Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 10 (2023)

Crystal Engineering for Achievement of Functional Materials Through Facile Intercalation of Lamella Mineral Kaolinite

DOI
https://doi.org/10.31875/2410-4701.2023.10.07
Submitted
June 24, 2023
Published
2023-06-24

Abstract

Abstract: Kaolinite, a layered clay mineral, has attracted widely attention due to its versatile advantages including low cost, environmentally friendly processing and easy modification. By comparison of the wide studies of the intercalation processes of kaolinite via the replacement of diverse intercalated agents, the multiple functional properties of intercalated kaolinites are ignored as well as such kind of study is very limited. In this review, we have summarized a series of intercalated compounds of kaolinites with organic molecules or organic salts by means of a simple intercalation strategy. Additionally, their multiple functional properties (such as dielectricity, ferroelectricity and ionic conductivity) will also be mentioned.

References

  1. M. I. Carretero and G. Lagaly, Appl. Clay Sci., 2007, 36, 1. https://doi.org/10.1016/j.clay.2006.05.010
  2. R. T. Martin, S. W. Bailey, D. D. Eberl, D. S. Fanning, S. Guggenheim, H. Kodama, D. R. Pevear, J. Srodon and F. J. Wicks, Clays Clay Miner., 1991, 39, 333.
  3. H. H. Murray, Appl. Clay Sci., 2000, 17, 207. https://doi.org/10.1016/S0169-1317(00)00016-8
  4. Z. Ding, J. T. Kloprogge, R. L. Frost, G. Q. Lu and H. Y. Zhu, J. Porous Mater., 2001, 8, 273. https://doi.org/10.1023/A:1013113030912
  5. X. Y, Zhu, C. J. Yan and J. Y. Chen, Appl. Clay Sci., 2012, 55, 114. https://doi.org/10.1016/j.clay.2011.11.001
  6. F. Bergaya and G. Lagaly, in General Introduction: Clays, Clay Minerals, and Clay Science, Handbook of Clay Science: Developments in Clay Science, ed., F. Bergaya, B. K. G. Theng, G. Lagaly, Elsevier, Amsterdam, 2006. vol. 1, p. 1. https://doi.org/10.1016/S1572-4352(05)01001-9
  7. W. N. Martens, R. L. Frost, J. Kristóf and E. Horvath, J. Phys. Chem. B, 2002, 106, 4162. https://doi.org/10.1021/jp0130113
  8. F. Franco, L. A. Pérez-Maqueda and J. L. Pérez-Rodríguez, J. Colloid Interface Sci., 2004, 274, 107. https://doi.org/10.1016/j.jcis.2003.12.003
  9. S. Letaief and C. Detellier, J. Mater. Chem., 2005, 15, 4734.S.-P. Zhao, Y. Guo, M.-M. Zhu, J. Wang, X.-L. Feng, Q. Qiao and H. Xu, Clays Clay Minerals, 2019, 67, 461. https://doi.org/10.1007/s42860-019-00036-x
  10. R. L. Frost, O. B. Locos, J. Kristóf and J. T. Kloprogge, Vib. Spectrosc., 2001, 26, 33. https://doi.org/10.1016/S0924-2031(01)00108-4
  11. K. Wada, Am. Mineral., 1959, 44, 153. https://doi.org/10.1093/genetics/44.2.153
  12. K. Wada, Am. Mineral., 1961, 46, 78. https://doi.org/10.4144/rpsj1954.1961.1
  13. R. L. Frost, J. Kristóf, L. Rintoul, J. T. Kloprogge, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2000, 56, 1681. https://doi.org/10.1016/S1386-1425(00)00223-7
  14. H. Ming, Clay Miner., 2004, 39, 349. https://doi.org/10.1180/0009855043930140
  15. S. Letaief and C. Detellier, J. Therm. Anal. Calorim., 2011, 104, 831. https://doi.org/10.1007/s10973-010-1269-8
  16. J. E. F. C. Gardolinski and G. Lagaly, Clay. Miner., 2005, 40, 537. https://doi.org/10.1180/0009855054040190
  17. D. Zhang, C. H. Zhou, C. X. Lin, D. S. Tong and W. H. Yu, Appl. Clay Sci., 2010, 50, 1. https://doi.org/10.1016/j.clay.2010.06.019
  18. E. Horváth, J. Kristóf, R. L. Frost, Appl. Spectrosc. Rev., 2010, 45, 130. https://doi.org/10.1080/05704920903435862
  19. H. F. Cheng, Q. F. Liu, J. Yang, S. J. Ma and R. L. Frost, Thermochim. Acta, 2012, 545, 1. https://doi.org/10.1016/j.tca.2012.04.005
  20. N. Bizaia, E. H. de Faria, G. P. Ricci, P. S. Calefi, J. Nassar Eduardo, K. A. D. F. Castro, S. Nakagaki, K. J. Ciuffi, R. Trujillano, M. A. Vicente, A. Gil and S. A. Korili, ACS Appl. Mater. Interfaces, 2009, 1, 2667. https://doi.org/10.1021/am900556b
  21. K. R. Kumrić, A. B. Đukić, T. M. Trtić-Petrović, N. S. Vukelić, Z. Stojanović, J. D. G. Novaković and L. L. Matović, Ind. Eng. Chem. Res., 2013, 52, 7930.
  22. E. H. de Faria, E. J. Nassar, K. J. Ciuffi, M. A. Vicente, R. Trujillano, V. Rives and P. S. Calefi, ACS Appl. Mater. Interfaces, 2011, 3, 1311. https://doi.org/10.1021/am2001086
  23. R. Takenawa, Y. Komori, S. Hayashi, J. Kawamata and K. Kuroda, Chem. Mater., 2001, 13, 3741. https://doi.org/10.1021/cm010095j
  24. Y. Suzuki, Y. Tenma, Y. Nishioka, J. Kawamata, Chem. Asian J., 2012, 7, 1170. https://doi.org/10.1002/asia.201200049
  25. S. P. Zhao, H. Gao, X. M. Ren, G. J. Yuan and Y. N. Lu, J. Mater. Chem., 2012, 22, 447. https://doi.org/10.1039/C1JM13115J
  26. X. P. Li, H. Yang, Z. F. Tian, J. L. Liu and X. M. Ren, Dalton Trans., 2014, 44, 4665. https://doi.org/10.1039/C4DT04018J
  27. (a) Q. Qiao, H. Yang, J. L. Liu, S. P. Zhao and X. M. Ren, Dalton Trans., 2014, 14, 5427; (b) Q. Qiao, Y. N. Ding, S. P. Zhao, L. Li, J. L. Liu and X. M. Ren, Inorg. Chem. Front., 2017, 4, 1405. https://doi.org/10.1039/c3dt52930d https://doi.org/10.1039/C7QI00341B
  28. G. Z. Zou, H. Gao, J. L. Liu, S. P. Zhao, Z. F. Tian and X. M. Ren, RSC Adv., 2013, 3, 23596. https://doi.org/10.1039/c3ra40579f
  29. L. T. Ren, X. P. Li, J. L. Liu and X. M. Ren, J. Solid State Chem., 2015, 232, 31. https://doi.org/10.1016/j.jssc.2015.09.001
  30. X. Q. Huang, H. Yang, S. P. Zhao, J. L. Liu and X. M. Ren, Eur. J. Inorg. Chem., 2015, 4708. https://doi.org/10.1002/ejic.201500550
  31. (a) H. Yang, X. Sun, S. X. Liu, J. L. Liu and X. M. Ren, ChemistrySelect, 2016, 1, 2181; (b) H. Yang, X. Sun, S. X. Liu, Y. Zou, L. Li, J. L. Liu and X. M. Ren, New J. Chem., 2016, 40, 10233. https://doi.org/10.1002/slct.201600217 https://doi.org/10.1039/C6NJ02386J
  32. S. X. Liu, C. Xue, H. Yang, X. Q. Huang, Y. Zou, Y. N. Ding, L. Li and X. M. Ren, Solid State Sci., 2017, 74, 95. https://doi.org/10.1016/j.solidstatesciences.2017.10.007
  33. D. L. Bish, Clays Clay Miner., 1993, 41, 738. https://doi.org/10.1346/CCMN.1993.0410613
  34. H. H. Murray, in Kaolins in Kaolin Genesis and Utilization, ed., W. Bundy and C. Harvey, Clay Miner. Soc., Boulder, CO, 1993. https://doi.org/10.1346/CMS-SP-1
  35. P. M. Costanzo and J. R. F. Giese, Clays Clay Miner., 1985, 33, 415. https://doi.org/10.1346/CCMN.1985.0330507
  36. J. G. Thompson and C. Cuff, Clays Clay Miner., 1985, 33, 490. https://doi.org/10.1346/CCMN.1985.0330603
  37. P. J. R. Uwins, I. D. R. Mackinnon, J. G. Thompson and A. J. E. Yago, Clays Clay Miner., 1993, 41, 707. https://doi.org/10.1346/CCMN.1993.0410609
  38. J. J. Tunney and C. Detellier, Chem. Mater., 1996, 8, 927. https://doi.org/10.1021/cm9505299
  39. T. A. Elbokl and C. Detellier, J. Phys. Chem. Solids, 2006, 67, 950. https://doi.org/10.1016/j.jpcs.2006.01.008
  40. R. L. Frost, J. Kristóf, E. Mako and J. T. Kloprogge, Langmuir, 2000, 16, 7421. https://doi.org/10.1021/la9915318
  41. E. P. Giannalis, Adv. Mater., 1996, 81, 29. https://doi.org/10.1002/adma.19960080104
  42. (a) A. Weiss, Angew. Chem. Int. Ed., 1963, 2, 697; (b) A. Weiss, W. Thielepape and H. Orth, Proc. Int.Clay Conf., 1966, 1, 277. https://doi.org/10.1002/anie.196306971
  43. R. L. Frost, J. Kristóf, G. N. Paroz, J. T. Kloprogge, J. Colloid Interface Sci., 1999, 208, 216. https://doi.org/10.1006/jcis.1998.5780
  44. (a) R. L. Frost, J. Kristóf, E. Horváth and J. T. Kloprogge, J. Colloid Interface Sci., 1999, 214, 380; (b) R. L. Frost, J. Kristóf, E. Horváth and J. T. Kloprogge, Langmuir, 1999, 15, 8787. https://doi.org/10.1006/jcis.1999.6209 https://doi.org/10.1021/la981755a
  45. R. L. Frost, J. Kristóf, E. Horváth, W. N. Martens and J. T. Kloprogge, J. Colloid Interface Sci., 2002, 251, 350. https://doi.org/10.1006/jcis.2002.8384
  46. (a) T. Itagaki, Y. Komori, Y. Sugaharaa and K. Kuroda, J. Mater. Chem., 2001, 11, 3291; (b) W. N. Martens, R. L. Frost, J. Kristóf, E. Horváth, J. Phys. Chem. B, 2002, 106, 4162; (c) M. Janek, K. Emmerich, S. Heissler and R. Nüesch, Chem. Mater., 2007, 19, 684; (d) J. Matusik, E. Scholtzová and D. Tunega, Clays Clay Miner., 2012, 60, 227. https://doi.org/10.1039/b100746g https://doi.org/10.1021/jp0130113 https://doi.org/10.1021/cm061481+ https://doi.org/10.1346/CCMN.2012.0600301
  47. R. L. Frost, J. Kristóf, E. Horváth and J. T. Kloprogge, J. Colloid Interface Sci., 2001, 239, 126. https://doi.org/10.1006/jcis.2001.7542
  48. R. L. Frost, J. Kristóf, E. Horváth, W. N. Martens and J. T. Kloprogge, J. Colloid Interface Sci., 2002, 246, 164. https://doi.org/10.1006/jcis.2001.8011
  49. R. L. Frost, J. Kristóf, G. N. Paroz, T. H. Tran and J. T. Kloprogge, J. Colloid Interface Sci., 1998, 204, 227. https://doi.org/10.1006/jcis.1998.5604
  50. S. L. Olejnik, J. Phys. Chem., 1968, 72, 241. https://doi.org/10.1021/j100847a045
  51. G. K. Dedzo, S. Letaief and C. Detellier, J. Mater. Chem., 2012, 22, 20593. https://doi.org/10.1039/c2jm34772e
  52. T. J. James and D. Christian, Clays Clay Miner., 1994, 42, 552. https://doi.org/10.1346/CCMN.1994.0420506
  53. H. F. Emerson, J. L. Omar, J. C. Katia, J. N. Eduardo, A. V. Miguel, T. Raquel and S. C. Paulo, J. Colloid Interface Sci., 2009, 335, 210.
  54. P. Sidheswaran, A. N. Bhat and P. Ganguli, Clays Clay Miner., 1990, 38, 29. https://doi.org/10.1346/CCMN.1990.0380104
  55. K. B. Brandt, T. A. Elbokl and C. Detellier, J. Mater. Chem., 2003, 13, 2566. https://doi.org/10.1039/b306468a
  56. E. Makó, J. Kristóf, E. Horvath and V. Vagvolyi, J. Colloid Interface Sci., 2009, 330, 367. https://doi.org/10.1016/j.jcis.2008.10.054
  57. G. Rutkai, E. Makó and T. Kristóf, J. Colloid Interface Sci., 2009, 334, 65. https://doi.org/10.1016/j.jcis.2009.03.022
  58. R. K. Vempati, M. Y. A. Mollah, G. R. Reddy, D. L. Cocke and H. V. Lauer Jr, J. Mater. Sci., 1996, 31, 1255. https://doi.org/10.1007/BF00353104
  59. J. M. Adams and G. Waltl, Clays Clay Miner., 1980, 28, 130. https://doi.org/10.1346/CCMN.1980.0280209
  60. É. Makó, J. Kristóf, E. Horváth, V. Vágvölgyi, J. Colloid Interface Sci., 2009, 330, 367. https://doi.org/10.1016/j.jcis.2008.10.054
  61. B. Caglar, J. Mol. Struct., 2012, 1020, 48. https://doi.org/10.1016/j.molstruc.2012.03.061
  62. R. L. Frost, J. Kristóf, G. N. Paroz, J. T. Kloprogge, Phys. Chem. Miner., 1999, 26, 257. https://doi.org/10.1007/s002690050185
  63. K. Tsunematsu and H. Tateyama, J. Am. Ceram. Soc., 1999, 82, 1589. https://doi.org/10.1111/j.1151-2916.1999.tb01963.x
  64. E. W. Hope and J. A. Kittrick, Am. Mineral., 1964, 49, 859.
  65. J. E. F. C. Gardolinski and G. Lagaly, Clay Miner., 2005, 40, 537. https://doi.org/10.1180/0009855054040190
  66. Y. Kuroda, K. Ito, K. Itabashi and K. Kuroda, Langmuir, 2011, 27, 2028. https://doi.org/10.1021/la1047134
  67. S. Letaief and C. Detellier, Langmuir, 2009, 25, 10975. https://doi.org/10.1021/la901196f
  68. M. D. R. Cruz and F. I. F. Duro, Clay Miner., 1999, 34, 565. https://doi.org/10.1180/000985599546451
  69. R. L. Ledoux and J. L. White, Science, 1964, 143, 244. https://doi.org/10.1126/science.143.3603.244
  70. N. E. Hill, V. E. Vaughan, A. H. Price and M. Davies, in Dielectric properties and molecular behavior, The van Norstrand Series in Physical Chemistry, ed. T. M. Sugden, New York, Toronto, Melbourne, 1969, p. 282.
  71. K. Orzechowski, T. Słonka and J. Głowinski, J. Phys. Chem. Solids, 2006, 67, 915. https://doi.org/10.1016/j.jpcs.2006.03.001
  72. K. Leluk, K. Orzechowski, K. Jerie, A. Baranowski, T. Slonka and J. Glowinski, J. Phys. Chem. Solids, 2010, 71, 827. https://doi.org/10.1016/j.jpcs.2010.02.008
  73. K. S. Cole and R. H. Cole, J. Chem. Phys., 1941, 9, 341. https://doi.org/10.1063/1.1750906
  74. V. K. Syal, S. Chauhan and U. Kumari, Indian J. Pure Appl. Phys., 2005, 43, 844.
  75. S. Cabani, P. Gianni, V. Mollica and L. Lepori, J. Solution Chem., 1981, 10, 563. https://doi.org/10.1007/BF00646936
  76. G. J. Goldsmith and J. G. White, J. Chem. Phys., 1959, 31, 1175. https://doi.org/10.1063/1.1730568
  77. S. Letaief, T. Diaco, W. Pell, S. I.. Gorelsky and C. Detellier, Chem. Mater., 2008, 20, 7136. https://doi.org/10.1021/cm800758c
  78. J. Halbritter, Phys. Rev. B: Condens. Matter, 1993, 48, 9735. https://doi.org/10.1103/PhysRevB.48.9735
  79. K. D. Kreuer, S. J. Paddison, E. Spohr and M. Schuster, Chem. Rev., 2004, 104, 4637. https://doi.org/10.1021/cr020715f
  80. H. B. Luo, L. T. Ren, W. H. Ning, S. X. Liu, J. L Liu and X. M. Ren, Adv. Mater., 2016, 28, 1663. https://doi.org/10.1002/adma.201504591
  81. (a) M. Sadakiyo, T. Yamada, K. Honda, H. Matsui and H. Kitagawa, J. Am. Chem. Soc., 2014, 136, 7701; (b) S. S. Bao, K. Otsubo, J. M. Taylor, Z. Jiang, L. M. Zheng and H. Kitagawa, J. Am. Chem. Soc., 2014, 136, 9292. https://doi.org/10.1021/ja5022014 https://doi.org/10.1021/ja505916c
  82. T. Kundu, S. C. Sahoo, R. Banerjee, Chem. Commun., 2012, 48, 4998. https://doi.org/10.1039/c2cc31135f
  83. J. M. Taylor, K. W. Dawson and G. K. H. Shimizu, J. Am. Chem. Soc., 2013, 135, 1193. https://doi.org/10.1021/ja310435e
  84. H. P. Ma, B. L. Liu, B. Li, L. M. Zhang, Y. G. Li, H. Q. Tan, H. Y. Zang and G. S. Zhu, J. Am. Chem. Soc., 2016, 138, 5897. https://doi.org/10.1021/jacs.5b13490
  85. C. A. Oliveira Ribeiro, Y. Vollaire, A. Sanchez-Chardi, H. Roche, France. Aquat. Toxicol., 2005, 74, 53. https://doi.org/10.1016/j.aquatox.2005.04.008
  86. S. S. Gupta, K. G. Bhattacharyya, J. Hazard. Mater., 2006, 128, 247. https://doi.org/10.1016/j.jhazmat.2005.08.008
  87. T. Ohkubo, A. Takei, Y. Tachi, Y. Fukatsu, K. Deguchi, S. Ohki and T. Shimizu, J. Phys. Chem. A, 2023, 127, 973. https://doi.org/10.1021/acs.jpca.2c08880
  88. K. Kobayashi, A. Yamaguchi, M. Okumura, Appl. Clay Sci. 2022, 228, 106596. https://doi.org/10.1016/j.clay.2022.106596