Biodegradable metals have attracted interest for implant applications because of the potential to eliminate secondary surgeries. Magnesium-based (Mg-based) alloys are potential candidates. The purpose of this study was to evaluate the in vitro and in vivo degradation performances of two custom-made magnesium-based alloys and to determine whether they are sustainable for further investigation. The performances of Magnesium-Zinc-Manganese (Mg-Zn-Mn) alloys at 5% and 1% zinc levels were compared using a mechanical test, hydrogen evolution test, cell viability (MTT) test, and a short term mice subcutaneous implantation. The results showed that the corrosion resistance of the Mg was improved by alloying. While Mg-5Zn-1Mn was more corrodible compared with Mg-1Zn-1Mn, neither of the alloys presented any adverse effects preliminarily and both were suitable for long-term testing for biomedical applications.
References
Bostman O, H Pihlajamaki. Routine implant removal after fracture surgery: a potentially reducible consumer of hospital resources in trauma units. J Trauma 1996; 41 (5): 846-849. PMID: 8913214. http://dx.doi.org/10.1097/00005373-199611000-00013
Kubásek J, Vojtech D. Structural characteristics and corrosion behaviour of biodegradable Mg-Zn, Mg-Zn-Gd alloys. J Mater Sci Mater Med 2013; 24 (7): 1615-1626. http://dx.doi.org/10.1007/s10856-013-4916-3
Bostman O, Hirvensalo E, Partio E, Törmälä P, Rokkanen P. Impact of the use of absorbable fracture fixation implants on consumption of hospital resources and economic costs. J Trauma 1991; 31 (10): 400-1403. PMID: 1942152
Juutilainen T, Pätiälä H, Ruuskanen M, Rokkanen P. Comparison of costs in ankle fractures treated with absorbable or metallic fixation devices. Arch Orthop Trauma Surg 1997; 116(4): 204-208. PMID: 9128772. http://dx.doi.org/10.1007/BF00393710
Bostman OM. Metallic or absorbable fracture fixation devices. A cost minimization analysis. Clin Orthop Relat Res 1996; (329): 233-239. PMID: 8769457. http://dx.doi.org/10.1097/00003086-199608000-00029
Rokkanen PU, Bostman O, Hirvensalo E, Mäkelä EA, Partio EK, Pätiälä H, et al. Bioabsorbable fixation in orthopaedic surgery and traumatology. Biomaterials 2000; 21(24): 2607- 2613. PMID: 11071610. http://dx.doi.org/10.1016/S0142-9612(00)00128-9
Böstman O, Hirvensalo E, Partio E, Törmälä P, Rokkanen P. Resorbable rods and screws of polyglycolide in stabilizing malleolar fractures. A clinical study of 600 patients. Unfallchirurg 1992; 95(2): 109-112. PMID: 1315079
Witte F. In-Vivo Korrosion von Magnesium legierungen und ihrebiolokishen Effekte: Analysen von Tiermodellen. GKSS, Workshop Magnesium in der Medizin 2005.
Choudhary L, Raman RK. Magnesium alloys as body implants: Fracture mechanism under dynamic and static loadings in a physiological environment. Acta Biomater 2012; 8(2): 916-923. PMID: 22075121. http://dx.doi.org/10.1016/j.actbio.2011.10.031
Song GL, Atrens A. Corrosion Mechanisms of Magnesium Alloys. Adv Eng mater 1999; 1(1): 23. http://dx.doi.org/10.1002/(SICI)1527- 2648(199909)1:13.0.CO;2-N
Kuhlmann J, Bartsch I, Willbold E, Schuchardt S, Holz O, Hort N, et al. Fast escape of hydrogen from gas cavities around corroding magnesium implants. Acta Biomater 2013; 9(10): 8714-8721. http://dx.doi.org/10.1016/j.actbio.2012.10.008
Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R. Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci 2008; 12(5-6): 10. http://dx.doi.org/10.1016/j.cossms.2009.04.001
Rosalbino F, De Negri S, Saccone A, Angelini E, Delfino S. Bio-corrosion characterization of Mg-Zn-X (X = Ca, Mn, Si) alloys for biomedical applications. J Mater Sci Mater Med 2010; 21(4): 1091-1098. http://dx.doi.org/10.1016/j.biomaterials.2007.12.021
Rosalbino F, De Negri S, Scavino G, Saccone A. Microstructure and in vitro degradation performance of MgZn-Mn alloys for biomedical application. J Biomed Mater Res A 2013; 101(3): 704-711. http://dx.doi.org/10.1007/s10856-009-3956-1
Xu L, Yu G, Zhang E, Pan F, Yang K. In vivo corrosion behaviour of Mg-Mn-Zn alloy for bone implant application. J Biomed Mater Res A 2007; 83A(3): 703-711. PMID: 17549695 http://dx.doi.org/10.1002/jbm.a.31273
Zhang S, Zhang X, Zhao C, Li J, Song Y, Xie C, et al. Research on an Mg-Zn alloy as a degradable biomaterial. ActaBiomater 2010; 6(2): 626-640. http://dx.doi.org/10.1016/j.actbio.2009.06.028
Yin DS, Zhang EL, Zeng SY. Effect of Zn on mechanical property and corrosion property of extruded Mg-Zn-Mn alloy. T Nonferr Metal Soc 2008; 18(4): 763-768. http://dx.doi.org/10.1016/S1003-6326(08)60131-4
Khan SA, Miyashita Y, Mutohb Y, Sajuri ZB. Influence of Mn content on mechanical properties and fatigue behaviour of extruded Mg alloys. Mater Sci Eng A 2006; (420): 315-321. http://dx.doi.org/10.1016/j.msea.2006.01.091
ASTM Standard E8, in Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2013. http://dx.doi.org/10.1520/E0008_E0008M
Fischer J, Pröfrock D, Hort N, Willumeir R, Feyerabend F. Improved cytotoxicity testing of magnesium materials. Mater Sci Eng B 2011; 176(11): 830-834. http://dx.doi.org/10.1016/j.mseb.2011.04.008
ISO 10993-5, in Biological evaluation of medical devices, International Organization for Standardization, Geneva, Switzerland, 2009 (E).
Ghali E, Revie RW. General, galvanic, and localized corrosion of magnesium and its alloys, in corrosion resistance of aluminium and magnesium alloys. Quebec: John Wiley & Sons; 2010.
Witte F, Kaese V, Haferkamp H, Switzer E, MeyerLindenberg A, Wirth CJ, Windhagen H. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 2005; 26(17): 3557-3563. http://dx.doi.org/10.1016/j.biomaterials.2004.09.049
Bowen PK, Drelich J, Goldman J. A new in vitro-in vivo correlation for bioabsorbable magnesium stents from mechanical behaviour. Mater Sci Eng C Mater Biol Appl 2013; 33(8): 5064-5070. http://dx.doi.org/10.1016/j.msec.2013.08.042