Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 10 (2023)

Ballistic Energy Absorption of Thermally Aged DGEBA/TETA System and Fique-Fabric Reinforced Epoxy Composite

DOI
https://doi.org/10.31875/2410-4701.2023.10.10
Submitted
October 13, 2023
Published
2023-10-13

Abstract

Abstract: For many applications, such as vests or parts of vests, the fibers are used in fabric, mat, or mesh. Ballistic resistance properties are also improved by the development of special fabrics architectures. It is known that heat and oxygen are the main factors in the aging process of polymers. The mechanisms of aging by oxidation can be investigated by monitoring the mechanical properties of a material exposed to prolonged aging in an oven, which is called the accelerated aging process by thermal oxidation. In previous studies, the epoxy matrix composite reinforced with 40% by volume of fique fabric, already tested and with good ballistic performance, was developed and proposed for individual ballistic protection applications. However, the impact of different environmental conditions on the dynamic properties of the composite has not been studied. Therefore, the present study, for the first time, aimed to apply accelerated weathering through high temperature to the composite, as well as to the epoxy matrix, aiming to evaluate the influence of aging.

References

  1. S. Y. Nayak, M. T. H. Sultan, S. B. Shenoy, C. R. Kini, R. Samant, A. U. M. Shah e P. Amuthakkannan, "Potential of Natural Fibers in Composites for Ballistic Applications - A Review," Journal of Natural Fibers, vol. 19, nº 5, pp. 1648-1658, 2022. https://doi.org/10.1080/15440478.2020.1787919
  2. A. Ali, Z. R. Shaker, A. Khalina e S. M. Sapuan, "Development of Anti-Ballistic Board from Ramie Fiber," Polymer-Plastics Technology and Engineering, vol. 50, nº 6, pp. 622-634, 2011. https://doi.org/10.1080/03602559.2010.551381
  3. J. Naveen, M. Jawaid, E. S. Zainudin, M. T. H. Sultan e R. Yahaya, "Evaluation of ballistic performance of hybrid Kevlar®/Cocos nucifera sheath reinforced epoxy composites," The Journal of The Textile Institute, vol. 110, nº 8, p. 1179-1189, 2019. https://doi.org/10.1080/00405000.2018.1548801
  4. A. M. R. Azmi, M. T. H. Sultan, A. Hamdan, A. F. M. Nor e K. Jayakrishna, "Flexural and Impact Properties of A New Bulletproof Vest Insert Plate Design Using Kenaf Fibre Embedded With X-Ray Films," Materials Today: Proceedings, vol. 5, nº 5, pp. 11193-11197, 2018. https://doi.org/10.1016/j.matpr.2018.01.143
  5. L. de Mendonça Neuba, R. Pereira Junio, M. Ribeiro, A. Souza, E. de Sousa Lima, F. Garcia Filho, A.-H. Figueiredo, F. Braga, A. Azevedo e S. Monteiro, "Promising Mechanical, Thermal, and Ballistic Properties of Novel Epoxy Composites Reinforced with Cyperus malaccensis Sedge Fiber," Polymers, vol. 12, p. 1776, 2020. https://doi.org/10.3390/polym12081776
  6. N. L. G. J. M. S. L. F. P. W. G. F. F. Costa UO, "Effect of Graphene Oxide Coating on Natural Fiber Composite for Multilayered Ballistic Armor," Polymers, vol. 11, nº 8, p. 1356, 2019. https://doi.org/10.3390/polym11081356
  7. S. N. Monteiro, T. L. Milanezi, L. H. L. Louro, É. P. Lima, F. O. Braga, A. V. Gomes e J. W. Drelich, "Novel ballistic ramie fabric composite competing with Kevlar™ fabric in multilayered armor," Materials & Design, vol. 96, pp. 263-269, 2016. https://doi.org/10.1016/j.matdes.2016.02.024
  8. F. d. O. Braga, L. T. Bolzan, F. S. d. Luz, P. H. L. M. Lopes, É. P. L. Jr. e S. N. Monteiro, "High energy ballistic and fracture comparison between multilayered armor systems using non-woven curaua fabric composites and aramid laminates," Journal of Materials Research and Technology, vol. 6, nº 4, pp. 417-422, 2017. https://doi.org/10.1016/j.jmrt.2017.08.001
  9. S. N. Monteiro, L. H. L. Louro, W. Trindade, C. N. Elias, C. L. Ferreira, E. de Sousa Lima, R. P. Weber, J. C. Miguez Suarez, A. B.-H. da Silva Figueiredo, W. A. Pinheiro, L. C. da Silva e É. P. Lima, "Natural Curaua Fiber-Reinforced Composites in Multilayered Ballistic Armor," Metallurgical and Materials Transactions A, vol. 46, p. 4567-4577, 2015. https://doi.org/10.1007/s11661-015-3032-z
  10. R. Cruz, É. Jr, S. Monteiro e L. Louro, "Giant Bamboo Fiber Reinforced Epoxy Composite in Multilayered Ballistic Armor," Materials Research, vol. 18, p. 70 - 75, 2015. https://doi.org/10.1590/1516-1439.347514
  11. L. &. M. F. &. M. S. &. V. C. M. &. A. B. &. S. L. E. Rohen, "Ballistic Efficiency of an Individual Epoxy Composite Reinforced with Sisal Fibers in Multilayered Armor," Materials Research, vol. 18, p. 55 - 62. https://doi.org/10.1590/1516-1439.346314
  12. F. &. J. É. &. L. L. &. M. S. Luz, "Ballistic Test of Multilayered Armor with Intermediate Epoxy Composite Reinforced with Jute Fabric," Materials Research, vol. 18, p. 170 - 177, 2015. https://doi.org/10.1590/1516-1439.358914
  13. L. &. L. L. &. M. S. &. G. A. &. M. R. &. J. É. &. M. J. Nascimento, "Ballistic Performance of Mallow and Jute Natural Fabrics Reinforced Epoxy Composites in Multilayered Armor," Materials Research, vol. 20, p. 399 - 403, 2017. https://doi.org/10.1590/1980-5373-mr-2016-0927
  14. F. &. M. T. &. M. S. &. L. L. &. G. A. &. J. É. de Oliveira Braga, "Ballistic comparison between epoxy-ramie and epoxy-aramid composites in Multilayered Armor Systems," Journal of Materials Research and Technology, vol. 7, p. 541 - 549, 2018. https://doi.org/10.1016/j.jmrt.2018.06.018
  15. S. &. P. A. &. F. C. &. J. É. Monteiro, "Performance of Plain Woven Jute Fabric-Reinforced Polyester Matrix Composite in Multilayered Ballistic System," Polymers, vol. 10, nº 3, p. 230. https://doi.org/10.3390/polym10030230
  16. M. S. Oliveira, A. C. Pereira, F. d. C. G. Filho, F. S. d. Luz, F. d. O. Braga, L. F. C. Nascimento, É. P. LimaJr, L. C. d. C. Demosthenes e S. N. Monteiro, "Fique Fiber-Reinforced Epoxy Composite for Ballistic Armor Against 7.62 mm Ammunition," em Green Materials Engineering, 2019, p. 193-199. https://doi.org/10.1007/978-3-030-10383-5_22
  17. M. &. V. A. Lu, "Effects of water immersion ageing on composites made of non-dry flax fibres," Materials Today: Proceedings, vol. 31, 2019. https://doi.org/10.1016/j.matpr.2019.11.061
  18. K. Bilisik, "Impact-resistant fabrics (ballistic/stabbing/slashing/spike)," em Engineering of High-Performance Textiles, Elsevier Limited-Woodhead Publishing, 2018. https://doi.org/10.1016/B978-0-08-101273-4.00014-7
  19. S. Morsch, Y. Liu, S. B. Lyon, S. R. Gibbon, B. Gabriele, M. Malanin e K.-J. Eichhorn, "Examining the early stages of thermal oxidative degradation in epoxy-amine resins," Polymer Degradation and Stability, vol. 176, p. 109147, 2020. https://doi.org/10.1016/j.polymdegradstab.2020.109147
  20. H. Yue, J. C. Rubalcaba, Y. Cui, J. P. Fernández-Blázquez, C. Yang e P. S. Shuttleworth, "Determination of cross-sectional area of natural plant fibres and fibre failure analysis by in situ SEM observation during microtensile tests," Cellulose, vol. 26, p. 4693-4706, 2019. https://doi.org/10.1007/s10570-019-02428-7
  21. G. A. Díaz-Ramírez, H. G. Sanchez e R. A. Cruz, "Correlation between cross sectional area and torsion degree of fique yarns by image analysis system," Correlation between cross sectional area and torsion degree of fique yarns by image analysis system, p. 1247, 2019. https://doi.org/10.1088/1742-6596/1247/1/012030
  22. S. N. Monteiro, F. S. d. Assis, C. L. Ferreira, N. T. Simonassi, R. P. Weber, M. S. Oliveira, H. A. Colorado e A. C. Pereira, "Fique Fabric: A Promising Reinforcement for Polymer Composites," Polymers, vol. 10, nº 3, p. 246, 2018. https://doi.org/10.3390/polym10030246
  23. S. S. Morye, P. J. Hine, R. A. Duckett, D. J. Carr e I. M. Ward, "Modelling of the energy absorption by polymer composites upon ballistic impact," Composites Science and Technology, vol. 60, nº 14, pp. 2631-2642, 2000. https://doi.org/10.1016/S0266-3538(00)00139-1
  24. M. S. Oliveira, F. S. d. Luz, H. A. C. Lopera, L. F. C. Nascimento, F. d. C. Garcia Filho e S. N. Monteiro, "Energy Absorption and Limit Velocity of Epoxy Composites Incorporated with Fique Fabric as Ballistic Armor - A Brief Report," Polymers, vol. 13, nº 16, p. 2727, 2021. https://doi.org/10.3390/polym13162727
  25. R. H. M. Reis, L. F. Nunes, F. S. d. Luz, V. S. Candido, A. C. R. d. Silva e S. N. Monteiro, "Ballistic Performance of Guaruman Fiber Composites in Multilayered Armor System and as Single Target," Polymers, vol. 13, nº 8, p. 1203, 2021. https://doi.org/10.3390/polym13081203
  26. N. M. Meliande, M. S. Oliveira, P. H. P. d. Silveira, R. R. Dias, R. L. S. B. Marçal, S. N. Monteiro e L. F. C. Nascimento, "Curaua-Aramid Hybrid Laminated Composites for Impact pplication: Flexural, Charpy Impact and Elastic Properties," Polymers, vol. 14, nº 18, p. 3749, September 2022. https://doi.org/10.3390/polym14183749
  27. N. M. Meliande, P. H. P. M. d. Silveira, S. N. Monteiro e L. F. C. Nascimento, "Tensile Properties of Curaua-Aramid Hybrid Laminated," Polymers, vol. 14, p. 2588, 2022. https://doi.org/10.3390/polym14132588
  28. M. P. Ribeiro, L. d. M. Neuba, P. H. P. M. d. Silveira, F. S. Luz, A. B.-H. d. S. Figueiredo, S. N. Monteiro e M. O. Moreira, "Mechanical, thermal and ballistic performance of epoxy composites reinforced with Cannabis sativa hemp fabric," Journal of Materials Research and Technology, vol. 12, pp. 221-233, 2021. https://doi.org/10.1016/j.jmrt.2021.02.064
  29. A. Pereira, F. de Assis, F. da Costa Garcia Filho, L. da Cruz Demosthenes, H. Lopera e S. Monteiro, "Ballistic Test of Multilayered Armor with Intermediate Polyester Composite Reinforced with Fique Fabric," em Green Materials Engineering, 2019. https://doi.org/10.1007/978-3-030-10383-5_18
  30. M. S. Oliveira, F. d. C. G. Filho, A. C. Pereira, L. F. Nunes, F. S. d. Luz, F. d. O. Braga, H. A. Colorado e S. N. Monteiro, "Ballistic performance and statistical evaluation of multilayered armor with epoxy-fique fabric composites using the weibull analysis," Journal of Materials Research and Technology, vol. 8, nº 6, pp. 5899-5908, 2019. https://doi.org/10.1016/j.jmrt.2019.09.064