Skip to main navigation menu Skip to main content Skip to site footer


Vol. 8 (2021)

Synthesis and Characterization of High Temperature Properties of YBa2Cu3O6+δ Superconductor as Potential Cathode for Intermediate Temperature Solid Oxide Fuel Cells

November 30, 2021


YBa2Cu3O6+δ (YBC) oxygen deficient perovskite was synthesized by an auto-combustion method and was studied as potential cathode for Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC). Synchrotron X-ray thermodiffraction in air shows a phase transition from orthorhombic Pmmm to tetragonal P4/mmm space groups at ~ 425 °C. The chemical compatibility with Ce0.9Gd0.1O1.95 (GDC) electrolyte was investigated in air where certain reactivity was observed above 800 °C. However, the main phase is Ba(Ce1-xYx)O3, a good ionic conductor. The catalytic performance in air was obtained by electrochemical impedance spectroscopy (EIS) measurements on YBC/GDC/YBC symmetrical cells. The area specific resistance (ASR) values change from 13.66 to 0.14 Ω cm2 between 500 and 800 °C, with activation energy (Ea) of 0.41 eV. The results suggest potential applications of YBC as IT-SOFC cathode.


  1. Aldo da Rosa, Fundamentals of Renewable Energy, 3rd ed., Oxford, UK, 2013.
  2. A. Samson Nesaraj, I. Arul Raj, R. Pattabiraman, Preparation and characterization of ceria-Based electrolytes for intermediate temperature solid oxide fuel cells (IT-SOFC), J. Iran. Chem. Soc 2010; 7: 564-584.
  3. C. Lee, SW. Baek, J. Bae, Cathodic behavior of La0.8Sr0.2Co1−xMnxO3−δ perovskite oxide on YSZ electrolyte for intermediate temperature-operating solid oxide fuel cells, Solid State Ionics 2008; 179: 1465-1469.
  4. Z. Shai, S.M. Hale, A high-performance cathode for the next generation of solid-oxide fuel cells, Nature 2004; 431: 170-174.
  5. K. Zhang, L. Ge, R. Ran, Z. Shao, S. Liu, Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs, Acta Mater 2008; 56: 4876-4889.
  6. JH. Kim, M. Cassidy, J.T.S. Irvine, J. Bae, Advanced Electrochemical Properties of LnBa[sub 0.5]Sr[sub 0.5]Co[sub 2]O[sub 5+δ] (Ln=Pr, Sm, and Gd) as Cathode Materials for IT-SOFC, J. Electrochem. Soc 2009; 156: B682.
  7. JL Yu, YM. Yin, ZF. Ma, Preparation and characterization of new cobalt-free cathode Pr0.5Sr0.5Fe0.8Cu0.2O3−δ for IT-SOFC, Int. J. Hydrogen Energy 2013; 38: 10527-10533.
  8. Y. Ling, L. Zhao, B. Lin, Y. Dong, X. Zhang, G. Meng, X. Liu, Investigation of cobalt-free cathode material Sm0.5Sr0.5Fe0.8Cu0.2O3−δ for intermediate temperature solid oxide fuel cell, Int. J. Hydrogen Energy 2010; 35: 6905-6910.
  9. S. Vázquez, J. Basbus, AL. Soldati, F. Napolitano, A. Serquis, L. Suescun, Effect of the symmetric cell preparation temperature on the activity of Ba0.5Sr0.5Fe0.8Cu0.2O3-δ as cathode for intermediate temperature Solid Oxide Fuel Cells, J. Power Sources 2015; 274: 318-323.
  10. Q. Zhou, L. Xu, Y. Guo, D. Jia, Y. Li, WCJ. Wei, La0.6Sr0.4Fe0.8Cu0.2O3−δ perovskite oxide as cathode for IT-SOFC, Int. J. Hydrogen Energy 2012; 37: 11963-11968.
  11. S. Vázquez, S. Davyt, JF. Basbus, AL. Soldati, A. Amaya, A. Serquis, R. Faccio, L. Suescun, Synthesis and characterization of La0.6Sr0.4Fe0.8Cu0.2O3− oxide as cathode for Intermediate Temperature Solid Oxide Fuel Cells, J. Solid State Chem 2015; 228: 208-213.
  12. HC. Yu, KZ. Fung, Electrode properties of La1−xSrxCuO2.5−δ as new cathode materials for intermediate-temperature SOFCs, J. Power Sources 2004; 133: 162-168.
  13. MA. Macias, MV. Sandoval, NG. Martinez, S. Vázquez-Cuadriello, L. Suescun, P. Roussel, K. Świerczek, GH. Gauthier, Synthesis and preliminary study of La4BaCu5O13+δ and La6.4Sr1.6Cu8O20±δ ordered perovskites as SOFC/PCFC electrode materials, Solid State Ionics 2016; 288: 68-75.
  14. EB. Mitberg, MV. Patrakeev, IA. Leonidov, AA. Lakhtin, VL. Kozhevnikov, KR. Poeppelmeier, High-temperature thermodynamics of oxygen equilibrium of solid solutions YBa2Cu3−xZnxO6+δ with gas phase, J. Alloys Compd. 274 (1998) 98-102.
  15. JEH. Sansom, E. Kendrick, HA. Rudge-Pickard, MS. Islam, AJ. Wright, PR. Slater, Synthesis and characterisation of the perovskite-related cuprate phases YSr2Cu2MO7+y(M = Co, Fe) for potential use as solid oxide fuel cell cathode materials, J. Mater. Chem 2005; 15: 2321.
  16. J. SANSOM, Perovskite related cuprate phases as potential cathode materials for solid oxide fuel cells, Solid State Ionics. 2004; 175: 99-102.
  17. G. Cordaro, A. Flura, A. Donazzi, R. Pelosato, F. Mauvy, C. Cristiani, G. Dotelli, JC. Grenier, Electrochemical characterization of PrBa2−xSrxCu3O6+δ layered oxides as innovative and efficient oxygen electrode for IT-SOFCs, Solid State Ionics 2020; 348: 115286.
  18. V. Petříček, M. Dušek, L. Palatinus, Crystallographic Computing System JANA2006: General features, Zeitschrift Für Krist. - Cryst. Mater 2014; 229.
  19., (n.d.).
  20. R. von D. Larson, A, General structure analysis system (GSAS), LAUR 2004; 86-748.
  21. BH. Toby, EXPGUI, a graphical user interface for GSAS, J. Appl. Crystallogr 2001; 34: 210-213.
  22. L. Baque, E. Djurado, C. Rossignol, D. Marinha, A. Caneiro, A. Serquis, Electrochemical Performance of Nanostructured IT-SOFC Cathodes with Different Morphologies, in: ECS Trans., ECS, 2009: pp. 2473-2480.
  23. L. Baqué, A. Caneiro, MS. Moreno, A. Serquis, High performance nanostructured IT-SOFC cathodes prepared by novel chemical method, Electrochem. Commun 2008; 10: 1905-1908.
  24. F. Prado, A. Caneiro, A. Serquis, High temperature thermodynamic properties, orthorhombic/tetragonal transition and phase stability of GdBa2Cu3Oy and related R123 compounds, Phys. C Supercond 1998; 295: 235-246.
  25. A. Jun, J. Kim, J. Shin, G. Kim, Perovskite as a Cathode Material: A Review of its Role in Solid-Oxide Fuel Cell Technology, Chem Electro Chem 2016; 3: 511-530.
  26. X. Xu, J. Guo, Y. Wang, A. Sozzi, Synthesis of nanoscale superconducting YBCO by a novel technique, Phys. C Supercond. 2002; 371: 129-132.
  27. U. Anselmi-Tamburini, P. Ghigna, G. Spinolo, G. Flor, Solid state synthesis of YBa2Cu3O7−x: Mechanisms of BaCuO2 formation, J. Phys. Chem. Solids 1991; 52: 715-721.
  28. H. Sözeri, H. Özkan, N. Ghazanfari, Properties of YBCO superconductors prepared by ammonium nitrate melt and solid-state reaction methods, J. Alloys Compd 2007; 428: 1-7.
  29. A. Williams, GH. Kwei, RB. Von Dreele, ID. Raistrick, DL. Bish, Joint x-ray and neutron refinement of the structure of superconducting YBa 2
  30. P. Benzi, E. Bottizzo, N. Rizzi, Oxygen determination from cell dimensions in YBCO superconductors, J. Cryst. Growth 2004; 269: 625-629.
  31. JD. Jorgensen, MA. Beno, DG. Hinks, L. Soderholm, KJ. Volin, RL. Hitterman, JD. Grace, IK. Schuller, CU. Segre, K. Zhang, M.S. Kleefisch, Oxygen ordering and the orthorhombic-to-tetragonal phase transition in Y Ba 2
  32. JD. Jorgensen, BW. Veal, AP. Paulikas, LJ. Nowicki, GW. Crabtree, H. Claus, WK. Kwok, Structural properties of oxygen-deficient YBa 2 Cu, Phys. Rev. B 1990; 41: 1863-1877.
  33. Y. Kubo, Y. Nakabayashi, J. Tabuchi, T. Yoshitake, A. Ochi, K. Utsumi, H. Igarashi, M. Yonezawa, Determination of the orthorhombic-tetragonal YBa2Cu3O7-δ phase boundary in the δ-T diagrama, Jpn. J. Appl. Phys 1987; 26: L1888-L1891.
  34. J. Mizusaki, H. Tagawa, K. Hayakawa, K. Hirano, Thermal Expansion of YBa 2 Cu 3 O 7 _ x as Determined by High-Temperature X-ray Diffraction under Controlled Oxygen Partial Pressures, J. Am. Ceram. Soc 1995; 78: 1781-1786.
  35. M. Truchlý, T. Plecenik, O. Krško, M. Gregor, L. Satrapinskyy, T. Roch, B. Grančič, M. Mikula, A. Dujavová, Š. Chromik, P. Kúš, A. Plecenik, Studies of YBa2Cu3O6+x degradation and surface conductivity properties by Scanning Spreading Resistance Microscopy, Phys. C Supercond 2012; 483: 61-66.
  36. W. SUKSAMAI, I. METCALFE, Measurement of proton and oxide ion fluxes in a working Y-doped BaCeO3 SOFC, Solid State Ionics 2007; 178: 627-634.
  37. T. Sakai, S. Matsushita, J. Hyodo, Y. Okuyama, M. Matsuka, T. Ishihara, H. Matsumoto, Effect of doped ceria interlayer on cathode performance of the electrochemical cell using proton conducting oxide, Electrochim. Acta 2012; 75: 179-184.
  38. J. Lagaeva, D. Medvedev, A. Demin, P. Tsiakaras, Insights on thermal and transport features of BaCe0.8−Zr Y0.2O3−δ proton-conducting materials, J. Power Sources 2015; 278: 436-444.
  39. T. Ohzeki, S. Hasegawa, M. Shimizu, T. Hashimoto, Analysis of phase transition behavior of BaCeO3 with thermal analyses and high temperature X-ray diffraction, Solid State Ionics 2009; 180: 1034-1039.
  40. A. Donazzi, R. Pelosato, G. Cordaro, D. Stucchi, C. Cristiani, G. Dotelli, I.N. Sora, Evaluation of Ba deficient NdBaCo2O5+δ oxide as cathode material for IT-SOFC, Electrochim. Acta 2015; 182: 573-587.