Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 10 (2023)

Enhancing the Catalysis for Electrochemical Water Splitting using Tri-metallic Phosphide Surface

DOI
https://doi.org/10.31875/2410-4701.2023.10.05
Published
2023-05-26

Abstract

Abstract: Hydrogen has been considered as one of the sustainable energy carriers and displays great potential for the ever-increasing energy and environmental demands. Electrochemical water splitting has been recognized as a clean and effective method to product hydrogen in future. Transitionally, the catalysts for water splitting are noble metal base materials but suffer from high cost and low reserves. Thus, developing cost-effective electrocatalysts is significantly important for the hydrogen generation. Here, we report a tri-metallic phosphide of NiCoFe-P as an effective electrocatalyst for both HER and OER, which can be prepared by a facile gas-phase reaction. Compared with monometallic or bimetallic phosphides, the tri-metallic NiCoFe-P exhibits outstanding activity. Specially, it obtains an OER current density of 10 mA cm-2 at an overpotential of 248 mV. Additionally, the NiCoFe-P catalyst shows remarkable stabilities even at a large current density of 50 mA cm-2. Moreover, a practical electrode of carbon paper supported NiCoFe-P only requires an overpotential of 267 mV to obtain an HER current density of 10 mA cm-2, and overpotentials of 235 mV and 296 mV for the OER current densities of 50 mA cm-2 and 100 mA cm-2, respectively. After a severe durability test of 5000 cycles of linear scan voltammetry, the carbon paper supported catalyst show no degradation. The remarkable catalytic performance should be due to the unique nanostructure and the synergism effect among the hetero-atoms.

References

  1. P. De Luna, C. Hahn, D. Higgins, S. A. Jaffer, T. F. Jaramillo and E. H. Sargent, Science, 2019, 364, eaav3506. https://doi.org/10.1126/science.aav3506
  2. Q. Yun, Q. Lu, X. Zhang, C. Tan and H. Zhang, Angew Chem Int Ed Engl, 2018, 57, 626-646. https://doi.org/10.1002/anie.201706426
  3. B. Y. Xiong, L. S. Chen and J. L. Shi, ACS Catalysis, 2018, 8, 3688-3707. https://doi.org/10.1021/acscatal.7b04286
  4. H. A. Gasteiger and N. M. Marković, Science, 2009, 324, 48-49. https://doi.org/10.1126/science.1172083
  5. S. Mallapaty, Nature, 2020, 586, 482-483. https://doi.org/10.1038/d41586-020-02927-9
  6. Y. Zheng, Y. Jiao, M. Jaroniec and S. Z. Qiao, Angew. Chem. Int. Ed., 2015, 54, 52-65. https://doi.org/10.1002/anie.201407031
  7. D. R. Gamelin, Nat. Chem., 2012, 4, 965-967. https://doi.org/10.1038/nchem.1514
  8. Z.-Y. Yu, Y. Duan, X.-Y. Feng, X. Yu, M.-R. Gao and S.-H. Yu, Adv. Mater., 2021, 33, 2007100. https://doi.org/10.1002/adma.202007100
  9. C. C. L. McCrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters and T. F. Jaramillo, J. Am. Chem. Soc., 2015, 137, 4347-4357. https://doi.org/10.1021/ja510442p
  10. T. Reier, M. Oezaslan and P. Strasser, ACS Catal., 2012, 2, 1765-1772. https://doi.org/10.1021/cs3003098
  11. J. Wang, F. Xu, H. Jin, Y. Chen and Y. Wang, Adv Mater, 2017, 29. https://doi.org/10.1002/adma.201605838
  12. F. Cheng and J. Chen, Chem Soc Rev, 2012, 41, 2172-2192. https://doi.org/10.1039/c1cs15228a
  13. Y. Lee, J. Suntivich, K. J. May, E. E. Perry and Y. Shao-Horn, J Phys Chem Lett, 2012, 3, 399-404. https://doi.org/10.1021/jz2016507
  14. X. Zou and Y. Zhang, Chem. Soc. Rev., 2015, 44, 5148-5180. https://doi.org/10.1039/C4CS00448E
  15. C. G. Morales-Guio, L.-A. Stern and X. Hu, Chem. Soc. Rev., 2014, 43, 6555-6569. https://doi.org/10.1039/C3CS60468C
  16. S. Jiao, X. Fu, S. Wang and Y. Zhao, Energy Environ. Sci., 2021, 14, 1722-1770. https://doi.org/10.1039/D0EE03635H
  17. Q. Shi, C. Zhu, D. Du and Y. Lin, Chem. Soc. Rev., 2019, 48, 3181-3192. https://doi.org/10.1039/C8CS00671G
  18. J. Bonde, P. G. Moses, T. F. Jaramillo, J. K. Nørskov and I. Chorkendorff, Faraday Discuss., 2009, 140, 219-231. https://doi.org/10.1039/B803857K
  19. V. Vij, S. Sultan, A. M. Harzandi, A. Meena, J. N. Tiwari, W.-G. Lee, T. Yoon and K. S. Kim, ACS Catal., 2017, 7, 7196-7225. https://doi.org/10.1021/acscatal.7b01800
  20. Y. Zhang, Q. Zhou, J. Zhu, Q. Yan, S. X. Dou and W. Sun, Adv. Funct. Mater., 2017, 27, 1702317. https://doi.org/10.1002/adfm.201702317
  21. J. Duan, S. Chen and C. Zhao, Nat. Commun., 2017, 8, 15341. https://doi.org/10.1038/ncomms15341
  22. L. Han, S. Dong and E. Wang, Adv. Mater., 2016, 28, 9266-9291. https://doi.org/10.1002/adma.201602270
  23. S. Anantharaj, S. R. Ede, K. Sakthikumar, K. Karthick, S. Mishra and S. Kundu, ACS Catalysis, 2016, 6, 8069-8097. https://doi.org/10.1021/acscatal.6b02479
  24. L. Han, S. Dong and E. Wang, Adv Mater, 2016, 28, 9266-9291. https://doi.org/10.1002/adma.201602270
  25. Y. Yang, K. Zhang, H. Lin, X. Li, H. C. Chan, L. Yang and Q. Gao, ACS Catal., 2017, 7, 2357-2366. https://doi.org/10.1021/acscatal.6b03192
  26. J. Zhang, D. Zhang, R. Zhang, N. Zhang, C. Cui, J. Zhang, B. Jiang, B. Yuan, T. Wang, H. Xie and Q. Li, ACS Applied Energy Materials, 2018, 1, 495-502. https://doi.org/10.1021/acsaem.7b00099
  27. G. Sheng, J. Chen, Y. Li, H. Ye, Z. Hu, X. Z. Fu, R. Sun, W. Huang and C. P. Wong, ACS Appl Mater Interfaces, 2018, 10, 22248-22256. https://doi.org/10.1021/acsami.8b05427
  28. Z. Wang, H. Liu, R. Ge, X. Ren, J. Ren, D. Yang, L. Zhang and X. Sun, ACS Catalysis, 2018, 8, 2236-2241. https://doi.org/10.1021/acscatal.7b03594
  29. J. G. Wang, W. Hua, M. Li, H. Liu, M. Shao and B. Wei, ACS Appl Mater Interfaces, 2018, DOI: 10.1021/acsami.8b11576. https://doi.org/10.1021/acsami.8b11576
  30. H.-H. Zou, C.-Z. Yuan, H.-Y. Zou, T.-Y. Cheang, S.-J. Zhao, U. Y. Qazi, S.-L. Zhong, L. Wang and A.-W. Xu, Catalysis Science & Technology, 2017, 7, 1549-1555. https://doi.org/10.1039/C7CY00035A
  31. L. He, B. Cui, B. Hu, J. Liu, K. Tian, M. Wang, Y. Song, S. Fang, Z. Zhang and Q. Jia, ACS Applied Energy Materials, 2018, 1, 3915-3928. https://doi.org/10.1021/acsaem.8b00663
  32. P. Ganesan, M. Prabu, J. Sanetuntikul and S. Shanmugam, ACS Catal., 2015, 5, 3625-3637. https://doi.org/10.1021/acscatal.5b00154
  33. J. Wang, H.-x. Zhong, Z.-l. Wang, F.-l. Meng and X.-b. Zhang, ACS Nano, 2016, 10, 2342-2348. https://doi.org/10.1021/acsnano.5b07126
  34. S. Dou, L. Tao, J. Huo, S. Wang and L. Dai, Energy Enviorn. Sci., 2016, 9, 1320-1326. https://doi.org/10.1039/C6EE00054A
  35. T. Liu, Y. Liang, Q. Liu, X. Sun, Y. He and A. M. Asiri, Electrochem. Commun., 2015, 60, 92-96. https://doi.org/10.1016/j.elecom.2015.08.011
  36. Y. Surendranath, D. A. Lutterman, Y. Liu and D. G. Nocera, J. Am. Chem. Soc., 2012, 134, 6326-6336. https://doi.org/10.1021/ja3000084
  37. M. S. Faber, R. Dziedzic, M. A. Lukowski, N. S. Kaiser, Q. Ding and S. Jin, J. Am. Chem. Soc., 2014, 136, 10053-10061. https://doi.org/10.1021/ja504099w
  38. S. Wan, Y. Liu, G.-D. Li, X. Li, D. Wang and X. Zou, Catal. Sci. Technol., 2016, 6, 4545-4553. https://doi.org/10.1039/C5CY02292D
  39. Y. Liu, C. Xiao, M. Lyu, Y. Lin, W. Cai, P. Huang, W. Tong, Y. Zou and Y. Xie, Angew. Chem. Int. Ed., 2015, 54, 11231-11235. https://doi.org/10.1002/anie.201505320
  40. M. Liu and J. Li, ACS Appl. Mater. Interfaces, 2016, 8, 2158-2165. https://doi.org/10.1021/acsami.5b10727
  41. J. Chang, Y. Xiao, M. Xiao, J. Ge, C. Liu and W. Xing, ACS Catal., 2015, 5, 6874-6878. https://doi.org/10.1021/acscatal.5b02076
  42. A. Dutta, A. K. Samantara, S. K. Dutta, B. K. Jena and N. Pradhan, ACS Energy Letters, 2016, 1, 169-174. https://doi.org/10.1021/acsenergylett.6b00144
  43. E. J. Popczun, C. G. Read, C. W. Roske, N. S. Lewis and R. E. Schaak, Angewandte Chemie, 2014, 126, 5531-5534. https://doi.org/10.1002/ange.201402646
  44. S. Anantharaj, P. N. Reddy and S. Kundu, Inorg. Chem., 2017, 56, 1742-1756. https://doi.org/10.1021/acs.inorgchem.6b02929
  45. F. Du, Y. Zhang, H. He, T. Li, G. Wen, Y. Zhou and Z. Zou, J. Power Sources, 2019, 431, 182-188. https://doi.org/10.1016/j.jpowsour.2019.05.063
  46. D. Kong, J. J. Cha, H. Wang, H. R. Lee and Y. Cui, Energy Enviorn. Sci., 2013, 6, 3553-3558. https://doi.org/10.1039/c3ee42413h
  47. M. S. Faber, M. A. Lukowski, Q. Ding, N. S. Kaiser and S. Jin, The Journal of Physical Chemistry C, 2014, 118, 21347-21356. https://doi.org/10.1021/jp506288w
  48. X.-Y. Yu, L. Yu, H. B. Wu and X. W. Lou, Angew. Chem. Int. Ed., 2015, 54, 5331-5335. https://doi.org/10.1002/anie.201500267
  49. M. Ledendecker, S. Krick Calderón, C. Papp, H.-P. Steinrück, M. Antonietti and M. Shalom, Angew. Chem. Int. Ed., 2015, 54, 12361-12365. https://doi.org/10.1002/anie.201502438
  50. L.-A. Stern, L. Feng, F. Song and X. Hu, Energy Enviorn. Sci., 2015, 8, 2347-2351. https://doi.org/10.1039/C5EE01155H
  51. E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis and R. E. Schaak, J. Am. Chem. Soc., 2013, 135, 9267-9270. https://doi.org/10.1021/ja403440e
  52. A. Dutta and N. Pradhan, J. Phys. Chem. Lett., 2017, 8, 144-152. https://doi.org/10.1021/acs.jpclett.6b02249
  53. Z. Wu, X. Li, W. Liu, Y. Zhong, Q. Gan, X. Li and H. Wang, ACS Catal., 2017, 7, 4026-4032. https://doi.org/10.1021/acscatal.7b00466
  54. D. Li, H. Baydoun, B. Kulikowski and S. L. Brock, Chem. Mater., 2017, 29, 3048-3054. https://doi.org/10.1021/acs.chemmater.7b00055
  55. R. Zhang, X. Wang, S. Yu, T. Wen, X. Zhu, F. Yang, X. Sun, X. Wang and W. Hu, Adv Mater, 2017, 29. https://doi.org/10.1002/adma.201770059
  56. X. Y. Yu, Y. Feng, Y. Jeon, B. Guan, X. W. Lou and U. Paik, Adv Mater, 2016, 28, 9006-9011. https://doi.org/10.1002/adma.201601188
  57. Z. C. Liu, G. Zhang, K. Zhang, H. J. Liu and J. H. Qu, ACS Sustainable Chemistry & Engineering, 2018, 6, 7206-7211. https://doi.org/10.1021/acssuschemeng.8b00471
  58. K. W. Liu, C. L. Zhang, Y. D. Sun, G. H. Zhang, X. C. She, F. Zou, H. C. Zhang, Z. W. Wu, E. C. Wegener, C. J. Taubert, J. T. Miller, Z. M. Peng and Y. Zhu, ACS Nano, 2018, 12, 158-167. https://doi.org/10.1021/acsnano.7b04646
  59. L. M. Cao, Y. W. Hu, S. F. Tang, A. Iljin, J. W. Wang, Z. M. Zhang and T. B. Lu, Adv Sci (Weinh), 2018, 5, 1800949. https://doi.org/10.1002/advs.201800949
  60. Y. Li, H. Zhang, M. Jiang, Q. Zhang, P. He and X. Sun, Advanced Functional Materials, 2017, 27, 1702513. https://doi.org/10.1002/adfm.201702513
  61. Y. Pan, Y. Liu, Y. Lin and C. Liu, ACS Appl. Mater. Interfaces, 2016, 8, 13890-13901. https://doi.org/10.1021/acsami.6b02023
  62. J. Yang, G. Zhu, Y. Liu, J. Xia, Z. Ji, X. Shen and S. Wu, Adv. Funct. Mater., 2016, 26, 4712-4721. https://doi.org/10.1002/adfm.201600674
  63. X.-Y. Yu, Y. Feng, Y. Jeon, B. Guan, X. W. Lou and U. Paik, Adv. Mater., 2016, 28, 9006-9011. https://doi.org/10.1002/adma.201601188
  64. P. He, X.-Y. Yu and X. W. Lou, Angew. Chem. Int. Ed., 2017, 56, 3897-3900. https://doi.org/10.1002/anie.201612635
  65. L. Yu, L. Zhang, H. B. Wu and X. W. Lou, Angew. Chem. Int. Ed., 2014, 53, 3711-3714. https://doi.org/10.1002/anie.201400226
  66. L. Shen, L. Yu, H. B. Wu, X.-Y. Yu, X. Zhang and X. W. Lou, Nat. Commun., 2015, 6, 6694. https://doi.org/10.1038/ncomms7694
  67. Miguel Cabán-Acevedo, Michael L. Stone, J. R. Schmidt, Joseph G. Thomas, Qi Ding, Hung-Chih Chang, Meng-Lin Tsai, Jr-Hau He and S. Jin, Nat. Mater., 2015, 14, 1245-1253. https://doi.org/10.1038/nmat4410
  68. P. Wang, Z. Pu, Y. Li, L. Wu, Z. Tu, M. Jiang, Z. Kou, I. S. Amiinu and S. Mu, ACS Appl. Mater. Interfaces, 2017, 9, 26001-26007. https://doi.org/10.1021/acsami.7b06305
  69. X. Feng, Q. Jiao, H. Cui, M. Yin, Q. Li, Y. Zhao, H. Li, W. Zhou and C. Feng, ACS Appl. Mater. Interfaces, 2018, 10, 29521-29531. https://doi.org/10.1021/acsami.8b08547
  70. J. Li, M. Yan, X. Zhou, Z.-Q. Huang, Z. Xia, C.-R. Chang, Y. Ma and Y. Qu, Adv. Funct. Mater., 2016, 26, 6785-6796. https://doi.org/10.1002/adfm.201601420
  71. R. Zhang, X. Wang, S. Yu, T. Wen, X. Zhu, F. Yang, X. Sun, X. Wang and W. Hu, Adv. Mater., 2017, 29, 1605502-n/a. https://doi.org/10.1002/adma.201605502
  72. K. Liu, C. Zhang, Y. Sun, G. Zhang, X. Shen, F. Zou, H. Zhang, Z. Wu, E. C. Wegener, C. J. Taubert, J. T. Miller, Z. Peng and Y. Zhu, ACS Nano, 2018, 12, 158-167. https://doi.org/10.1021/acsnano.7b04646
  73. C. G. Read, J. F. Callejas, C. F. Holder and R. E. Schaak, ACS Appl. Mater. Interfaces, 2016, 8, 12798-12803. https://doi.org/10.1021/acsami.6b02352
  74. Y. Guo, J. Tang, Z. Wang, Y. Sugahara and Y. Yamauchi, Small, 2018, 14, 1802442. https://doi.org/10.1002/smll.201802442
  75. H. Liang, A. N. Gandi, D. H. Anjum, X. Wang, U. Schwingenschlögl and H. N. Alshareef, Nano Lett., 2016, 16, 7718-7725. https://doi.org/10.1021/acs.nanolett.6b03803
  76. N. Jiang, B. You, M. Sheng and Y. Sun, Angew. Chem. Int. Ed., 2015, 54, 6251-6254. https://doi.org/10.1002/anie.201501616
  77. D. Xiong, X. Wang, W. Li and L. Liu, Chem. Commun., 2016, 52, 8711-8714. https://doi.org/10.1039/C6CC04151E
  78. T. Yang, L. Yin, M. He, W. Wei, G. Cao, X. Ding, Y. Wang, Z. Zhao, T. Yu, H. Zhao and D. Zhang, Chem. Commun., 2019, 55, 14343-14346. https://doi.org/10.1039/C9CC06244K
  79. T. Yang, Y. Wang, W. Wei, X. Ding, M. He, T. Yu, H. Zhao and D. Zhang, Nanoscale, 2019, 11, 23206-23216. https://doi.org/10.1039/C9NR07235G
  80. Y. Li, H. Zhang, T. Xu, Z. Lu, X. Wu, P. Wan, X. Sun and L. Jiang, Advanced Functional Materials, 2015, 25, 1737-1744. https://doi.org/10.1002/adfm.201404250
  81. L. Zhang, K. Xiong, S. Chen, L. Li, Z. Deng and Z. Wei, Journal of Power Sources, 2015, 274, 114-120. https://doi.org/10.1016/j.jpowsour.2014.10.038
  82. L. Han, X. Y. Yu and X. W. Lou, Adv Mater, 2016, 28, 4601-4605. https://doi.org/10.1002/adma.201506315
  83. F. L. Li, Q. Shao, X. Huang and J. P. Lang, Angew Chem Int Ed Engl, 2018, 57, 1888-1892. https://doi.org/10.1002/anie.201711376
  84. X. L. Wu, S. Han, D. H. He, C. L. Yu, C. J. Lei, W. Liu, G. K. Zheng, X. W. Zhang and L. C. Lei, ACS Sustainable Chemistry & Engineering, 2018, DOI: 10.1021/.
  85. X. Hou, Y. Zhang, Q. Dong, Y. Hong, Y. Liu, W. Wang, J. Shao, W. Si and X. Dong, ACS Applied Energy Materials, 2018, 1, 3513-3520. https://doi.org/10.1021/acsaem.8b00773
  86. X. Y. Yu, L. Yu, H. B. Wu and X. W. Lou, Angew Chem Int Ed Engl, 2015, 54, 5331-5335. https://doi.org/10.1002/anie.201500267
  87. J. Li, S. Q. Lu, H. L. Huang, D. H. Liu, Z. B. Zhuang and C. L. Zhong, ACS Sustainable Chemistry & Engineering, 2018, 6, 10021-10029. https://doi.org/10.1021/acssuschemeng.8b01332
  88. L. Yan, L. Cao, P. Dai, X. Gu, D. Liu, L. Li, Y. Wang and X. Zhao, Advanced Functional Materials, 2017, 27, 1703455. https://doi.org/10.1002/adfm.201703455
  89. K. Ao, J. Dong, C. Fan, D. Wang, Y. Cai, D. Li, F. Huang and Q. Wei, ACS Sustainable Chemistry & Engineering, 2018, 6, 10952-10959. https://doi.org/10.1021/acssuschemeng.8b02343
  90. W. Wang, X. Xu, W. Zhou and Z. Shao, Adv Sci (Weinh), 2017, 4, 1600371. https://doi.org/10.1002/advs.201600371
  91. Y. Guo, J. Tang, Z. Wang, Y. Sugahara and Y. Yamauchi, Small, 2018, 14, e1802442. https://doi.org/10.1002/smll.201802442
  92. W. Ahn, M. G. Park, D. U. Lee, M. H. Seo, G. Jiang, Z. P. Cano, F. M. Hassan and Z. Chen, Advanced Functional Materials, 2018, 28, 1802129. https://doi.org/10.1002/adfm.201802129
  93. C. Xuan, J. Wang, W. Xia, Z. Peng, Z. Wu, W. Lei, K. Xia, H. L. Xin and D. Wang, ACS Appl Mater Interfaces, 2017, 9, 26134-26142. https://doi.org/10.1021/acsami.7b08560
  94. Z. Wu, J. Guo, J. Wang, R. Liu, W. Xiao, C. Xuan, K. Xia and D. Wang, ACS Appl Mater Interfaces, 2017, 9, 5288-5294. https://doi.org/10.1021/acsami.6b15244
  95. Y. Li and C. Zhao, Chemistry of Materials, 2016, 28, 5659-5666. https://doi.org/10.1021/acs.chemmater.6b01522
  96. J. Hao, W. Yang, Z. Zhang and J. Tang, Nanoscale, 2015, 7, 11055-11062. https://doi.org/10.1039/C5NR01955A
  97. X. Xiao, C.T. He, S. Zhao, J. Li, W. Lin, Z. Yuan, Q. Zhang, S. Wang, L. Dai and D. Yu, Energy & Environmental Science, 2017, 10, 893-899. https://doi.org/10.1039/C6EE03145E