Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 8 (2021)

Electrosynthesis of a Duplex Coating Consisting of a Cerium-Based Layer and a Polypyrrole Film for the Corrosion Protection of AISI 304 Stainless Steel

DOI
https://doi.org/10.31875/2410-4701.2021.08.1
Submitted
November 30, 2021
Published
2021-11-30

Abstract

Duplex coating consisting of an inner cerium-based layer and polypyrrole (PPy) film topcoat was electrodeposited onto AISI 304 stainless steel. The cerium-based coating was electrodeposited in solutions containing cerium nitrate at 50 ºC. The polymeric outer layer was electropolymerized in the presence of sodium bis(2-ethylhexyl) sulfosuccinate (AOT). The electrosynthesis was done under potentiostat conditions. The coatings were characterized by scanning electron microscopy (SEM) and energy dispersive x-ray spectrometry (EDX). The morphology of the double-layered cerium polypyrrole film shows a granular structure with the presence of agglomerates of small grains.

The anticorrosive performance of the coatings was evaluated in sodium chloride solution by linear polarization, open circuit measurements, and electrochemical impedance spectroscopy (EIS). Single films, cerium layer and PPy coating, and the duplex film all reduce the corrosion rate of AISI 304 stainless steel in NaCl solution. The duplex coating presents an improved corrosion resistance concerning the single films. The combination of the characteristics of the single layers is responsible for the superior corrosion protection efficiency of the double-layered cerium polypyrrole coating.

References

  1. Sandu AV, Coddet C, Bejinariu C. A Comparative Study on Surface Structure of Thin Zinc Phosphates Layers Obtained Using Different Deposition Procedures on Steel. Rev. Chim. 2012; 63(4): 404-406.
  2. Ramezanzadeh B, Attar MM. Cathodic Delamination and Anticorrosion Performance of an Epoxy Coating Containing Nano/Micro-Sized ZnO Particles on Cr(III)-Co(II)/Cr(III)-Ni(II) Posttreated Steel Samples. Corrosion. 2013; 69(8): 793-803. https://doi.org/10.5006/0841
  3. Neri W. Introduzione alla Verniciatura delle superfici metalliche. 3rd ed. Tecniche Nuove. Milan (1990).
  4. Xingwen Y, Chunan C, Zhiming Y, Derui Z, Zhongda Y. Study of double layer rare earth metal conversion coating on aluminum alloy LY12. Corros. Sci. 2011; 43(7): 1283-1294. https://doi.org/10.1016/S0010-938X(00)00141-4
  5. Maddela S, O'Keefe MJ, Yang YM, Kuo HH. Influence of Surface Pretreatment on Coating Morphology and Corrosion Performance of Cerium Based Conversion Coatings on AZ91D Alloy. Corrosion. 2010; 66(11): 115006, 1-8. https://doi.org/10.5006/1.3516220
  6. Pepe A, Aparicio M, Durán A, Ceré S. Cerium hybrid silica coatings on stainless steel AISI 304 substrate. J Sol-Gel Sci Technol. 2006; 39(2): 131-138. https://doi.org/10.1007/s10971-006-9173-1
  7. Aggoun K, Chaal L, Creus J, Sabot R, Saidani B, Jeannin M. Marine corrosion resistance of CeO2/Mg(OH)2 mixed coating on a low alloyed steel. Surf. Coat. Technol. 2019; 372: 410-421. https://doi.org/10.1016/j.surfcoat.2019.05.053
  8. Qi Wang A, Golden T. Electrodeposition of Oriented Cerium Oxide Films. Int. Jour. Electrochem. (2013). https://doi.org/10.1155/2013/482187
  9. Ding K, Jia H, Wei S, Guo Z. Electrocatalysis of Sandwich-Structured Pd/Polypyrrole/Pd Composites toward Formic Acid Oxidation. Ind. Eng. Chem. Res. 2011; 50(11): 7077-7082. https://doi.org/10.1021/ie102392n
  10. Grgur BN, Krstaji NV, Vojnovi MV, Lanjevac C, Gaji-Krstaji Lj. The influence of polypyrrole films on the corrosion behavior of iron in acid sulfate solutions. Prog. Org. Coat. 1998; 33(1): 1-6. https://doi.org/10.1016/S0300-9440(97)00112-4
  11. Paliwoda-Porebska G, Stratmann M, Rohwerder M, Potje-Kamloth K, Lu Y, Pich A, Adler H. On the development of polypyrrole coatings with self-healing properties for iron corrosion protection. Corros. Sci. 2005; 47(12): 3216-3233. https://doi.org/10.1016/j.corsci.2005.05.057
  12. Herrasti P, Recio FJ, Ocon P, Fatas E. Effect of the polymer layers and bilayers on the corrosion behaviour of mild steel: Comparison with polymers containing Zn microparticles. Prog. Org. Coat 2005; 54(4): 285-291. https://doi.org/10.1016/j.porgcoat.2005.07.001
  13. Koene L, Hamer WJ, de Wit JHW. Electrochemical behaviour of poly(pyrrole) coatings on steel. J. Appl. Electrochem. 2006; 36(5): 545-556. https://doi.org/10.1007/s10800-005-9104-9
  14. Hosseini MG, Sabouri M, Shahrabi T (2007) Corrosion protection of mild steel by polypyrrole phosphate composite coating. Prog. Org. Coat. 2007; 60(3): 178-185. https://doi.org/10.1016/j.porgcoat.2007.07.029
  15. Zhang T, Zeng CL. Corrosion protection of 1Cr18Ni9Ti stainless steel by polypyrrole coatings in HCl aqueous solution. Electrochim Acta 2005; 50(24): 4721-4727. https://doi.org/10.1016/j.electacta.2005.01.049
  16. Blanco MX, Blanco Pinzon CE, García Vegara SJ. Synthesis and characterization of polypyrrole - TiO2 coatings on AISI 304 stainless Steel. J. Phys.: Conf. Ser. 2018; 1119: 1-6. https://doi.org/10.1088/1742-6596/1119/1/012029
  17. Jang L, Ma H, Zhang J, Lu Y, Lu H, Meng X. Electro Polymerization of Polypyrrole Coatings Doped with Different Proton Acids for Corrosion Protection of 304 Stainless Steel. MATEC Web Conferences. (2017). https://doi.org/10.1051/matecconf/201710903007
  18. El Jaouhari A, Chennah A, Ben Jaddi S, Ait Ahsaine H, Anfar Z, Tahiri Alaoui Y, Naciri Y, Benlhachemi A, Bazzaoui M. Electrosynthesis of zinc phosphate-polypyrrole coatings for improved corrosion resistance of steel. Surf. Interfaces. 2019; 15: 224-231. https://doi.org/10.1016/j.surfin.2019.02.011
  19. Omastová M, Trchová M, Pionteck J, Prokes J, Stejskal J. Effect of polymerization conditions on the properties of polypyrrole prepared in the presence of sodium bis(2-ethylhexyl) sulfosuccinate. Synth. Met. 2004; 143: 153-161. https://doi.org/10.1016/j.synthmet.2003.11.005
  20. Lehr IL, Saidman SB. Electrodeposition of polypyrrole on aluminium in the presence of sodium bis(2-ethylhexyl) sulfosuccinate. Mater. Chem. Phys. 2006; 100: 262-267. https://doi.org/10.1016/j.matchemphys.2005.12.041
  21. Lehr IL, Saidman SB. Corrosion protection of iron by polypyrrole coatings electrosynthesised from a surfactant solution. Corros. Sci. 2007; 49: 2210-2225. https://doi.org/10.1016/j.corsci.2006.10.033
  22. Flamini DO, Saidman SB. Characterization of polypyrrole films electrosynthesized onto titanium in the presence of sodium bis(2-ethylhexyl) sulfosuccinate (AOT). Electrochim. Acta. 2010; 55: 3727-3733. https://doi.org/10.1016/j.electacta.2010.01.107
  23. Johansen H, Brett C, Motheo A. Corrosion protection of aluminium alloy by cerium conversion and conducting polymer duplex coatings. Corros. Sci. 2012; 63: 342-350. https://doi.org/10.1016/j.corsci.2012.06.020
  24. Lavigne O, Alemany-Dumont C, Normand B, Delichére P, Descamps A. Cerium insertion in 316L passive film: Effect on conductivity and corrosion resistance performances of metallic bipolar plates for PEM fuel cell application. Surf. Coat. Techonol. 2010; 205(7): 1870-1877. https://doi.org/10.1016/j.surfcoat.2010.08.051
  25. Zhitomirsky I. Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects. Adv. Colloid Interface Sci. 2002; 97: 279-317. https://doi.org/10.1016/S0001-8686(01)00068-9
  26. Aldykiewicz Jr AJ, Davenport AJ, Isaacs HS. Studies of the Formation of Cerium-Rich Protective Films Using X-Ray Absorption Near-Edge Spectroscopy and Rotating Disk Electrode Methods. J. Electrochem. Soc. 1996; 143(1): 147-154. https://doi.org/10.1149/1.1836400
  27. Vakili R, Ramezanzadeh B, Amini R. The corrosión performance and adhesión properties of the epoxy coating applied on the steel substrates treated by cerium-based conversión coating. Corros. Sci. 2015; 94: 466-475. https://doi.org/10.1016/j.corsci.2015.02.028
  28. Ocón P, Cristobal A, Herrasti P, Fatas E. Corrosion performance of conducting polymer coatings applied on mild steel. Corros. Sci. 2005; 47: 649-662. https://doi.org/10.1016/j.corsci.2004.07.005
  29. Fenelon A, Breslin C. Polyaniline-coated iron: studies on the dissolution and electrochemical activity as a function of pH. Surf. Coat. Technol. 2005; 190: 264-270. https://doi.org/10.1016/j.surfcoat.2004.04.083
  30. Lei L, Shi J, Wang X, Liu D, Xu H. Microstructure and electrochemical behavior of cerium conversion coating modified with silane agent on magnesium substrates. Appl. Surf. Sci. 2016; 376: 161-171. https://doi.org/10.1016/j.apsusc.2016.03.150
  31. Tomic M, Petrovic M, Stankovic S, Stevanovic S, Bajat JB. Ternary Zn-Ni-Co alloy: anomalous codeposition and corrosion stability. J. Serb. Chem, Soc. 2015; 80(1): 73-86. https://doi.org/10.2298/JSC260814113B
  32. Bajat JB, Vasilic R, Stojadinovic S, Miskovic-Stankovic V. Corrosion stability of oxide coating forme by plasma electrolytix oxidation of aluminum optimization of process time. Corrosion. 2013; 69(7): 693-702. https://doi.org/10.5006/0859
  33. G. Cai, H. Wang, D. Jiang, Z. Dong, Degradation of fluorinated polyurethane coating under UVA and salt spray. Part I: Corrosion resistance and morphology, Prog. Org. Coatings. 2018; 123: 337-349. https://doi.org/10.1016/j.porgcoat.2018.07.025
  34. X. Huang, N. Li, H. Wang, H. Sun, S. Sun, J. Zheng, Electrodeposited cerium film as chromate replacement for tinplate, Thin Solid Films. 2008; 516: 1037-1043. https://doi.org/10.1016/j.tsf.2007.08.044
  35. M. Toorani, M. Aliofkhazraei, Review of electrochemical properties of hybrid coating systems on Mg with plasma electrolytic oxidation process as pretreatment, Surfaces and Interfaces. 2019; 14: 262-295. https://doi.org/10.1016/j.surfin.2019.01.004