Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 9 No. 1 (2022)

Structural, Morphological and Optical Study of Manganese Doped FeS (Mackinawite) Nanostructures by Chemical Bath Deposition (CBD) Technique

DOI
https://doi.org/10.31875/2410-4701.2022.09.03
Submitted
September 6, 2022
Published
2022-09-06

Abstract

Abstract: Fe1-xMnxS thin films with concentration x=0.02, 0.04, 0.06, 0.08, 0.1 have been deposited on glass substrates by a simple Chemical Bath Deposition (CBD) method at 90 oC. The X-ray Diffraction analysis of deposited thin films revealed the growth of mono-phasic mackinawite (FeS) structure with crystallite size in the range from 4.06 to 5.95 nm as a function of manganese concentrations. The other structural parameters like stacking faults, dislocation density and lattice strain affirmed the improvement in crystal structure and phase stability in manganese doped FeS thin films. Scanning Electron Micrographs depicted the growth of nano-flakes and nano-flowers in case of pure FeS thin films while for manganese doped iron sulfide thin films, homogeneity of the deposited material was observed to improve with distinct boundaries of almost spherical nanostructures. The direct energy band gap of FeS mono-phasic thin films was observed to decrease from 2.23 to 1.89 eV as the concentration of manganese increases in host lattice. The prepared thin films with tunable optical properties would have potential applications in energy conversion and optoelectronic devices.

References

  1. Srivastava RP, Ingole S. An investigation on the phase purity of iron pyrite (FeS2) thin films obtained from the sulfurization of hematite (Fe2O3) thin films. Materials Science in Semiconductor Processing. 2020; 106: 104775. https://doi.org/10.1016/j.mssp.2019.104775
  2. Kılıç B, Roehling J, Özmen ÖT. Synthesis and Optoelectronic Properties of Pyrite (FeS2) Nanocrystals Thin Films for Photovoltaic Applications. Journal of Nanoelectronics and Optoelectronics. 2013; 8(3): 260-6. https://doi.org/10.1166/jno.2013.1462
  3. SM H. A Brief Review on the Polymer thin Film Solar Cells. 2016.
  4. Ritchie A, Bowles P, Scattergood D. Lithium-ion/iron sulphide rechargeable batteries. Journal of power sources. 2004; 136(2): 276-80. https://doi.org/10.1016/j.jpowsour.2004.03.043
  5. Al-Douri Y, Baaziz H, Charifi Z, Reshak AH. Density functional study of optical properties of beryllium chalcogenides compounds in nickel arsenide B8 structure. Physica B: Condensed Matter. 2012; 407(3): 286-96. https://doi.org/10.1016/j.physb.2011.09.127
  6. Al-Douri Y, Khachai H, Khenata R. Chalcogenides-based quantum dots: Optical investigation using first-principles calculations. Materials Science in Semiconductor Processing. 2015; 39: 276-82. https://doi.org/10.1016/j.mssp.2015.05.016
  7. Boudiaf K, Bouhemadou A, Boudrifa O, Haddadi K, Saoud FS, Khenata R, et al. Structural, Elastic, Electronic and Optical Properties of LaOAgS-Type Silver Fluoride Chalcogenides: First-Principles Study. Journal of Electronic Materials. 2017; 46(7): 4539-56. https://doi.org/10.1007/s11664-017-5452-6
  8. Rached D, Rabah M, Benkhettou N, Khenata R, Soudini B, Al-Douri Y, et al. First-principle study of structural, electronic and elastic properties of beryllium chalcogenides BeS, BeSe and BeTe. Computational materials science. 2006; 37(3): 292-9. https://doi.org/10.1016/j.commatsci.2005.08.005
  9. Vaughan DJ, Lennie AR. The iron sulphide minerals: their chemistry and role in nature. Science Progress (1933-). 1991: 371-88.
  10. Vaughan DJ. Mineral chemistry of metal sulfides. Cambridge Earth Sci Ser, Cambridge. 1978; 493.
  11. Vaughan DJ. Nickelian mackinawite from Vlakfontein, Transvaal: A reply. American Mineralogist: Journal of Earth and Planetary Materials. 1970; 55(9-10): 1807-8.
  12. Tossell J, Vaughan D, Burdett J. Pyrite, marcasite, and arsenopyrite type minerals: Crystal chemical and structural principles. Physics and Chemistry of Minerals. 1981; 7(4): 177-84. https://doi.org/10.1007/BF00307263
  13. Evans Jr HT, Milton C, Chao E, Adler I, Mead C, Ingram B, et al. Valleriite and the new iron sulfide, mackinawite. US Geological Survey Professional Paper. 1964; 475: 64-9.
  14. Csákberényi-Malasics D, Rodriguez-Blanco JD, Kis VK, Rečnik A, Benning LG, Pósfai M. Structural properties and transformations of precipitated FeS. Chemical Geology. 2012; 294: 249-58. https://doi.org/10.1016/j.chemgeo.2011.12.009
  15. Berner RA. Iron sulfides formed from aqueous solution at low temperatures and atmospheric pressure. The Journal of Geology. 1964; 72(3): 293-306. https://doi.org/10.1086/626987
  16. Berner RA. Tetragonal iron sulfide. Science. 1962; 137(3531): 669. https://doi.org/10.1126/science.137.3531.669.b
  17. Taylor P, Rummery T, Owen D. Reactions of iron monosulfide solids with aqueous hydrogen sulfide up to 160 C. Journal of Inorganic and Nuclear Chemistry. 1979; 41(12): 1683-7. https://doi.org/10.1016/0022-1902(79)80106-2
  18. Rickard D, Griffith A, Oldroyd A, Butler IB, Lopez-Capel E, Manning D, et al. The composition of nanoparticulate mackinawite, tetragonal iron (II) monosulfide. Chemical Geology. 2006; 235(3-4): 286-98. https://doi.org/10.1016/j.chemgeo.2006.07.004
  19. Lennie A, Redfern SA, Schofield P, Vaughan D. Synthesis and Rietveld crystal structure refinement of mackinawite, tetragonal FeS. De Gruyter; 1995. https://doi.org/10.1180/minmag.1995.059.397.10
  20. Maji SK, Dutta AK, Biswas P, Karmakar B, Mondal A, Adhikary B. Nanocrystalline FeS thin film used as an anode in photo-electrochemical solar cell and as hydrogen peroxide sensor. Sensors and Actuators B: Chemical. 2012; 166: 726-32. https://doi.org/10.1016/j.snb.2012.03.048
  21. Dickinson RG, Friauf JB. The crystal structure of tetragonal lead monoxide. Journal of the American Chemical Society. 1924; 46(11): 2457-63. https://doi.org/10.1021/ja01676a015
  22. Mullet M, Boursiquot S, Abdelmoula M, Génin JM, Ehrhardt J-J. Surface chemistry and structural properties of mackinawite prepared by reaction of sulfide ions with metallic iron. Geochimica et cosmochimica acta. 2002; 66(5): 829-36. https://doi.org/10.1016/S0016-7037(01)00805-5
  23. Jeong HY, Lee JH, Hayes KF. Characterization of synthetic nanocrystalline mackinawite: crystal structure, particle size, and specific surface area. Geochimica et cosmochimica acta. 2008; 72(2): 493-505.
  24. https://doi.org/10.1016/j.gca.2007.11.008
  25. Denholme S, Demura S, Okazaki H, Hara H, Deguchi K, Fujioka M, et al. Evidence for non-metallic behaviour in tetragonal FeS (mackinawite). Materials Chemistry and Physics. 2014; 147(1-2): 50-6. https://doi.org/10.1016/j.matchemphys.2014.04.005
  26. Wolthers M, Van der Gaast SJ, Rickard D. The structure of disordered mackinawite. American Mineralogist. 2003; 88(11-12): 2007-15. https://doi.org/10.2138/am-2003-11-1245
  27. Rickard D, Luther GW. Chemistry of iron sulfides. Chemical reviews. 2007; 107(2): 514-62. https://doi.org/10.1021/cr0503658
  28. Sines IT, Vaughn II DD, Misra R, Popczun EJ, Schaak RE. Synthesis of tetragonal mackinawite-type FeS nanosheets by solvothermal crystallization. Journal of Solid State Chemistry. 2012; 196: 17-20. https://doi.org/10.1016/j.jssc.2012.07.056
  29. Malek TJ, Chaki SH, Deshpande M. Structural, morphological, optical, thermal and magnetic study of mackinawite FeS nanoparticles synthesized by wet chemical reduction technique. Physica B: Condensed Matter. 2018; 546: 59-66. https://doi.org/10.1016/j.physb.2018.07.024
  30. Nozaki H, Nakazawa H, Sakaguchi K. Synthesis of mackinawite by vacuum deposition method. Mineralogical Journal. 1977; 8(7): 399-405. https://doi.org/10.2465/minerj.8.399
  31. Shoesmith D, Bailey M, Ikeda B. Electrochemical formation of mackinawite in alkaline sulphide solutions. Electrochimica Acta. 1978; 23(12): 1329-39. https://doi.org/10.1016/0013-4686(78)80013-9
  32. Hurma T, Aksay S. Investigations of Structural Vibrational and Optical Properties of Mackinawite Nanostructured FeS Film. Revista Română de Materiale/Romanian Journal of Materials. 2018; 48(1): 18-23.
  33. Akhtar MS, Alenad A, Malik MA. Synthesis of mackinawite FeS thin films from acidic chemical baths. Materials Science in Semiconductor Processing. 2015; 32: 1-5. https://doi.org/10.1016/j.mssp.2014.12.073
  34. Kwon KD, Refson K, Sposito G. Transition metal incorporation into mackinawite (tetragonal FeS). American Mineralogist. 2015; 100(7): 1509-17. https://doi.org/10.2138/am-2015-5211CCBYNCND
  35. Arakaki T, Morse JW. Coprecipitation and adsorption of Mn (II) with mackinawite (FeS) under conditions similar to those found in anoxic sediments. Geochimica et cosmochimica acta. 1993; 57(1): 9-14. https://doi.org/10.1016/0016-7037(93)90463-7
  36. Zavašnik J, Stanković N, Arshad SM, Rečnik A. Sonochemical synthesis of mackinawite and the role of Cu addition on phase transformations in the Fe-S system. Journal of nanoparticle research. 2014; 16(2): 2223. https://doi.org/10.1007/s11051-013-2223-z
  37. Wilkin RT, Beak DG. Uptake of nickel by synthetic mackinawite. Chemical Geology. 2017; 462: 15-29. https://doi.org/10.1016/j.chemgeo.2017.04.023
  38. Prabukanthan P, Thamaraiselvi S, Harichandran G, Theerthagiri J. Single-step electrochemical deposition of Mn 2+ doped FeS 2 thin films on ITO conducting glass substrates: physical, electrochemical and electrocatalytic properties. Journal of Materials Science: Materials in Electronics. 2019; 30(4): 3268-76. https://doi.org/10.1007/s10854-018-00599-w
  39. Echendu O, Werta S, Dejene F, Egbo K. Structural, vibrational, optical, morphological and compositional properties of CdS films prepared by a low-cost electrochemical technique. Journal of Alloys and Compounds. 2019; 778: 197-203. https://doi.org/10.1016/j.jallcom.2018.11.130
  40. Osorio MF, Figueroa P, Prieto F, Boulanger P, Londoño E. A novel approach to documenting artifacts at the Gold Museum in Bogota. Computers & Graphics. 2011; 35(4): 894-903. https://doi.org/10.1016/j.cag.2011.01.014
  41. Kirkeminde A, Ruzicka BA, Wang R, Puna S, Zhao H, Ren S. Synthesis and optoelectronic properties of two-dimensional FeS2 nanoplates. ACS applied materials & interfaces. 2012; 4(3): 1174-7. https://doi.org/10.1021/am300089f
  42. Yu Q, Cai S, Jin Z, Yan Z. Evolutions of composition, microstructure and optical properties of Mn-doped pyrite (FeS2) films prepared by chemical bath deposition. Materials Research Bulletin. 2013; 48(9): 3601-6. https://doi.org/10.1016/j.materresbull.2013.05.074
  43. Kortüm G, Braun W, Herzog G. Principles and techniques of diffuse‐reflectance spectroscopy. Angewandte Chemie International Edition in English. 1963; 2(7): 333-41. https://doi.org/10.1002/anie.196303331
  44. Gibbs ZM, LaLonde A, Snyder GJ. Optical band gap and the Burstein-Moss effect in iodine doped PbTe using diffuse reflectance infrared Fourier transform spectroscopy. New Journal of Physics. 2013; 15(7): 075020. https://doi.org/10.1088/1367-2630/15/7/075020
  45. Saw K, Aznan N, Yam F, Ng S, Pung S. New insights on the burstein-moss shift and band gap narrowing in indium-doped zinc oxide thin films. PloS one. 2015; 10(10): e0141180. https://doi.org/10.1371/journal.pone.0141180
  46. Bhattacharjee A, à la Guillaume CB. Model for the Mn acceptor in GaAs. Solid state communications. 1999; 113(1): 17-21. https://doi.org/10.1016/S0038-1098(99)00438-X