Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 11 (2024)

Vibrocasting of Silicon Carbide Based Concrete Materials

DOI
https://doi.org/10.31875/2410-4701.2024.11.04
Submitted
August 22, 2024
Published
2024-08-21

Abstract

In order to reduce the water demand of silicon carbide vibratory casting masses with high-alumina cement additives, the impact of various deflocculant of different natures to silicon carbide vibratory casting masses was investigated. The deflocculants used included polycarboxylate ether-based, sodium polyacrylate, high-molecular-weight poly-N-vinylpyrrolidone, and sodium salts of polymethylene-β-naphthalenesulfoxylic acid. Multifractional compositions of silicon carbide (2-3 mm, 1-2 mm, 0,5-1 mm, 0,2-0,5 mm, 0,063-0,12 mm fractions) with high-alumina cement and silicon additives, as well as with deflocculants, were studied. The firing of the materials was conducted in an oxygen atmosphere at temperatures between 1000 and 1400˚С. The adverse effect was demonstrated for deflocculant based on sodium polyacrylate and high-molecular-weight poly-N-vinylpyrrolidone, as the usage of these additives increases the water demand of the mix. A smaller amount of water used for the mass production allows the processing of more dense materials with reduced open and closed porosity. Using deflocculants, the moisture content of the material is reduced to 6.5%.

References

  1. Frolova, M.G., Lysenkov, A.S., Kravchuk, K.S., Zakorzhevsky, V.V., Kim, K.A. and Kargin, Y.F. (2023). Influence of the Morphology and Size of SiC Particles on the Mechanical Characteristics of SiC-Ceramics. Silicon, 15(16), pp.7213-7218. https://doi.org/10.1007/s12633-023-02524-1
  2. Frolova, M.G., Titov, D.D., Lysenkov, A.S., Kravchuk, K.S., Istomina, E.I., Istomin, P.V., Kim, K.A. and Kargin, Y.F. (2020). Properties of silicon carbide fibers obtained by silicification of carbon fabric with SiO vapours. Ceramics International, 46(11), pp.18101-18105. https://doi.org/10.1016/j.ceramint.2020.04.130
  3. Zhang, J., Xiao, G., Yi, M., Chen, Z., Zhang, J., Chen, H., Shang, X. and Xu, C. (2022). High-temperature mechanical properties of ZrB2/SiC/Si3N4 ceramic tool materials with dual composite architectures. Ceramics International, 48(1), pp.1038-1046. https://doi.org/10.1016/j.ceramint.2021.09.189
  4. Frolova, M.G., Kargin, Yu.F., Lysenkov, A.S., Perevislov, S.N., Titov, D.D., Kim, K.A., Istomina, E.I., Alpatov, A.V. and Solntsev, K.A. (2020). SiC-Fiber Reinforced Silicon Carbide-Based Ceramic Composite. Inorganic Materials, 56(9), pp.987-992. https://doi.org/10.1134/S0020168520090058
  5. D. Valeev, A. Lysenkov, Kim, K., Smirnov, S., D. Korotaev, A. Shoppert, D. Pankratov and Pan, J. (2024). SiC Ceramics Production by Spark Plasma Sintering from a Coal Fly Ash Residue after High-Pressure NH4HSO4-and-H2SO4 Leaching. Ceramics International. https://doi.org/10.1016/j.ceramint.2024.04.352
  6. Yurkov Andrey, Refractories for Aluminum: Electrolysis and the Cast House, Second edition, 2017, Springer International Publishing AG, 276 p.
  7. O.G. Volkhovitsky, M.M. Ershov, B.L. Krasny, A.S. Zuev (2023) Import substitution and technological development in the field of mastering the production of gas turbine components in Russia. Gas industry, 9, pp.140 - 141.
  8. Wang, H., Bi, Y., Zhou, N. and Zhang, H. (2016). Preparation and strength of SiC refractories with in situ β-SiC whiskers as bonding phase. Ceramics International, 42(1), pp.727-733. https://doi.org/10.1016/j.ceramint.2015.08.172
  9. Hnatko, M., Dušan Galusek and Pavol Šajgalı́k (2004). Low-cost preparation of Si3N4-SiC micro/nano composites by in-situ carbothermal reduction of silica in silicon nitride matrix. Journal of the European Ceramic Society, 24(2), pp.189-195. https://doi.org/10.1016/S0955-2219(03)00604-6
  10. Samson Dare Oguntuyi, N. Malatji, Mxolisi Brendon Shongwe, Johnson, O.T., Khoathane, C. and Tshabalala, L.C. (2022). The influence of Si3N4 on the microstructure, mechanical properties and the wear performance of TiB2-SiC synthesized via spark plasma sintering. 5(3), pp.326-338. https://doi.org/10.1016/j.ijlmm.2022.04.004
  11. Suri, J. and Shaw, L.L. (2014). Liquid phase sintering of Si3N4/SiC nanopowders derived from silica fume. Ceramics International, 40(7), pp.9179-9187. https://doi.org/10.1016/j.ceramint.2014.01.135
  12. König, T., Galetz, M.C. and Albert, B. (2021). Application of the pack cementation process on SiC/SiC ceramic matrix composites. Journal of the European Ceramic Society, 41(16), pp.101-112. https://doi.org/10.1016/j.jeurceramsoc.2021.09.027
  13. Lei, C., Xiao, G., Ding, D., Chen, J. and Zang, Y. (2023). Microstructural evolution and properties enhancement of SiC refractory castables bonded with the special CNFs/calcium aluminate cement. Ceramics International, 49(15), pp.25716-25727. https://doi.org/10.1016/j.ceramint.2023.05.118
  14. Wen, X., Feng, L., Hu, dong-yuan, Wang, K. and Zhang, Z. (2019). Effect of side-chain length in polycarboxylic superplasticizer on the early-age performance of cement-based materials. Construction and Building Materials, 211, pp.26-32. https://doi.org/10.1016/j.conbuildmat.2019.03.124
  15. Shahrestani, S., Ismail, M.C., Kakooei, S. and Beheshti, M. (2021). Microstructure, phase compositions and mechanical properties of slip cast sintered SiC/Si3N4 composites. Ceramics International. https://doi.org/10.1016/j.ceramint.2021.01.182
  16. Paula, A., Mariana and Victor Carlos Pandolfelli (2015). Refractory Castable Engineering.
  17. Singh, A., Vinay Kumar Singh, Raj Kumar Chaturvedi, Kumari, J. and Debnath, N.K. (2023). Fabrication, Microstructural, and Mechanical Behavior of SiC Composite with Insitu Formation of BN and Si3N4. Silicon, 15(12), pp. 5271-5281. https://doi.org/10.1007/s12633-023-02428-0
  18. Hu, H.-L., Zeng, Y.-P., Zuo, K.-H., Xia, Y.-F., Yao, D.-X., Jens Günster, Heinrich, J.G. and Li, S. (2015). Synthesis of porous Si3N4/SiC ceramics with rapid nitridation of silicon. Journal of the European Ceramic Society, 35(14), pp.3781-3787. https://doi.org/10.1016/j.jeurceramsoc.2015.06.028
  19. Chen, J., Li, N., Wei, Y., Han, B., Li, G., Yan, W. and Zhang, Y. (2017). Synthesis of Si3N4/SiC reaction-bonded SiC refractories: The effects of Si/C molar ratio on microstructure and properties. Ceramics International, 43(18), pp.16518-16524. https://doi.org/10.1016/j.ceramint.2017.09.036
  20. D. Bucevac, Boskovic, S. and B. Matovic (2008). Kinetics of the α-β phase transformation in seeded Si3N4 ceramics. Science of Sintering, 40(3), pp.263-270. https://doi.org/10.2298/SOS0803263B
  21. Antonova E.S., Golubeva N.A., Kelina I.Y., Plyasunkova L.A., Stakhrovskaya T.E., Nechepurenko A.S (2014). The influence of gravimetric composithion and partice of reaction bonded silicon carbide. Novye Ogneupory (New Refractories), 10, pp. 37-41.