Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 8 (2021)

Review on Materials Used for Enhancing the Efficiency of Solar Cells

DOI
https://doi.org/10.31875/2410-4701.2021.08.8
Submitted
November 30, 2021
Published
2021-11-30

Abstract

Global resources are limited and mindless use of them will finally lead to a scarcity. The need of the hour is to find the alternative energy resources which are abundant in nature and which deviate us from using fossils fuels. Solar Energy has gained a significant popularity in the past few decades as it is clean, meaning it does not release greenhouse gases and other harmful pollutants. It is also an abundant source of energy as it is available till the existence of the planet. Unlike fossil fuels, which are finite and cannot be replenished for thousands of years. Another drawback of fossil fuels is that they emit greenhouse gases and contribute to global climate change. Solar energy is an important technology for many reasons and has become a popular topic as many scientists around the world are working to increase the photo-electron conversion efficiency with minimum production cost. Diversified approaches have been undertaken to enhance the efficiency of solar cell. This paper will review the current state of art on photovoltaic cells (PVCs) in context to the materials used for fabrication, their possible cost and their working efficiency. This paper will also undertake the challenges that came across during the whole process and their possible solutions.

References

  1. Manish S, Pillai IR, & Banerjee R, Energy Sustain Dev. 10 (2006) 25-36. https://doi.org/10.1016/S0973-0826(08)60553-0
  2. Bagnall DM & Boreland M, Energy Policy 36 (2008) 4390-4396. https://doi.org/10.1016/j.enpol.2008.09.070
  3. Kamat PV, The Journal of Physical Chemistry C 112 (2008) 18737-18753. https://doi.org/10.1021/jp806791s
  4. Mah O. Fundamentals of photovoltaic materials (NSPRI, National S olar Power Research Institute, Inc.) 1998.
  5. Razykov T M, Kuchkarov K M, Ergashev B A & Esanov S A, Applied Solar Energy, 56 (2020) 94-98. https://doi.org/10.3103/S0003701X20020097
  6. Baines T, Zoppi G, Bowen L, Shalvey T, Mariotti S, Durose K & Major J D, Solar Energy Materials and Solar Cells, 180 (2018) 196-204. https://doi.org/10.1016/j.solmat.2018.03.010
  7. Boer KM, Journal of Photochemistry, 10 (1979) 77-110. https://doi.org/10.1016/0047-2670(79)80038-6
  8. Serrano E, Rus G & Garcı'a-Martı'nez J, Renewable and Sustainable Energy Reviews13 (2009) 2373-2384. https://doi.org/10.1016/j.rser.2009.06.003
  9. Shevaleevskiy O, Pure and Applied Chemistry, 80 (2008) 2079-2089. https://doi.org/10.1351/pac200880102079
  10. Green MA, Third Generation Photovoltaic (Springer, Berlin) 2006.
  11. Conibeer G, Materials today, 10 (2007) 42-50. https://doi.org/10.1016/S1369-7021(07)70278-X
  12. Antonio J, Sánchez L, Díez-Pascual, AM & Capilla RP, International Jounal of Molecular Science, 20, (2019) 976. https://doi.org/10.3390/ijms20040976
  13. Danjumma S G, Aliyu S, Suleiman S, Buhari M & Ibrahim A, Journal of Multidisciplinary Engineering Science and Technology, 6 (2019) 10303-10319.
  14. Conibee G, Material Today 2007,10, 42-50. https://doi.org/10.1016/S1369-7021(07)70278-X
  15. Sharma K. Sharma V & Sharma SS, Nanoscale Research Letters, 13 (2018) 1-46. https://doi.org/10.1186/s11671-018-2760-6
  16. Wibowo A, Marsudi MA, Amal MI, Ananda MB, Stephanie R, Ardy H & Diguna LJ, The Royal Society of Chemistry Advances, 10 (2020) 42838-42859. https://doi.org/10.1039/D0RA07689A
  17. Hossain MD, Park J, Ahn JY, Park C, Kim YA, SHK & Lee D, Electrochimica Acta, 173 (2015) 665-671. https://doi.org/10.1016/j.electacta.2015.05.141
  18. Park K, Zhang Q, Xi J & Cao G, Thin Films 588 (2015) 19-25. https://doi.org/10.1016/j.tsf.2015.04.054
  19. Kim B S, Park J Y, Kim C S, Kim S B, Song D K, Jang H D, Lee S E & Kim T, Electrochemica Acta, 174 (2015) 502-507. https://doi.org/10.1016/j.electacta.2015.06.022
  20. Wang J, Jin EM, Park JY, Wang WL, Zhao XG & Gu HB, Nanoscale Research Letters 7 (2012) 98. https://doi.org/10.1186/1556-276X-7-98
  21. Chergui Y, Nehaouha N & Mekki DE, Intech Open, (2011) 49-64.
  22. Liu X, Long J, Wang G, Pei Y, Zhao B & Tan S, Dyes and Pigments, 121 (2015) 118-127. https://doi.org/10.1016/j.dyepig.2015.05.012
  23. Suyitno S, Saputra T J, Supriyanto A & Arifin Z, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 148 (2015) 99-104. https://doi.org/10.1016/j.saa.2015.03.107
  24. Tan Z, Li S, Wang F, Qian D, Lin J, Hou J & Li Y, Scientific Reports, (2014) 4: 4691. https://doi.org/10.1038/srep04691
  25. Kloo L, Chem. Commun, 49 (2013) 6580-6583. https://doi.org/10.1039/c3cc42733a
  26. Wen P, Xue M, Ishikawa Y, Itoh H & Feng Q, American Chemical Society 4 (2012) 1928-1934. https://doi.org/10.1021/am3001693
  27. Zhang Q, Cao G, Nano Today, 6 (2011) 91-109. https://doi.org/10.1016/j.nantod.2010.12.007
  28. Burke A, Ito S, Snaith H, Bach U, Kwiatkowski & Gratzel M, Nano Letters, 8 (2008) 977-981. https://doi.org/10.1021/nl071588b
  29. Best research cell efficiencies (NREL http://www.nrel.gov/ncpv/, accessed 2020)
  30. Alivisators AP, Science, 271 (1996) 933-937 29. https://doi.org/10.1126/science.271.5251.933
  31. Ashoori R C, Nature, 379 (1996) 413-419. https://doi.org/10.1038/379413a0
  32. Bera D, Qian L, Tseng T K & Holloway P H, Materials 3 (2010) 2260-2345. https://doi.org/10.3390/ma3042260
  33. Nideep TK, Ramya M & Kailasnath M, Superlattices and Microstructure, 130 (2019) 175-181. https://doi.org/10.1016/j.spmi.2019.04.034
  34. Xing M, Zhang Y, Shen Q & Wang R, Solar Energy, 195 (2020) 1-5. https://doi.org/10.1016/j.solener.2019.11.010
  35. Lutfullin M, Sinatra L & M. Bakr O, Quantum Dots for Electronics and Energy Applications-Marat (King Abdullah University of Science and Technology, Thuwal, Saudi Arabia)
  36. Brunetti V, Chibli H, Fiammengo R, Galeone A, Malvindi M A, Vecchio G, Cingolani R, Nadeau J L & Pompa P P, Nanoscale 5 (2013) 307-317. https://doi.org/10.1039/C2NR33024E
  37. Pulfrey LD, Photovoltaic Power Generation (Van Nostrand Reinhold Company, New York) 1978.
  38. Nelson & Jenny, Materials Today, 14 (2011) 462-47. https://doi.org/10.1016/S1369-7021(11)70210-3
  39. Díez-Pascual AM, Luceño JA, Sanchez, Capilla RP, Díaz PG, Polymers, 10 (2018) 217. https://doi.org/10.3390/polym10020217
  40. Dennler G, Lungenschmied C, Neugebauer H, Sariciftci N S & Labouret A, Journal of Materials Research, 20 (2005) 3224-3233. https://doi.org/10.1557/jmr.2005.0399
  41. Jørgensen M, Carlé JE, Søndergaard RR, Lauritzen M, Dagnæs, Hansen N A, Byskov S L, Andersen T R, Larsen-Olsen T T, Böttiger A P L & Andreasen B.l. Solar Energy Material and Solar Cells 119 (2013) 84-93. https://doi.org/10.1016/j.solmat.2013.05.034
  42. Etxebarria I, Ajuria J & Pacios R, Organic Electrons, 19 (2015) 34-60. https://doi.org/10.1016/j.orgel.2015.01.014
  43. Hemavathi B, Ahipa TN & Pai RK, European Polymer Journal, 72 (2015) 309-340. https://doi.org/10.1016/j.eurpolymj.2015.09.017
  44. Jingbi Y, Letian D, Ken Y, Takehito K, Kenichiro O, Tom M, Keith E, Chun-Chao C, Nature Communications, 4 (2013) 1446.
  45. Yongsheng C, Yong C, Hin-Lap Y, Ding X R, Xiao L, Ke Z, Yanbo X W & Xin Z, Science, 361 (2018) 1094-1098. https://doi.org/10.1126/science.aat2612
  46. Riccardo P, Chiara C, Andrea B, Francesca T & Nadia C, Solar Energy Materials and Solar Cells, 100 (2012) 97-114. https://doi.org/10.1016/j.solmat.2011.12.022
  47. Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ & Brabec CJ, Advanced Materials 18 (2006) 789-794. https://doi.org/10.1002/adma.200501717
  48. Luther J, Nast M, Fisch MN, Christoffers D, Pfisterer F, Meissner D, & Nitsch J. Solar Technology. Ullmann's Encyclopedia of Industrial Chemistry, 2000. https://doi.org/10.1002/14356007.a24_369
  49. Shao S, Loi MA, Advance Material Interfaces, 7 (2020) 190146. https://doi.org/10.1002/admi.201901469
  50. Zhou D, Zhou T, Tian Y, Zhu X & Tu Y, Journal of Nanomaterials, Article ID 8148072, (2018) 1-15 pages. https://doi.org/10.1155/2018/8148072
  51. Djuriši AB, Liu FZ, Tam HW, Wong MK, Ng A, Surya C, Chen W & He Z B, Perovskite solar cells, Quantum Electron, 53 (2017) 1-37. https://doi.org/10.1016/j.pquantelec.2017.05.002
  52. Sharma S, Kumar P & Chandra R, Journal of Composite Materials 51 (2016) 3299-3313. https://doi.org/10.1177/0021998316682363
  53. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N, Nano Letters 8 (2008) 902-907. https://doi.org/10.1021/nl0731872
  54. Weiss N O, Zhou H, Liao L, Liu Y, Jiang S, Huang Y, Duan X, Advance Materials, 24 (2012) 5782-5825. https://doi.org/10.1002/adma.201201482
  55. Jiang J, Wang J, Li B, Physical Review B, 80 (2009) 113405. https://doi.org/10.1103/PhysRevB.80.134505
  56. Ding Z, Miao Z, Xie Z & Liu J, Journal of Materials Chemistry A, 4 (2016) 2413-2418. https://doi.org/10.1039/C5TA10102F