Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 8 (2021)

On Semi-Classical Approach to Materials Electronic Structure

DOI
https://doi.org/10.31875/2410-4701.2021.08.6
Published
2021-11-30

Abstract

Materials atomic structure, ground-state and physical properties as well as their chemical reactivity mainly are determined by electronic structure. When first-principles methods of studying the electronic structure acquire good predictive power, the best approach would be to design new functional materials theoretically and then check experimentally only most perspective ones. In the paper, the semi-classical model of multi-electron atom is constructed, which makes it possible to calculate analytically (in special functions) the electronic structure of atomic particles themselves and materials as their associated systems. Expected relative accuracy makes a few percent, what is quite acceptable for materials science purposes.

References

  1. R. Prasad, Electronic Structure of Materials, Boca Raton, CRC Press - Taylor & Francis Group 2014.
  2. F. Bassani, G. Pastori Parravicini, R.A. Ballinger, Electronic States and Optical Transitions in Solids, Elkins Park, Franklin Book Co. (1993).
  3. JC. Slater, GF. Koster, Simplified LCAO method for the periodic potential problem, Phys. Rev. 1954; 94(6): 1498- 1524. https://doi.org/10.1103/PhysRev.94.1498
  4. V. Halpern, An optimized LCAO method for crystals, J. Phys. C 1970; 3(9): 1900-1911. https://doi.org/10.1088/0022-3719/3/9/009
  5. S. Flugge, Practical Quantum Mechanics, Berlin-Heidelberg, Springer-Verlag 1999.
  6. N. Bohr, I. On the constitution of atoms and molecules, Phil. Mag. Ser. 1913; 6 26(151): 1-25. https://doi.org/10.1080/14786441308634955
  7. N. Bohr, II. On the constitution of atoms and molecules, Phil. Mag. Ser. 1913; 6 26(153): 476-502. https://doi.org/10.1080/14786441308634993
  8. N. Bohr, III. On the constitution of atoms and molecules, Phil. Mag. Ser. 1913; 6 26(155): 857-875. https://doi.org/10.1080/14786441308635031
  9. PV. Elyutin, VD. Krivchenkov, Quantum Mechanics with Problems, Moscow, Publ. House Nauka 1976.
  10. BR. Martin, Nuclear and Particle Physics (An Introduction), Chichester, Wiley 2006. https://doi.org/10.1002/0470035471
  11. M. Ghins, Bohr's modeling of the atom: A reconstruction and assessment, Logique & Analyse 2012; 218(4): 1-22.
  12. AA. Potapov, Renaissance of Classical Atom, Moscow, Publ. House Nauka 2011.
  13. T. Yamomoto, K. Kaneko, Exploring a classical model of the helium atom, Prog. Theo. Phys. 1998; 100(6): 1089-1105. https://doi.org/10.1143/PTP.100.1089
  14. J. Hainz, H. Grabert, Centrifugal terms in the WKB approximation and semi-classical quantization of hydrogen, Phys. Rev. A 1999; 60(2): 1698-1701. https://doi.org/10.1103/PhysRevA.60.1698
  15. A. Comtet, AD. Bandrauk, DK. Kampbell, Exactness of semiclassical bound state energies for super-symmetric quantum mechanics, Phys. Lett. B 1985; 150(1/2/3): 159-162. https://doi.org/10.1016/0370-2693(85)90160-1
  16. B. Bagchi, P. Holody. An interesting application of Bohr theory, Am. J. Phys. 1988; 56(8): 746-747. https://doi.org/10.1119/1.15479
  17. AA. Svidzinsky, MO. Scully, DR. Herschbach, Bohr's 1913 molecular model revisited, Proc. Natl. Acad. Sci. USA 2005; 102(34): 11985-11988. https://doi.org/10.1073/pnas.0505778102
  18. ANV. Popa, Accurate Bohr-type semi-classical model for atomic and molecular systems, Rep. Inst. Atom. Phys. 1991; E12: 1-90.
  19. G. Tanner, K. Richter, J.-M. Rost, The theory of two-electron atoms: Between ground state and complete fragmentation, Rev. Mod. Phys. 2000; 72(2): 497-544. https://doi.org/10.1103/RevModPhys.72.497
  20. LH. Thomas, The calculation of atomic fields, Proc. Cambridge Phil. Soc. 1927; 23(5): 542-548. https://doi.org/10.1017/S0305004100011683
  21. E. Fermi, Un metodo statistico per la determinazione di alcune properita dell'atomo, Atti. Accad. Naz. Lincei - Rend. Cl. Sci., Fis., Mat., Nat. 1927; 6(6): 602-607.
  22. M. Casas, A. Plastino, A. Puente, Alternative approach to the semi-classical description of N-fermion system, Phys. Rev. A 1994; 49(4): 2312-2317. https://doi.org/10.1103/PhysRevA.49.2312
  23. DA. Kirzhnits, Yu.E. Lozovik, G.V. Shpatkovskaya, Statistical model of substance, Phys. - Uspekhi 1975; 117(1): 3-47.
  24. KM. Magomedov, On theory of atomic quasi-classical selfconsistent field, Rep. Acad. Sci. USSR 1985; 285(5): 1100- 1115.
  25. KM. Magomedov, P.M. Omarova, Quasi-Classical Computing of Atomic Systems, Makhachkala, Dagestan Branch Acad. Sci. USSR 1989.
  26. M. Brack, The physics of simple metal clusters: Selfconsistent jellium model and semi-classical approaches, Rev. Mod. Phys. 1993; 65-I(3): 677-732. https://doi.org/10.1103/RevModPhys.65.677
  27. LS. Chkhartishvili, Quasi-classical calculation of the crystalline band structure, Trans. Georgian Tech. Univ. 1996; 3(411): 45-52.
  28. LS. Chkhartishvili, Method of analysis of crystalline electron energy spectrum based on the quasi-classically calculated characteristics of atomic orbitals, Trans. Georgian Tech. Univ. 1997; 3(414): 205-213.
  29. LS. Chkhartishvili, Construction of the effective quasirelativistic potential for multi-electron atom by the modified Thomas-Fermi method, Trans. Georgian Tech. Univ. 1998; 2(418): 26-37.
  30. LS. Chkhartishvili, Quasi-classical parameterization of substance ground-state electronic structure, Trans. Georgian Tech. Univ. 1999; 2(426): 12-19.
  31. L. Chkhartishvili, Structural and electronic characteristics of substance within initial quasi-classical approximation, Sci. Works Tbilisi Bis. State Inst. 2003; 1: 195-224.
  32. L. Chkhartishvili, Quasi-Classical Theory of Substance Ground State, Tbilisi, Tech. Univ. Press 2004.
  33. L. Chkhartishvili, Asymptotical (quasi-classical) approach to the substance space and electronic structures, In: Proc. Int. Sci. Conf. FMNS 2, Blagoevgrad, South-Western Univ. 2005; 245-254.
  34. LS. Chkhartishvili, Analytical optimization of the lattice parameter using the binding energy calculated in the quasiclassical approximation, Phys. Solid State 2006; 48(5): 846- 853. https://doi.org/10.1134/S1063783406050064
  35. L. Chkhartishvili, Quasi-Classical Method of Calculation of Structural Parameters and Electronic Energy Spectrum of Substance (Thesis Diss. Dr. Sci. Phys. & Math.), Tbilisi, Intellect 2006.
  36. LS. Chkhartishvili, M.D. Darchiashvili, Binding energies and electron energy levels of impurity atoms in crystallographic voids, In: Nauka i inovwacja 15 (Ed.-in-Ch. S. Gomiak), Przemysl, Nauka i studia 2011; 14-24.
  37. L. Chkhartishvili, On theory of doping in nanosized crystallographic voids, Nano Studies 2012; 5: 73-84.
  38. L. Chkhartishvili, T. Berberashvili, Atoms constituting nanosystems: Quasi-classical parameterization for binding energy and electronic structure calculations, Nano Studies 2010; 1: 103-144.
  39. L. Chkhartishvili, T. Berberashvili, Intra-atomic electric field radial potentials in step-like presentation. J. Electro Magn. Anal. Appl. 2010; 2(4): 205-243. https://doi.org/10.4236/jemaa.2010.24029
  40. L. Chkhartishvili, T. Berberashvili, Again on effective electrical charge of atomic nuclei, Nano Studies 2013; 8: 267-272.
  41. LS. Chkhartishvili, Volume of the intersection of three spheres, Math. Notes 2001; 69(3): 421-428. https://doi.org/10.1023/A:1010295711303
  42. LS. Chkhartishvili, Secular equation in electron theory of substance and its complete iterative solution, Trans. Georgian Tech. Univ. 2004; 2(452): 15-22.
  43. LS. Chkhartishvili, Iterative solution of the secular equation, Math. Notes 2005; 77(1): 273-279. https://doi.org/10.1007/s11006-005-0026-y
  44. L. Chkhartishvili, Expression of the algebraic equation roots as a power series of its coefficients, Ilia Chavchavadze Tbilisi Univ. Sci. Trans. 2007; 3: 209-216.
  45. L. Chkhartishvili, Iterative determination of the algebraic equation root with highest module, Ilia Chavchavadze Tbilisi Univ. Sci. Trans. 2008; 4: 72-81.
  46. L. Chkhartishvili, Iterative and Transcendental Solutions of Algebraic Equations (Monograph), Saarbrucken, Palmarium Acad. Publ. 2012.
  47. LS. Chkhartishvili, Solution of an algebraic equation using an irrational iteration function, Math. Notes 2012; 92(5): 714- 719. https://doi.org/10.1134/S0001434612110132
  48. LS. Chkhartishvili, Selection of equilibrium configurations for crystalline and molecular structures based on quasi-classical inter-atomic potential, Trans. Georgian Tech. Univ. 1999; 3(427): 13-19.
  49. L. Chkhartishvili, D. Lezhava, O. Tsagareishvili, D. Gulua, Ground-state parameters of diatomic molecules B2, BC, BN, and BO, Proc. Georgian Police Acad. 1999; 1: 195-300.
  50. L. Chkhartishvili, D. Lezhava, O. Tsagareishvili, Quasiclassical determination of electronic energies and vibration frequencies in boron compounds, J. Solid State Chem. 2000; 154(1): 148-152. https://doi.org/10.1006/jssc.2000.8826
  51. LS. Chkhartishvili, DT. Lezhava, Zero-point vibration effect on crystal binding energy: Quasi-classical calculation for laminated boron nitride, Trans. Georgian Tech. Univ. 2001; 6(439): 87-90.
  52. L. Chkhartishvili, Ground state parameters of wurtzite-like boron nitride: Quasi-classical estimations, In: Proc. 1st Int. Boron Symp. (Ed. K. Erarslan), Ankara, Dumlupinar Univ. - TMMOB 2002; 139-143.
  53. L. Chkhartishvili, Quasi-classical approach: Electronic structure of cubic boron nitride crystals, J. Solid State Chem. 2004; 177(2): 395-399. https://doi.org/10.1016/j.jssc.2003.03.004
  54. L. Chkhartishvili, Quasi-classical analysis of boron-nitride binding, In: Proc. 2nd Int. Boron Symp. (Eds. H. Ozdag, H. Akdas, V. Bozkurt, M. Iphar), Ankara, Osmangazi Univ. - TMMOB 2004; 165-171.
  55. LS. Chkhartishvili, Quasi-classical estimates of the lattice constant and band gap of a crystal: Two-dimensional boron nitride, Phys. Solid State 2004; 46(11): 2126-2133. https://doi.org/10.1134/1.1825560
  56. L. Chkhartishvili, Quasi-classical analysis of electron bandwidths in wurtzite-like boron nitride. Ilia Chavchavadze Tbilisi Univ. Sci. Trans. 2005; 1: 296-314.
  57. L. Chkhartishvili, Density of electron states in wurtzite-like boron nitride: A quasi-classical calculation, Mater. Sci. Ind. J. 2006; 2(1): 18-23.
  58. L. Chkhartishvili, Zero-point vibration energy within quasiclassical approximation: Boron nitrides, Proc. Tbilisi State Univ. (Phys.) - Georgian e-Sci. J. Phys. 2006; 40: 130-138.
  59. LS. Chkhartishvili, Equilibrium geometry of ultra-small radius boron nitride nanotubes, Mater. Sci. Nanostr. 2009; 1: 33-44.
  60. L. Chkhartishvili, On quasi-classical estimations of boron nanotubes ground-state parameters, J. Phys. Conf. Ser. 2009; 176(012013): 1-9. https://doi.org/10.1088/1742-6596/176/1/012013
  61. L. Chkhartishvili, Molar binding energy of the boron nanosystems, In: Proc. 4th Int. Boron Symp. (Eds. A. Konuk, H. Kurama, H. Ak, M. Iphar), Ankara, Osmangazi Univ. - TMMOB 2009; 153-160.
  62. L. Chkhartishvili, I. Murusidze, On relative stability of singlewalled boron nitride nanotubes, Nano Studies 2010; 2: 183- 212. https://doi.org/10.1142/9789814343909_0029
  63. L. Chkhartishvili, I. Murusidze, Molar binding energy of zigzag and armchair single-walled boron nitride nanotubes, Mater. Sci. Appl. 2010; 1(4): 223-246. https://doi.org/10.4236/msa.2010.14035
  64. L. Chkhartishvili, Geometrical models for bare boron nanotubes, In: Physics, Chemistry and Applications of Nanostructures (Eds. VE. Borisenko, SV. Gaponenko, VS. Gurin, CH. Kam), Singapore, World Scientific 2011; 118-121. https://doi.org/10.1142/9789814343909_0027
  65. L. Chkhartishvili, T. Berberashvili, I. Murusidze, Stability of small boron nitride nanotubes, In: Physics, Chemistry and Applications of Nanostructures (Eds. V.E. Borisenko, S.V. Gaponenko, V.S. Gurin, C.H. Kam), Singapore, World Scientific 2011; 126-129. https://doi.org/10.1142/9789814343909_0029
  66. L. Chkhartishvili, Nanotubular boron: Ground-state estimates, In: New Developments in Materials Science (Eds. E. Chikoidze, T. Tchelidze), New York, Nova Sci. Publ. 2011; Ch.8: 67-80.
  67. L. Chkhartishvili, I. Murusidze, Relative stability of BN nanotubes. Solid State Sci. 2012; 14(11/12): 1664-1668. https://doi.org/10.1016/j.solidstatesciences.2012.06.005
  68. L. Chkhartishvili, I. Murusidze, M. Darchiashvili, O. Tsagareishvili, D. Gabunia, Metal impurities in crystallographic voids of beta-rhombohedral boron lattice: Binding energies and electron levels, Solid State Sci. 2012; 14(11/12): 1673-1682. https://doi.org/10.1016/j.solidstatesciences.2012.06.009
  69. L. Chkhartishvili, I. Murusidze, Thermal conductivity of β- rhombohedral boron doped with metals in nano-sized interstitials, Nano Studies 2013; 7: 221-224.
  70. L. Chkhartishvili, I. Murusidze, Frequencies of vibrations localized on interstitial metal impurities in beta-rhombohedral boron based materials, Am. J. Mater. Sci. 2014; 4(2): 103- 110.
  71. R. Becker, L. Chkhartishvili, R. Avci, I. Murusidze, O. Tsagareishvili, N. Maisuradze, "Metallic" boron nitride, Eur. Chem. Bull. 2015; 4(1/2/3): 8-23.
  72. L. Chkhartishvili, R. Becker, R. Avci, Relative stability of boron quasi-planar clusters, In: Proc. Int. Conf. Adv. Mater. Technol. (Eds. G. Darsavelidze, A. Guldamashvili, R. Chedia, A. Sichinava, M. Kadaria), Tbilisi, Universal 2015; 42-46.
  73. L. Chkhartishvili, Small elemental clusters in pair interaction approximation, In: Proc. 4th ICANM, Montreal, IAEMM 2016; 128-132.
  74. L. Chkhartishvili, Planar clusters of identical atoms in equilibrium: 1. Diatomic model approach. Am. J. Nano Res. Appl. 2017; 5(3-1): 1-4.
  75. L. Chkhartishvili, Boron quasi-planar clusters. A mini-review on diatomic approach. In: Proc. IEEE 7th Int. Conf. NAP, Part 4 (Ed.-in-Ch. A.D. Pogrebnjak), Sumy, Sumy State Univ. (2017) 04NESP10 1-5. https://doi.org/10.1109/NAP.2017.8190297
  76. L. Sartinska, L. Chkhartishvili, E. Voynich, T. Eren, G. Frolov, E. Altay, I. Murusidze, O. Tsagareishvili, D. Gabunia, N. Maisuradze, Effect of concentrated light on morphology and vibrational properties of boron and tantalum mixtures, Heliyon 2018; 4(3): e00585 1-14. https://doi.org/10.1016/j.heliyon.2018.e00585
  77. L. Chkhartishvili, I. Murusidze, R. Becker, Electronic structure of boron flat holeless sheet, Condensed Matter 2019; 4- 1(28): 1-22. https://doi.org/10.3390/condmat4010028
  78. L. Chkhartishvili, Relative stability of planar clusters B11, B12, and B13 in neutral- and charged-states, Char. Appl. Nanomater. 2019; 2(761): 1-7. https://doi.org/10.24294/can.v2i2.761
  79. L. Chkhartishvili, Boron triangular sheet: Calculation of ground-state and electronic-structure parameters. In: 7th Proc. ICANM, Montreal, IAEMM 2019; 11-16.
  80. L. Chkhartishvili, D. Gabunia, O. Tsagareishvili, V. Metreveli. Estimation of isotopic composition effect on substance melting temperature, Bull. Georg. Acad. Sci. 2004; 170(3): 530-532.
  81. LS. Chkhartishvili, D.L. Gabunia, O.A. Tsagareishvili, Estimation of the isotopic effect on the melting parameters of boron, Inorg. Mater. 2007; 43(6): 594-596. https://doi.org/10.1134/S0020168507060076
  82. LS. Chkhartishvili, DL. Gabunia, OA. Tsagareishvili, Effect of the isotopic composition on the lattice parameter of boron, Powd. Metall. Met. Ceram. 2008; 47(9/10): 616-621. https://doi.org/10.1007/s11106-008-9064-9
  83. D. Gabunia, O. Tsagareishvili, L. Chkhartishvili, L. Gabunia, Isotopic composition dependences of lattice constant and thermal expansion of β-rhombohedral boron, J. Phys. Conf. Ser. 2009; 176(012022): 1-10. https://doi.org/10.1088/1742-6596/176/1/012022
  84. L. Chkhartishvili, O. Tsagareishvili, D. Gabunia, Isotopic expansion of boron, J. Metall. Eng. 2014; 3(3): 97-103. https://doi.org/10.14355/me.2014.0303.01