Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 2 No. 1 (2015)

Shock-Induced C-N-S Tridoped TiO2 with Improved Photocatalytic Activity Under Visible Light

DOI
https://doi.org/10.15377/2410-4701.2015.02.01.3
Published
2015-09-26

Abstract

Using metatitanic acid (H2TiO3) and thiourea (CN2H4S) as titanium precursor and dopant sourcerespectively, a visible-light responsiblenon-metalC-N-S tridoped TiO2 photocatalyst is prepared by shock loading. X-ray powderdiffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and UV-visiblediffusereflectancespectroscopy (UV-Vis DRS)are employed to characterize thecrystalline structure,morphology,chemical composition and optical property of recovered samples.The results indicate the metatitanic acid transformsto pure anatase phase by shock wave and that theaverage size of particles is3-5 nm.The as-synthesized TiO2 nano-particles are well dispersedand possess large surface area (309.02m2/g), and the edge adsorptionwavelength of the samples exhibitsslight red shifts with corresponding energy gap reduced to 3.16 eV.Carbon forms carbonate on the surface of TiO2,N may coexist inthe forms of substituted N (N-O-Ti) and interstitial N (O-Ti-N) in TiO2, and S6+is incorporated into the lattice of TiO2through substituting titanium atoms.The photocatalyticactivities of the as-synthesized samples are evaluated for the degradation of Rhodamine B under simulatedsunlight irradiation.Results revealthat these C-N-StridopedTiO2exhibit higherphotocatalyticdegradation activities than that of undoped TiO2samples and achieve an 83% removal rate for RB dye under the visible light irradiation for 70min with the thiourea-to-metatitanic acid mass of 2:1 and flyervelocity 2.52 km·s-1,whichis mainly attributed to the synergistic effects of well-formed anatase phase, high specific surface area and band gap narrowing resulting from C-N-S tridoping.

References

  1. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972; 238: 37-8. http://dx.doi.org/10.1038/238037a0
  2. Regan BO, Gratzel M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 1991; m353: 737-40. http://dx.doi.org/10.1038/353737a0
  3. Bae EY, Choi WY. Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light. Environ Sci Technol 2003; 37: 147-52. http://dx.doi.org/10.1021/es025617q
  4. Bamwenda GR, Tsubota S, Nakamura T, Haruta M. Photoassisted hydrogen production from a water-ethanol solution: a comparison of activities of Au-TiO2 and Pt-TiO2. J Photochem Photobiol. A Chem 1995; 89: 177-89. http://dx.doi.org/10.1016/1010-6030(95)04039-I
  5. Kohtani S, Kudo A, Sakata T. Spectral sensitization of a TiO2 semiconductor electrode by CdS microcrystals and its photoelectrochemical properties. Chem Phys Lett 1993; 206: 166-70. http://dx.doi.org/10.1016/0009-2614(93)85535-V
  6. Asahi R, Morikawa T, Ohwaki T, Aokl K, Taga Y. VisibleLight Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 2001; 293: 269-71. http://dx.doi.org/10.1126/science.1061051
  7. Yuan JJ, Li HD, Gao SY. Hydrothermal synthesis, characterization and properties of TiO2 nanorods on borondoped diamond film. Mater Lett 2010; 64: 2012-5. http://dx.doi.org/10.1016/j.matlet.2010.06.033
  8. Neumann B, Bogdanoff P, Tributsch H, Sakthivel S, Kisch H. Electrochemical mass spectroscopic and surface photovoltage studies of catalytic water photooxidation by undoped and carbon-doped titania. J Phys Chem B 2005; 109; 16579-86. http://dx.doi.org/10.1021/jp051339g
  9. Hirakawa T, Nosaka Y. Selective production of superoxide ions and hydrogen peroxide over nitrogen-and sulfur-doped TiO2 photocatalysts with visible light in aqueous suspension systems. J Phys Chem C 2008; 112: 15818-23. http://dx.doi.org/10.1021/jp8055015
  10. Pan JH, Zhang XW, Du AJH, Sun DD, Leckie JO. Selfetching reconstruction of hierarchically mesoporous F-TiO2 hollow microspherical photocatalyst for concurrent membrane water purifications. J Am Chem Soc 2008; 130: 11256-7. http://dx.doi.org/10.1021/ja803582m
  11. Tian H, Ma JF, Li K, Li JJ. Hydrothermal synthesis of Sdoped TiO2 nanoparticles and their photocatalytic ability for degradation of methyl orange. Ceram Int 2009; 35: 1289-92. http://dx.doi.org/10.1016/j.ceramint.2008.05.003
  12. Rengifo-Herrera JA, Pierzchala K, Sienkiewicz A, Forro L, Kiwi J, Pulgarin C. Abatement of organics and escherichia coli by N, S co-doped TiO2 under UV and visible light. implications of the formation of singlet oxygen (1 O2) under visible light. Appl Catal B: Environmental 2009; 88: 398-406. http://dx.doi.org/10.1016/j.apcatb.2008.10.025
  13. Zhou M, Yu J. Preparation and enhanced daylight-induced photocatalytic activity of C,N,S-tridoped titanium dioxide powders. J Hazard Mater 2008; 152: 1229-36. http://dx.doi.org/10.1016/j.jhazmat.2007.07.113
  14. Thadhani NN. Shock-induced chemical reactions and synthesis of materials. Prog Mater Sci 1993; 37: 117-226. http://dx.doi.org/10.1016/0079-6425(93)90002-3
  15. Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl Catal A: Gneral 2004; 265: 115-21. http://dx.doi.org/10.1016/j.apcata.2004.01.007
  16. Sato S, Nakamura R, Abe S. Visible-light sensitization of TiO2 photocatalysts by wet-method N doping. Appl Catal A 2005; 284: 131-7. http://dx.doi.org/10.1016/j.apcata.2005.01.028
  17. Pore V, Heikkila M, Ritala M, Leskela M, Areva S. Atomic layer deposition of TiO2-xNx thin films for photocatalytic applications. J Photochem Photobiol A: Chem 2006; 177: 68- 75. http://dx.doi.org/10.1016/j.jphotochem.2005.05.013
  18. Chen PW, Gao X, Liu JJ, Zhou Q, Huang F. Shock-induced high-concentration nitrogen doping of titania. Combust Explo Shock 2012; 48: 724-9. http://dx.doi.org/10.1134/S0010508212060111
  19. Gao X, Chen PW, Liu JJ. Enhanced visible-light absorption of nitrogen-doped titania induced by shock wave. Mater Lett 2011; 65: 685-7. http://dx.doi.org/10.1016/j.matlet.2010.11.020
  20. Gao X, Liu JJ, Chen PW. Nitrogen-doped titania photocatalysts induced by shock wave, Mater. Res Bull 2009; 44: 1842-5. http://dx.doi.org/10.1016/j.materresbull.2009.05.020
  21. Liu JJ, Sekine T, Kobayashi T. A new carbon nitride synthesized by shock compression of organic precursors. Solid State Commun 2006; 137: 21-5. http://dx.doi.org/10.1016/j.ssc.2005.10.022
  22. Kamisaka H, Adachi T, Yamashita K. Theoretical study of the structure and optical properties of carbon- doped rutile and anatase titanium doxides. J Phys Chem 2005; 123: 084704. http://dx.doi.org/10.1063/1.2007630
  23. Wang PH, Yap PS, Lim TT. C-N-S tridoped TiO2 for photocatalytic degradation of tetracycline under visible-light irradiation. Appl Catal A 2011; 399: 252-61. http://dx.doi.org/10.1016/j.apcata.2011.04.008
  24. Cheng XW, Yu XJ, Xing ZP. One-step synthesis of visible active C-N-S-tridoped TiO2 photocatalyst from biomolecule cysteine. Appl Surf Sci 2012; 258: 7644-50. http://dx.doi.org/10.1016/j.apsusc.2012.04.111
  25. Suda Y, Kawasaki H, Ueda T, Ohshima T. Preparation of high quality nitrogen doped TiO2 thin film as a photocatalyst using a pulsed laser deposition method. Thin Solid Films 2004; 453-454: 162-6. http://dx.doi.org/10.1016/j.tsf.2003.11.185
  26. Randeniya LK, Murphy AB, Plumb IC. A study of S-doped TiO2 for photoelectrochemical hydrogen generation from water. J Mater Sci 2008; 43: 1389-99. http://dx.doi.org/10.1007/s10853-007-2309-z
  27. Wang YW, Huang Y, Ho WK, Zhang LZ, Zou ZG, Lee SC. Biomolecule-controlled hydrothermal synthesis of C-N-Stridoped TiO2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation. J Hazard Mater 2009; 169: 77-87. http://dx.doi.org/10.1016/j.jhazmat.2009.03.071
  28. Wei F, Ni L, Cui P. Preparation and characterization of N-Scodoped TiO2 photocatalyst and its photocatalytic activity. J Hazard Mater 2008; 156: 135-40. http://dx.doi.org/10.1016/j.jhazmat.2007.12.018
  29. Yang GD, Yan ZF, Xiao TC. Low-temperature solvothermal synthesis of visible-light-responsive S-doped TiO2 nanocrystal. Appl Surf Sci 2012; 258: 4016-22. http://dx.doi.org/10.1016/j.apsusc.2011.12.092
  30. Feng ND, Zheng A, Wang Q, Ren PP, Gao XZ, Liu SB, et al. Boron environments in B-doped and (B, N)-codoped TiO2 photocatalysts: a combined solid-state NMR and theoretical calculation study. J Phys Chem C 2011; 115: 2709-19. http://dx.doi.org/10.1021/jp108008a
  31. Bacsa R, Kiwi John, Ohno T, Albers P, Nadtochenko V. Preparation, testing and characterization of doped TiO2 active in the peroxidation of biomolecules under visible light. J Phys Chem B 2005; 109: 5994-6003. http://dx.doi.org/10.1021/jp044979c
  32. Vijayan BK, Dimitrijevic NM, Wu J, Gray KA. The effects of Pt doping on the structure and visible light photoactivity of titania nanotubes. J Phys Chem C 2010; 114: 21262-9. http://dx.doi.org/10.1021/jp108659a
  33. Ju J, Chen X, Shi Y, Miao J, Wu D. Hydrothermal preparation and photocatalytic performance of N, S-doped nanometer TiO2 under sunshine irradiation. Powder Technol 2013; 237: 616-22. http://dx.doi.org/10.1016/j.powtec.2012.12.048
  34. Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl Catal A: General 2004; 265: 115-21. http://dx.doi.org/10.1016/j.apcata.2004.01.007
  35. Li D, Haneda H, Hishita S, Ohashi N. Visible-light-driven nitrogen-doped TiO2 photocatalysts: effect of nitrogen precursors on their photocatalysis for decomposition of gasphase organic pollutants. Mater Sci Eng B 2005; 117: 67-75. http://dx.doi.org/10.1016/j.mseb.2004.10.018
  36. Serpone N, Lawless D, Khairutdinov R. Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization or direct transitions in this indirect semiconductor. J Phys Chem 1995; 99: 16646-54. http://dx.doi.org/10.1021/j100045a026
  37. Xu YJ, Zhuang YB, Fu XZ. New insight for enhanced photocatalytic activity of TiO2 by doping carbon nanotubes: A case study on degradation of benzene and methyl orasnge. J Phys Chem C 2010; 114: 2669-76. http://dx.doi.org/10.1021/jp909855p