Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 7 (2020)

Chemical Synthesis of Marble Powder-Fly Ash Doped Poly (Vinyl Alcohol) Composites and Comparison between their Structural, Thermal and Mechanical Properties

DOI
https://doi.org/10.31875/2410-4701.2020.07.07
Submitted
March 27, 2020
Published
2020-03-27

Abstract

In this study, poly (vinyl alcohol) based composite materials were produced. Fly ash and Karaman Beige and Rosso Levanto marble powders were taken by Alacakaya Marble and Mining Business and they were used as fillers. Composite materials (at the rate of 1/20 by mass) were produced. The microstructure analysis of the materials was examined by Scanning Electron Microscope. Fourier Transform Infrared Spectrophotometer analysis was used to get information about the functional groups in the structures of the materials. The thermal behavior of the materials was analyzed by Differential Thermal Analysis and Differential Scanning Calorimetry at the same single heating rate of 10 C/min. X-Ray Diffraction analysis was performed to determine the crystallographic properties of the materials at room temperature. The mechanical and physical properties of the obtained materials were examined by stress-strain analysis.

References

  1. Bucher, Kurt, and Rodney Grapes. Petrogenesis of Metamorphic Rocks. (Springer, Berlin, Heidelberg, (2011), pp. 225-255. https://doi.org/10.1007/978-3-540-74169-5_6
  2. Alyamaç, Kürşat Esat, and Ragip Ince. Constr. Build. Mater. 23.3: 1201-1210 (2009). https://doi.org/10.1016/j.conbuildmat.2008.08.012
  3. Hubbard, H. A., and Ericksen, G. E., in Brobst D. A., and Pratt, W. P., eds., United States mineral resources: U.S. Geology. (1973), v. 38, nos. 3 and 4, pp. 303-364.
  4. Gao, N. F., Kume, S., & Watari, K., Mater. Sci. Eng. A. 399(1- 2), 216-221 (2005). https://doi.org/10.1016/j.msea.2005.04.008
  5. Ünal, M. T., & Şimşek, O., Politeknik Dergisi. (2020).
  6. Rozenstrauha, I., Bajare, D., Cimdins, R., Berzina, L., Bossert, J., & Boccaccini, A. R., Ceram. Int, 32(2), 115-119 (2006). https://doi.org/10.1016/j.ceramint.2005.01.006
  7. Siotto, G., Careddu, N., Curreli, L., Marras, G., & Orru, G., in Dımensıon Stones-Xxı Century Challenges, 2nd Internatıonal Congress On Dımensıon Stones. Pacini Editore. (2008), pp 387-390.
  8. Terzi, S. Karasahin, M. Technical Journal, Volume: 193, 2903-2922 (2003).
  9. Hristova, J., Valeva, V., & Ivanova, J. Compos. Sci. Technol, 62(7-8), 1097-1103 (2002). https://doi.org/10.1016/S0266-3538(02)00055-6
  10. Khrıstova, Yu; Anıskevıch, K., Mechanic Composite Material, 30: 590-599 (1994).
  11. García-Ten, J., et al., in CFI Ceramic Forum International. Goeller Verlag GmbH, (2003).
  12. Ali, M. M., et al., Cem. Concr. Res. 30(6), 977-980 (2000). https://doi.org/10.1016/S0008-8846(00)00258-1
  13. Ohama, Y., Adv. Cem. Based Mater., 5(2), 31-40 (1997). https://doi.org/10.1016/S1065-7355(96)00005-3
  14. Ünlü, N., & Canbay, C. A., JMED 3(1), 8-13 (2020). https://doi.org/10.1007/s13538-020-00823-1
  15. Hayat, M. Arif, ed. Principles and techniques of scanning elektron microscopy: biological applications (1978).
  16. Erdik, E., Organik kimyada spektroskopik yöntemler. Gazi Büro Kitabevi. (1993).
  17. Dogan, A., Siyakus, G., & Severcan, F., Food Chem., 100(3), 1106-1114 (2007). https://doi.org/10.1016/j.foodchem.2005.11.017
  18. Bhat, R., Int. J. Food Prop. 16(8), 1819-1829 (2013). https://doi.org/10.1080/10942912.2011.609629
  19. Ergin, Ç., İlkit, M., Gök, Y., Özel, M. Z., Çon, A. H., Kabay, N., & Döğen, A., J. Microbiol. Methods, 93(3), 218-223 (2013). https://doi.org/10.1016/j.mimet.2013.03.011
  20. Ding, W., Wei, S., Zhu, J., Chen, X., Rutman, D., & Guo, Z., Macromol Mater Eng. 295(10), 958-965 (2010). https://doi.org/10.1002/mame.201000188
  21. Luo, X., Wang, C., Luo, S., Dong, R., Tu, X., & Zeng, G., Chem. Eng. J. 187, 45-52 (2012). https://doi.org/10.1016/j.cej.2012.01.073
  22. Li, N., Zheng, M., Chang, X., Ji, G., Lu, H., Xue, L., & Cao, J., J. Solid State Chem, 184(4), 953-958 (2011). https://doi.org/10.1016/j.jssc.2011.01.014
  23. Tang, G., Jiang, Z. G., Li, X., Zhang, H. B., Dasari, A., & Yu, Z. Z., Carbon, 77, 592-599 (2014). https://doi.org/10.1016/j.carbon.2014.05.063
  24. Andrijanto, E., Shoelarta, S., Subiyanto, G., & Rifki, S., in AIP Conference Proceedings, AIP Publishing LLC. (2016), Vol. 1725, No. 1, p. 020003.
  25. Chhatri, A., Bajpai, J., Bajpai, A. K., Sandhu, S. S., Jain, N., & Biswas, J., Carbohydr. Polym. 83(2), 876-882 (2011). https://doi.org/10.1016/j.carbpol.2010.08.077
  26. Kumar, G. H., Rao, J. L., Gopal, N. O., Narasimhulu, K. V., Chakradhar, R. P. S., & Rajulu, A. V., Polymer, 45(16), 5407- 5415 (2004). https://doi.org/10.1016/j.polymer.2004.05.068
  27. S. J. Liu, Int. Polymer Proc. XIII, Hanser Publishers, (Munich, 1998), pp. 88–90.
  28. Söylemez, Ertan., MS thesis. Hitit Üniversitesi Fen Bilimleri Enstitüsü, 2016.
  29. Tiyek, İ., Donmez, U., Yildirim, B., Alma, M.H., Ersoy, M.S., Karatas, S., Yazici, M., SAU Science Journal 20. Volume, 2. Issue, p. 349-357 (2016). https://doi.org/10.16984/saufenbilder.29009
  30. Lee, L. J., Zeng, C., Cao, X., Han, X., Shen, J., & Xu, G., Compos Sci Technol, 65(15-16), 2344-2363 (2005). https://doi.org/10.1016/j.compscitech.2005.06.016
  31. Flynn, J. H., Schwenker, R. F., & Garn, P. D., Academic Press, (New York, 1969).
  32. Dee, P. P., N. Roy Choudhury, and N. K. Dutta., ISmithers Rapra Pub., (2010).
  33. Anbarasan, R., Pandiarajaguru, R., Prabhu, R., Dhanalakshmi, V., Jayalakshmi, A., Dhanalakshmi, B., Nisha, S.U., Gandhi, S., Jayalakshmi, T., J. Appl. Polym. Sci. 117, 2059–2068 (2010). https://doi.org/10.1002/app.32033
  34. Shao, C., Kim, H. Y., Gong, J., Ding, B., Lee, D. R., & Park, S., J. Mater. Lett 57(9-10), 1579-1584 (2003). https://doi.org/10.1016/S0167-577X(02)01036-4
  35. Cullity, B. D., Reading, (USA, 1978), pp. 32-106. https://doi.org/10.1515/hfsg.1978.32.3.106
  36. ASM Handbook, “Mechanical Testing” Tenth Ed., ASM, (Ohio, 1998).