Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 11 (2024)

Enhancing Mechanical Properties of a Lightweight TiAlCrNbVZr Medium-Entropy Alloy: Fine-Tuning Alloy Composition and Thermomechanical Treatment

DOI
https://doi.org/10.31875/2410-4701.2024.11.01
Published
2024-03-04

Abstract

Abstract: The quest to reduce fuel consumption and environmental pollution in the transportation sector has heightened the demand for developing lightweight alloys with enhanced mechanical properties. Accordingly, this study focused on optimizing the mechanical properties of a lightweight Ti65(AlCrNbV)28Zr7 medium entropy alloy (MEA) by strategically adjusting its Al, Cr, Nb, and V elemental contents. Hardness testing indicated a strengthening ability hierarchy of Cr > Al > V > Nb. Furthermore, tensile tests revealed that although a high Cr content significantly enhances strength, it also reduces the ductility of an MEA. Drawing on mechanical insights gained from a previously studied Ti60Al10Cr10Nb10V10 MEA and the present findings, a novel Ti60Al10Cr4Nb10V9Zr7 (Ti60Zr7) MEA was developed. This new alloy retains a single body-centered cubic structure and demonstrated exceptional mechanical performance in tensile testing, with a yield strength of 1066 MPa and 22% ductility. The Ti60Zr7 MEA underwent a series of thermomechanical treatments, including 50% hot rolling, 80% cold rolling, and rapid annealing up to 800 °C at a rate of 25 °C/s. After thermal processing, the Ti60Zr7 MEA not only preserved its single body-centered cubic structure but also achieved a remarkable combination of yield strength (>1200 MPa) and ductility (measured as >15% elongation). These advancements underscore the alloy’s considerable potential for application in sports equipment and transportation vehicles.

References

  1. Aluminum-Lithium Alloys Fight Back. https://aluminiuminsider.com/aluminium -lithium-alloys-fight-back/
  2. Springer, H., Baron, C., Szczepaniak, A., Uhlenwinkel, V., & Raabe, D. (2017). Stiff, light, strong and ductile: nano-structured High Modulus Steel. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-02861-3
  3. ASM International. Handbook Committee, “Properties and Selection: Irons, Steels, and High-Performance Alloys”; ASM International: Materials Park, OH, USA, 1990; Volume 1.
  4. ASM International. Handbook Committee, “Properties and Selection: Nonferrous Alloys and Special-Purpose Materials”; ASM International: Materials Park, OH, USA, 1990; Volume 2.
  5. Huang, K.H.; Yeh, J.W. A Study On Multicomponent Alloy Systems Containing Equal-Mole Elements; Department of Materials Science and Engineering, Hsinchu: National Tsing Hua University: Beijing, China, 1996.
  6. Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructure High-Entropy Alloys with Multiple Principle Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299-303. https://doi.org/10.1002/adem.200300567
  7. Yao, M.; Pradeep, K.; Tasan, C.; Raabe, D. A novel, single phase, non-equiatomic FeMnNiCoCr high entropy alloy with exceptional phase stability and tensile ductility. Scr. Mater. 2014, 72–73, 5-8. https://doi.org/10.1016/j.scriptamat.2013.09.030
  8. Youssef, K.; Zaddach, A.J.; Niu, C.; Irving, D.L.; Koch, C.C. A Novel Low-Density, High-Hardness, High-entropy Alloy with Close-packed Single-phase Nanocrystalline Structures. Mater. Res. Lett. 2014, 3, 95-99. https://doi.org/10.1080/21663831.2014.985855
  9. Stepanov, N.; Shaysultanov, D.; Chernichenko, R.; Tikhonovsky, M.; Zherebtsov, S. Effect of Al on structure and mechanical properties of Fe-Mn-Cr-Ni-Al non-equiatomic high entropy alloys with high Fe content. J. Alloys Compd. 2019, 770, 194-203. https://doi.org/10.1016/j.jallcom.2018.08.093
  10. Li, R.; Gao, J.; Fan, K. Study to Microstructure and Mechanical Properties of Mg Containing High Entropy Alloys. Mater. Sci. Forum 2010, 650, 265-271. https://doi.org/10.4028/www.scientific.net/MSF.650.265
  11. Du, X.;Wang, R.; Chen, C.;Wu, B.; Huang, J. Preparation of a Light-Weight MgCaAlLiCu High-Entropy Alloy. Key Eng. Mater. 2017, 727, 132-135. https://doi.org/10.4028/www.scientific.net/KEM.727.132
  12. Yeh, J.W. Recent progress in high-entropy alloys. Ann. Chim. Sci. Mat. 2006, 31, 633-648. https://doi.org/10.3166/acsm.31.633-648
  13. Yeh J. W.; Chang S. Y.; Honga Y. D.; Chenc S. K.; Lin, S. J. Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements. Materials Chemistry and Physics, 2007, 103, 41-46. https://doi.org/10.1016/j.matchemphys.2007.01.003
  14. Li, Z.; Pradeep, K. G.; Deng, Y.; Raabe, D.; Tasan, C. C. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature. 2016, 534(7606), 227-230. https://doi.org/10.1038/nature17981
  15. Li, Z.; Raabe, D. Strong and Ductile Non-equiatomic High-Entropy Alloys: Design, Processing. Microstructure, and Mechanical Properties. JOM. 2017, 69, 2099-2106. https://doi.org/10.1007/s11837-017-2540-2
  16. Yeh, J. W. Alloy design strategies and future trends in high-entropy alloys. JOM, 2013, 65, 1759-1771. https://doi.org/10.1007/s11837-013-0761-6
  17. Liao, Y.C.; Li, T.H.; Tsai, P.H.; Jang, J.S.C.; Hsieh, K.C.; Chen, C.Y.; Huang, J.C.; Wu, H.J.; Lo, Y.C.; Huang, C.W.; et al. Designing novel lightweight, high-strength and high-plasticity Tix(AlCrNb)100-x medium-entropy alloys. Intermetallics 2020, 117, 106673. https://doi.org/10.1016/j.intermet.2019.106673
  18. Chen, P.-S.; Shiu, S.-J.; Tsai, P.-H.; Liao, Y.-C.; Jang, J.S.-C.;Wu, H.-J.; Chang, S.-Y.; Chen, C.-Y.; Tsao, I.-Y. Remarkable Enhanced Mechanical Properties of TiAlCrNbV Medium-Entropy Alloy with Zr Additions. Materials, 2022, 15, 6324. https://doi.org/10.3390/ma15186324
  19. Senkov, O.N.; Semiatin, S.L. Microstructure and Properties of a Refractory High-Entropy Alloy after Cold Working. J. Alloys Compd. 2015, 649, 1110-1123. https://doi.org/10.1016/j.jallcom.2015.07.209
  20. Hou, J.; Zhang, M.; Ma, S.; Liaw, P.K.; Zhang, Y.; Qiao, J. Strengthening in Al0.25CoCrFeNi high-entropy alloys by cold rolling. Mater. Sci. Eng. 2017, 707, 593-601. https://doi.org/10.1016/j.msea.2017.09.089
  21. Eleti, R.R.; Raju, V.; Veerasham, M.; Reddy, S.R.; Bhattacharjee, P.P. Influence of strain on the formation of cold-rolling and grain growth textures of an equiatomic HfZrTiTaNb refractory high entropy alloy. Mater. Charact. 2018, 136, 286-292. https://doi.org/10.1016/j.matchar.2017.12.034
  22. Huang, Y.C.; Lai, Y.C.; Lin, Y.H.; Wu, S.K. A study on the severely cold-rolled and annealed quaternary equiatomic derivatives from quinary HfNbTaTiZr refractory high entropy alloy. J. Alloys Compd. 2021, 855, 157404. https://doi.org/10.1016/j.jallcom.2020.157404
  23. Yao, M.; Pradeep, K.; Tasan, C.; Raabe, D. A novel, single phase, non-equiatomic FeMnNiCoCr highentropy alloy with exceptional phase stability and tensile ductility. Scr. Mater. 2014, 72–73, 5-8. https://doi.org/10.1016/j.scriptamat.2013.09.030
  24. Liao, Y.C.; Chen, P.S.; Tsai, P.H.; Jang, J.S.C.; Hsieh, K.C.; Chang, H.W.; Chen, C.Y.; Huang, J.C.; Wu, H.J.; Lo, Y.C.; Huang, C.W.; Tsao, I.Y. Effect of thermomechanical treatment on the microstructure evolution and mechanical properties of lightweight Ti65(AlCrNb)35 medium-entropy alloy. Intermetallics, 2022, 143, 107470. https://doi.org/10.1016/j.intermet.2022.107470
  25. Zhang, Y.; Zhou, Y.J.; Lin, J.P.; Chen, G.L.; Liaw, P.K. Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 2008, 10, 534-538. https://doi.org/10.1002/adem.200700240
  26. Liao, Y.; Ye, W.; Chen, P.; Tsai, P.; Jang, J.; Hsieh, K.; Chen, C.; Huang, J.; Wu, H.; Lo, Y.; Huang, C.; and Tsao, I.. Effect of Al concentration on the microstructural and mechanical properties of lightweight Ti60Alx(VCrNb)40-x medium-entropy alloys. Intermetallics, 2021, 135, 107213. https://doi.org/10.1016/j.intermet.2021.107213