Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 2 No. 1 (2015)

Hydroxyapatite from Natural Resources

DOI
https://doi.org/10.15377/2410-4701.2015.02.01.1
Published
2015-09-26

Abstract

The improve of well-being and longevity of the population in Europe results in an increasing demand for the development of biocompatible materials with new properties which can be applied as implants for several decades. The one of most used biomaterial worldwide is a hydroxyapatite (HAP). This chemically similar material to the mineral component of bone and hard tissues is one of the bioactive materials, which can react with the tissue and generates good chemical bonding. The different preparation routes of HAP are known. In this study, the environmental friendly and cheap process from natural resources is shown. The examination of biogenic HAP confirmed the submicron sized structure with ~ 100 – 150 nm globular grains. The measurements confirmed the high structural stability of HAP grains.

References

  1. Santavirta S, Anttala A, Aspenberg P. Tekonivelen biokompatibiliteettitutkimus. Finn J Ortop Pharmatol 1998; SOT 5/95 18: 356-361.
  2. http://datamonitor.com
  3. Nevalainen J, Hirvonen A, Pulkkinen P. The Implant Yearbook on Orthopaedic Prosthese. Publ Nat Agent Med 1996.
  4. Boretos JW, Eden M. Contemporary biomaterials: Material and host response, clinical applications, new technology, and legal aspects, Noyes Publications, 1984.
  5. Ramakrishna S, Mayer J, Wintermantel E, Leong K. Biomedical applications of polymer-composite materials: a review. Composites Science and Technology 2001; 61:1189- 1224. http://dx.doi.org/10.1016/S0266-3538(00)00241-4
  6. Wise DL. Biomaterials engineering and devices. Humana Press Berlin 2000.
  7. Park JB, Bronzino JD (ed). Biomaterials: principles and applications. Boca Rator CRC Press 2003.
  8. Ben-Nissan B. Nanoceramics in Biomedical Applications. MRS Bulletin 2004; 29(1): 28-32. http://dx.doi.org/10.1557/mrs2004.13
  9. Goller G, Demirkiran H, Oktar FN, Demirkesen E. Processing and characterization of bioglass reinforced hydroxyapatite composites. Ceram Internat 2003; 29(6): 721- 724. http://dx.doi.org/10.1016/S0272-8842(02)00223-7
  10. Jarcho M, Kay JF, Gumar KI, Doremus RH, Drobeck HP. Tissue cellular and subcellular events at a bone-ceramic hydroxyapatite interface. J Biosci Bioeng 1977; 1: 79-92.
  11. Nath S, Basu B, Sinha A. A comparative study of conventional sintering with microwave sintering of hydroxyapatite synthesized by chemical route. Trends Biomater Artif Org 2006; 19(2): 93-98.
  12. Combes C, Rey C. Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomater 2010; 6: 3362-3378. http://dx.doi.org/10.1016/j.actbio.2010.02.017
  13. Nordstrom EG, Karlsson KH. Carbonate-doped hydroxyapatite. J Mater Sci Mater Med 1990; 1: 182-184. http://dx.doi.org/10.1007/BF00700880
  14. Kijuma T, Tsutsumi M. Preparation and thermal properties of dense polycrystalline oxyhydroxyapatite. J Amer Ceram Soc 1979; 62: 455-460. http://dx.doi.org/10.1111/j.1151-2916.1979.tb19104.x
  15. Santos MH, de Oliveira M, de Freitas Souza P, Mansur HS, Vasconcelos WL. Synthesis controland characterization of hydroxyapatite prepared bywet precipitation process. Mater Res 2004; 7(4): 625-630. http://dx.doi.org/10.1590/S1516-14392004000400017
  16. Chai CS, Ben-Nissan B. Bioactive nanocrystallinesol-gel hydroxyapatite coatings. J Mater Sci: Mater Med 1999; 10: 465-469. http://dx.doi.org/10.1023/A:1008992807888
  17. Kimura I. Synthesis of hydroxyapatite by interfacial reaction in a multiple emulsion. Res Lett Mater Sci 2007; 1-4.
  18. Tas AC. Synthesis of biomimetic Ca-hydroxyapatite powders at 37 C in synthetic body fluids. Biomaterials 2000; 21: 1429- 1438. http://dx.doi.org/10.1016/S0142-9612(00)00019-3
  19. Shikhanzadeh M. Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes. J Mater Sci: Mater Med 1998; 9: 67-72. http://dx.doi.org/10.1023/A:1008838813120
  20. Balázsi Cs, Wéber F, Kö vér Zs, E. Horváth and Cs. Németh, Preparation of calcium– phosphate bioceramics from natural resources. J Eur Ceram Soc 2007; 27:(2-3): 1601-1606.
  21. Robert E, Schilling, Yang M. Attritor grinding mills and new developments, UNION PROCESS INC. Akron Ohio 2000.
  22. Gergely G, Wéber F, Lukács I, Tóth AL, Horváth ZE, Mihály J, Balázsi C. Preparation and characterization of hydroxyapatite from eggshell. Ceram Inter 2010; 36: 803- 806. http://dx.doi.org/10.1016/j.ceramint.2009.09.020
  23. Elliott JC. Structure and chemistry of the apatites and other calcium orthophosphates. Amsterdam: Elsevier; 1994.
  24. LeGeros RZ. Calcium phosphates in oral biology and medicine. Basel, Switzerland: Karger AG 1991.
  25. Suchanek WL, Byrappa K, Shuk P, Riman RE, Janas VF, TenHuisen KS. Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemicalhydrothermal method. Biomaterials 2004; 25 (19): 4647- 4657. http://dx.doi.org/10.1016/j.biomaterials.2003.12.008