Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 10 (2023)

Microwave Absorption Performance of One-dimensional Mixed Metal Oxide Nanocomposite

DOI
https://doi.org/10.31875/2410-4701.2023.10.13
Published
2023-12-26

Abstract

Abstract: Microwave-absorbing materials have received numerous attentions in terms of their key roles in the fields of stealth technology and controlling electromagnetic radiation pollution. In this paper, we aim to develop one-dimensional CoFe2O4-TiO2 mixed metal oxide nanocomposite via combination of sol-gel method and electrospinning technique. and investigate its microwave absorbing capability. The phase evolution from precursor fiber to final product and corresponding micromorphology are characterized, and microwave absorption performance for different CoFe2O4-TiO2 composite fibers are investigated with a vector network analyzer in 2-18 GHz. The prepared CoFe2O4-TiO2 mixed metal oxide composite fibers exhibit excellent microwave absorbing ability. The low reflection loss can reach -32.8 dB, and the maximum effective bandwidth is up to 6 GHz (12-18 GHz) at the thickness of 4 mm. The results further reveal that the lightweight mixed metal oxide composite fiber is promising for applications in electromagnetic attenuation and other related research fields.

References

  1. QIN M, LIANG H S, ZHAO X R, et al. Filter paper templated one-dimensional NiO/NiCoO microrod with wideband electromagnetic wave absorption capacity. Journal of Colloid and Interface Science, 2020, 566: 347-356. https://doi.org/10.1016/j.jcis.2020.01.114
  2. CHEN Z H, TIAN K H, ZHANG C, et al. In-situ hydrothermal synthesis of NiCo alloy particles@hydrophilic carbon cloth to construct corncob-like heterostructure for high-performance electromagnetic wave absorbers. Journal of Colloid and Interface Science, 2022, 616: 823-833. https://doi.org/10.1016/j.jcis.2022.02.086
  3. LI B B, MAO B X, WANG X B, et al. Novel, hierarchical SiC nanowire-reinforced SiC/carbon foam composites: Lightweight, ultrathin, and highly efficient microwave absorbers. Journal of Alloys and Compounds, 2020, 829. https://doi.org/10.1016/j.jallcom.2020.154609
  4. WANG Z Q, ZHAO P F, LI P W, et al. Hierarchical cerium oxide anchored multi-walled carbon nanotube hybrid with synergistic effect for microwave attenuation. Composites Part B-Engineering, 2019, 167: 477-486. https://doi.org/10.1016/j.compositesb.2019.03.018
  5. ZHAO Y, ZHANG H, YANG X, et al. In situ construction of hierarchical core–shell Fe3O4@C nanoparticles–helical carbon nanocoil hybrid composites for highly efficient electromagnetic wave absorption. Carbon, 2021, 171: 395-408. https://doi.org/10.1016/j.carbon.2020.09.036
  6. KONG L, LUO S H, ZHANG G Q, et al. Interfacial polarization dominant CNTs/PyC hollow microspheres as a lightweight electromagnetic wave absorbing material. Carbon, 2022, 193: 216-229. https://doi.org/10.1016/j.carbon.2022.03.016
  7. GUAN G, YAN L, ZHOU Y, et al. Composition design and performance regulation of three-dimensional interconnected FeNi@carbon nanofibers as ultra-lightweight and high efficiency electromagnetic wave absorbers. Carbon, 2022, 197: 494-507. https://doi.org/10.1016/j.carbon.2022.07.005
  8. LI D R, GUO K, WANG F Y, et al. Enhanced microwave absorption properties in C band of Ni/C porous nanofibers prepared by electrospinning. Journal of Alloys and Compounds, 2019, 800: 294-304. https://doi.org/10.1016/j.jallcom.2019.05.284
  9. YANG J, GUAN G, XIANG J, et al. Electrospinning fabrication and enhanced microwave absorption properties of nickel porous nanofibers. Journal of Alloys and Compounds, 2022, 891. https://doi.org/10.1016/j.jallcom.2021.161997
  10. JIANG Y L, FU X Y, ZHANG Z D, et al. Enhanced microwave absorption properties of FeC/C nanofibers prepared by electrospinning. Journal of Alloys and Compounds, 2019, 804: 305-313. https://doi.org/10.1016/j.jallcom.2019.07.038
  11. WANG P, CHENG L, ZHANG Y, et al. Electrospinning of graphite/SiC hybrid nanowires with tunable dielectric and microwave absorption characteristics. Composites Part A: Applied Science and Manufacturing, 2018, 104: 68-80. https://doi.org/10.1016/j.compositesa.2017.10.012
  12. LI L, CHEN Z, PAN F, et al. Electrospinning technology on one dimensional microwave absorbers: fundamentals, current progress, and perspectives. Chemical Engineering Journal, 2023, 470. https://doi.org/10.1016/j.cej.2023.144236
  13. WANG F Y, SUN Y Q, LI D R, et al. Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning. Carbon, 2018, 134: 264-273. https://doi.org/10.1016/j.carbon.2018.03.081
  14. HAN C, ZHANG M, CAO W Q, et al. Electrospinning and in-situ hierarchical thermal treatment to tailor C-NiCoO nanofibers for tunable microwave absorption. Carbon, 2021, 171: 953-962. https://doi.org/10.1016/j.carbon.2020.09.067
  15. ZHANG Z Y, ZHAO Y H, LI Z H, et al. Synthesis of carbon/SiO core-sheath nanofibers with Co-Fe nanoparticles embedded in via electrospinning for high-performance microwave absorption. Advanced Composites and Hybrid Materials, 2022, 5(1): 513-524. https://doi.org/10.1007/s42114-021-00350-w
  16. HOU Y, CHENG L F, ZHANG Y I, et al. Electrospinning of Fe/SiC Hybrid Fibers for Highly Efficient Microwave Absorption. Acs Applied Materials & Interfaces, 2017, 9(8): 7265-7271. https://doi.org/10.1021/acsami.6b15721
  17. WANG C, LIU Y, JIA Z, et al. Multicomponent Nanoparticles Synergistic One-Dimensional Nanofibers as Heterostructure Absorbers for Tunable and Efficient Microwave Absorption. Nano-Micro Letters, 2022, 15(1). https://doi.org/10.1007/s40820-022-00986-3
  18. LUO K, ZHAO B, XU C, et al. Construction of one-dimensional hierarchical MoS2/Ni3S2 composites with enhanced interfacial polarization and improved wideband microwave absorption. Journal of Materials Science & Technology, 2024, 178: 22-28. https://doi.org/10.1016/j.jmst.2023.08.044
  19. LIAO Z J, MA M L, BI Y X, et al. MoS decorated on one-dimensional MgFeO/MgO/C composites for high-performance microwave absorption. Journal of Colloid and Interface Science, 2022, 606: 709-718. https://doi.org/10.1016/j.jcis.2021.08.056
  20. JIAO Z, HU J, MA M, et al. One-dimensional core-shell CoC@CoFe/C@PPy composites for high-efficiency microwave absorption. Journal of Colloid and Interface Science, 2023, 650: 2014-2023. https://doi.org/10.1016/j.jcis.2023.07.072
  21. BI Y X, MA M L, LIAO Z J, et al. One-dimensional Ni@Co/C@PPy composites for superior electromagnetic wave absorption. Journal of Colloid and Interface Science, 2022, 605: 483-492. https://doi.org/10.1016/j.jcis.2021.07.050
  22. GUO S N, ZHANG Y Q, CHEN J B, et al. The excellent electromagnetic wave absorbing properties of carbon fiber composites: the effect of metal content. Inorganic Chemistry Frontiers, 2022, 9(13): 3244-3250. https://doi.org/10.1039/D2QI00854H
  23. SUN M X, XIONG Z M, ZHANG Z W, et al. One-dimensional Ag@NC-Co@NC composites with multiphase core-shell hetero-interfaces for boosting microwave absorption. Composites Science and Technology, 2022, 228. https://doi.org/10.1016/j.compscitech.2022.109663
  24. WANG Y-F, ZHU L, HAN L, et al. Recent Progress of One-Dimensional Nanomaterials for Microwave Absorption: A Review. ACS Applied Nano Materials, 2023, 6(9): 7107-7122. https://doi.org/10.1021/acsanm.3c00818
  25. HAN R, LI W, PAN W, et al. 1D Magnetic Materials of Fe3O4 and Fe with High Performance of Microwave Absorption Fabricated by Electrospinning Method. Scientific Reports, 2014, 4(1). https://doi.org/10.1038/srep07493
  26. WEI Z L, YANG S, JIAO P Z, et al. Novel and effective strategy for producing NiFe alloy fibers with tunable microwave absorption performance. Materialia, 2019, 8. https://doi.org/10.1016/j.mtla.2019.100495
  27. ABDALLA I, SHEN J L, YU J Y, et al. CoO/carbon composite nanofibrous membrane enabled high-efficiency electromagnetic wave absorption. Scientific Reports, 2018, 8. https://doi.org/10.1038/s41598-018-30871-2
  28. HUANG Y, JI J, CHEN Y, et al. Broadband microwave absorption of Fe3O4-BaTiO3 composites enhanced by interfacial polarization and impedance matching. Composites Part B: Engineering, 2019, 163: 598-605. https://doi.org/10.1016/j.compositesb.2019.01.008
  29. DONG J, ULLAL R, HAN J, et al. Partially crystallized TiO2 for microwave absorption. Journal of Materials Chemistry A, 2015, 3(10): 5285-5288. https://doi.org/10.1039/C4TA05908E
  30. YANG Z, LUO F, HU Y, et al. Dielectric and microwave absorption properties of TiO2/Al2O3 coatings and improved microwave absorption by FSS incorporation. Journal of Alloys and Compounds, 2016, 678: 527-532. https://doi.org/10.1016/j.jallcom.2016.04.031