Effect of varying poly(styrene sulfonic acid) content in poly(vinyl alcohol)–poly(styrene sulfonic acid) blend membrane and its ramification in hydrogen–oxygen polymer electrolyte fuel cells, J. Membrane Sci. 319(1-2) (2008) 298-305. https://doi.org/10.1016/j.memsci.2008.04.004
  42. J.A. Keith, T. Jacob, Theoretical Studies of PotentialDependent and Competing Mechanisms of the Electrocatalytic Oxygen Reduction Reaction on Pt(111), Angew. Chem. Int. Ed. 49(49) (2010) 9521-9525. https://doi.org/10.1002/anie.201004794
  43. A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J.K. Nørskov, How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels, Energ. Environ. Sci. 3(9) (2010) 1311-1315. https://doi.org/10.1039/c0ee00071j
  44. J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jónsson, Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode, J. Phys. Chem. B 108(46) (2004) 17886-17892. https://doi.org/10.1021/jp047349j
  45. H. Wang, H. Wang, Y. Chen, Y. Liu, J. Zhao, Q. Cai, X. Wang, Phosphorus-doped graphene and (8, 0) carbon nanotube: Structural, electronic, magnetic properties, and chemical reactivity, Appl. Surf. Sci. 273 (2013) 302-309. https://doi.org/10.1016/j.apsusc.2013.02.035
  46. J. Dai, J. Yuan, Modulating the electronic and magnetic structures of P-doped graphene by molecule doping, J. Phys. Condens. Matt. 22(22) (2010) 225501. https://doi.org/10.1088/0953-8984/22/22/225501
  47. N. Yang, X. Zheng, L. Li, J. Li, Z. Wei, Influence of Phosphorus Configuration on Electronic Structure and Oxygen Reduction Reactions of Phosphorus-Doped Graphene, J. Phys. Chem. C 121(35) (2017) 19321-19328. https://doi.org/10.1021/acs.jpcc.7b06748
  48. E. Cruz-Silva, Z.M. Barnett, B.G. Sumpter, V. Meunier, Structural, magnetic, and transport properties of substitutionally doped graphene nanoribbons from first principles, Phys. Rev. B 83(15) (2011) 155445. https://doi.org/10.1103/PhysRevB.83.155445
  49. Y. Ji, H. Dong, C. Liu, Y. Li, The progress of metal-free catalysts for the oxygen reduction reaction based on theoretical simulations, J. Mater. Chem. A 6(28) (2018) 13489-13508. https://doi.org/10.1039/C8TA02985G
  50. L. Wang, H. Dong, Z. Guo, L. Zhang, T. Hou, Y. Li, Potential Application of Novel Boron-Doped Graphene Nanoribbon as Oxygen Reduction Reaction Catalyst, J. Phys. Chem. C 120(31) (2016) 17427-17434. https://doi.org/10.1021/acs.jpcc.6b04639
  51. X. Zhang, Z. Lu, Z. Fu, Y. Tang, D. Ma, Z. Yang, The mechanisms of oxygen reduction reaction on phosphorus doped graphene: A first-principles study, J. Power Sources 276 (2015) 222-229. https://doi.org/10.1016/j.jpowsour.2014.11.105
  52. B. He, J. Shen, D. Ma, Z. Lu, Z. Yang, Boron-Doped C3N Monolayer as a Promising Metal-Free Oxygen Reduction Reaction Catalyst: A Theoretical Insight, J. Phys. Chem. C 122(35) (2018) 20312-20322. https://doi.org/10.1021/acs.jpcc.8b05171
  53. Z. Liu, F. Peng, H. Wang, H. Yu, W. Zheng, X. Wei, Preparation of phosphorus-doped carbon nanospheres and their electrocatalytic performance for O2 reduction, J. Nat. Gas Chem. 21(3) (2012) 257-264. https://doi.org/10.1016/S1003-9953(11)60362-9
  54. R. Li, Z. Wei, X. Gou, W. Xu, Phosphorus-doped graphene nanosheets as efficient metal-free oxygen reduction electrocatalysts, RSC Adv. 3(25) (2013) 9978. https://doi.org/10.1039/c3ra41079j
  55. Z.W. Liu, F. Peng, H.J. Wang, H. Yu, W.X. Zheng, J. Yang, Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium, Angewandte Chemie 50(14) (2011) 3257-61. https://doi.org/10.1002/anie.201006768
  56. Y. Jiao, Y. Zheng, K. Davey, S.Z. Qiao, Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene, Nat. Energy 1(10) (2016) 16130. https://doi.org/10.1038/nenergy.2016.130