Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 10 (2023)

One-Step Sol-Gel Facile Synthesis and 3D Nanoscale Morphology Investigation of Bi0.5Na0.5TiO3-BaTiO3 Thin Films

DOI
https://doi.org/10.31875/2410-4701.2023.10.09
Published
2023-09-21

Abstract

Abstract: Bismuth sodium titanate, denoted as Bi0.5Na0.5TiO3-BaTiO3 (BNT-BT), possessing a perovskite-like structure, has emerged as a highly prospective material in recent years. It is considered a prime contender for replacing PZT-based compounds due to its exceptional piezoelectric and ferroelectric properties, coupled with the presence of loosely bound pairs of chemically active electrons. This study delves into the micromorphological properties of BNT-BT thin film electrodes, fabricated using sol-gel spin-coating and subsequent annealing processes. Employing Atomic Force Microscopy (AFM), comprehensive 2D and 3D topographical maps were acquired, enabling the extraction of pivotal parameters crucial for surface characterization. Notably, the investigation encompasses Minkowski Functionals, which encompass normalized Minkowski volume, boundary, and connectivity analyses. In conjunction, various roughness parameters, encompassing arithmetic mean height, maximum peak height, maximum valley depth, arithmetic mean depth, and the ten-point height parameter, were quantified across these analyses to facilitate a comprehensive comparison of surface morphologies among distinct samples. The morphological analysis outcome underscores the potential for elucidating material performance through microstructural shape and quantitative roughness evaluation of respective surfaces. This holds significant promise for applications such as predictive assessment of functional behavior, including industrial quality control during sample manufacturing processes.

References

  1. A.K. Tagantsev, G. Gerra, J. Appl. Phys. 100 (2006). https://doi.org/10.1063/1.2337009
  2. Metal Oxide-Based Thin Film Structures, 2018.
  3. H.Y. Lee, M.M. Al Ezzi, N. Raghuvanshi, J.Y. Chung, K. Watanabe, T. Taniguchi, S. Garaj, S. Adam, S. Gradečak, Nano Lett. 21 (2021). https://doi.org/10.1021/acs.nanolett.0c04924
  4. S.A. Dargham, F. Ponchel, N. Abboud, M. Soueidan, A. Ferri, R. Desfeux, J. Assaad, D. Remiens, D. Zaouk, J. Eur. Ceram. Soc. 38 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.06.019
  5. S.A. Dargham, F. Ponchel, Y. Zaatar, J. Assaad, D. Remiens, D. Zaouk, Mater. Today Proc. 3 (2016) 810-815. https://doi.org/10.1016/j.matpr.2016.02.013
  6. C. Sameera Devi, M. Buchi Suresh, G. Kumar, G. Prasad, Mater. Sci. Eng. B 228 (2018) 38-44. https://doi.org/10.1016/j.mseb.2017.11.005
  7. A. Prado-Espinosa, J. Camargo, A. del Campo, F. Rubio-Marcos, M. Castro, L. Ramajo, J. Alloys Compd. 739 (2018). https://doi.org/10.1016/j.jallcom.2017.12.308
  8. L. Wu, S. Zhang, J. Liu, Q. Hu, J. Chen, Y. Wang, B. Xu, Y. Xia, J. Yin, Z. Liu, Ceram. Int. 42 (2016).
  9. P. Li, B. Liu, B. Shen, J. Zhai, L. Li, H. Zeng, Ceram. Int. 43 (2017) 1008-1013. https://doi.org/10.1016/j.ceramint.2016.10.033
  10. F.M. Mwema, O.P. Oladijo, T.S. Sathiaraj, E.T. Akinlabi, Mater. Res. Express 5 (2018). https://doi.org/10.1088/2053-1591/aabe1b
  11. J. Song, Y. Zhou, N.P. Padture, B.D. Huey, Nat. Commun. 11 (2020). https://doi.org/10.1038/s41467-020-17685-5
  12. A. Grayeli Korpi, Ş. Ţălu, M. Bramowicz, A. Arman, S. Kulesza, B. Pszczolkowski, S. Jurečka, M. Mardani, C. Luna, P. Balashabadi, S. Rezaee, S. Gopikishan, Mater. Res. Express 6 (2019) 086463. https://doi.org/10.1088/2053-1591/ab26be
  13. Y.L. Lighvan, Vak. Forsch. Und Prax. 34 (2022) 38-43. https://doi.org/10.1002/vipr.202200781
  14. Ş. Ţălu, R.S. Matos, E.P. Pinto, S. Rezaee, M. Mardani, Surfaces and Interfaces 21 (2020) 100650. https://doi.org/10.1016/j.surfin.2020.100650
  15. H. Aminirastabi, H. Xue, V. V. Mitić, G. Lazović, G. Ji, D. Peng, Mater. Chem. Phys. 239 (2020) 122261. https://doi.org/10.1016/j.matchemphys.2019.122261
  16. K. Ghosh, R.K. Pandey, Appl. Phys. A Mater. Sci. Process. 125 (2019). https://doi.org/10.1007/s00339-019-2398-y
  17. R. Shakoury, S. Rezaee, F. Mwema, C. Luna, K. Ghosh, S. Jurečka, Ş. Ţălu, A. Arman, A. Grayeli Korpi, Opt. Quantum Electron. 52 (2020). https://doi.org/10.1007/s11082-020-02388-4
  18. C. Yago Pereira Batista, Y. Romaguera-Barcelay, R.S. Matos, A. dos Santos Atherly Pedraça, M. do Amaral Amâncio, A. Kourouma, Y. Leyet Ruiz, E. Adriano Cotta, W. Ricardo Brito, A. María Dip Gandarilla, M. Valério Botelho do Nascimento, F. Xavier Nobre, N. Santos Ferreira, M. Salerno, H. Duarte da Fonseca Filho, Appl. Surf. Sci. 615 (2023). https://doi.org/10.1016/j.apsusc.2023.156374
  19. S. Carlos, L. De, O. Melo, P. Dra, J. Agnieszka, M. Pawlicka, (2010).
  20. D. Nečas, P. Klapetek, Cent. Eur. J. Phys. 10 (2012) 181-188. https://doi.org/10.2478/s11534-011-0096-2
  21. Ş. Ţălu, S. Stach, S. Valedbagi, R. Bavadi, S.M. Elahi, M. Ţălu, Mater. Sci. 33 (2015) 541-548. https://doi.org/10.1515/msp-2015-0086
  22. R.S. Matos, B.S. Pinheiro, I.S. Souza, R.R. Paes de Castro, G.Q. Ramos, E.P. Pinto, R.S. Silva, H.D. da Fonseca Filho, Micron 142 (2021). https://doi.org/10.1016/j.micron.2020.102996
  23. Y.R. Barcelay, J.A.G. Moreira, A. de Jesus Monteiro Almeida, W.R. Brito, R.S. Matos, H.D. da Fonseca Filho, Mater. Lett. 279 (2020) 128477. https://doi.org/10.1016/j.matlet.2020.128477
  24. W.S. da Conceição, Ş. Ţălu, R.S. Matos, G.Q. Ramos, F.G. Zayas, H.D. da Fonseca Filho, Microsc. Res. Tech. 84 (2021). https://doi.org/10.1002/jemt.23699
  25. F. Blateyron, Characterisation of Areal Surface Texture, Springer-Verlag Berlin Heidelberg, Berlin, Germany, 2013.
  26. Ş. Ţălu, S. Stach, T. Ghodselahi, A. Ghaderi, S. Solaymani, A. Boochani, Ż. Garczyk, J. Phys. Chem. B 119 (2015) 5662-5670. https://doi.org/10.1021/acs.jpcb.5b00042
  27. S. Stach, Ş. Ţălu, R. Dallaev, A. Arman, D. Sobola, M. Salerno, Silicon 12 (2020). https://doi.org/10.1007/s12633-019-00351-x
  28. D. Sobola, P. Kaspar, J. Oulehla, S. ťalu, N. Papež, Mater. Sci. Pol. (2020).
  29. G. Zaneta, S. Sebastian, T. Ştefan, S. Dinara, W. Zygmunt, J. Biomimetics, Biomater. Biomed. Eng. 31 (2017) 1-10.
  30. O.A. González-Meza, E.R. Larios-Durán, A. Gutiérrez-Becerra, N. Casillas, J.I. Escalante, M. Bárcena-Soto, J. Solid State Electrochem. 23 (2019). https://doi.org/10.1007/s10008-019-04410-6
  31. J. Zhao, N. Zhang, W. Ren, G. Niu, D. Walker, P.A. Thomas, L. Wang, Z.G. Ye, J. Am. Ceram. Soc. 102 (2019).
  32. R.S. Matos, G.A.C. Lopes, N.S. Ferreira, E.P. Pinto, J.C.T. Carvalho, S.S. Figueiredo, A.F. Oliveira, R.R.M. Zamora, Arab. J. Sci. Eng. 43 (2018). https://doi.org/10.1007/s13369-017-3024-y
  33. Ş. Ţălu, Polym. Eng. Sci. (2013) n/a-n/a.
  34. D. Nečas, P. Klapetek, Cent. Eur. J. Phys. 10 (2012) 181-188. https://doi.org/10.2478/s11534-011-0096-2
  35. M. Salerno, M. Banzato, Microsc. Anal. 19 (2005) 13-15.
  36. C.H. Arns, M.A. Knackstedt, K.R. Mecke, Colloids Surfaces A Physicochem. Eng. Asp. 241 (2004) 351-372. https://doi.org/10.1016/j.colsurfa.2004.04.034
  37. J. Schmähling, F.A. Hamprecht, Wear 262 (2007). https://doi.org/10.1016/j.wear.2007.01.025
  38. F.M. Mwema, E.T. Akinlabi, O.P. Oladijo, Lect. Notes Mech. Eng. (2020) 251-263. https://doi.org/10.1007/978-981-13-8297-0_28
  39. Ş. Ţălu, P. Nikola, D. Sobola, A. Achour, S. Solaymani, J. Mater. Sci. Mater. Electron. 28 (2017). https://doi.org/10.1007/s10854-017-7422-4